Efeitos de QCD não-perturbativa no espalhamento inelástico profundo

Alexander L. dos Santos Orientador: Emerson G.S. Luna

Instituto de Física e Matemática Curso de Pós-Graduação em Física

Introdução

- QCD perturbativa e não-perturbativa
- Espalhamento inelástico profundo
 - Modelo de pártons;
 - Função de estrutura;
- DGLAP
 - DAS generalizado;
 - Resultados canônico e analítico;
- Massa dinâmica de glúons
 - Solução de Cornwall;
 - Ansatz 1;
 - Ansatz 2;
 - Resultados;
- Conclusões.

QCD

A Cromodinâmica Quântica (*Quantum Chromodynamics*, QCD) é a teoria para o estudo das interações fortes. Ela pode ser dividida em duas partes.

- QCD Perturbativa
- QCD não-Perturbativa

 A região pertubativa da QCD permite o uso de métodos perturbativos nos estudos dos processos.

- A região pertubativa da QCD permite o uso de métodos perturbativos nos estudos dos processos.
- A região não perturbativa da QCD, que será o alvo deste trabalho, possui alguns métodos para descrição dos processos, dentre eles destacamos dois:
 - QCD na rede;
 - Equações de Schwinger-Dyson.

Na região perturbativa temos a propriedade de liberdade assintótica, onde a interação entre os constituintes do próton torna-se muito fraca, e então podemos considerá-los livres.

- Na região perturbativa temos a propriedade de liberdade assintótica, onde a interação entre os constituintes do próton torna-se muito fraca, e então podemos considerá-los livres.
- Na região não-perturbativa (Infravermelho) temos propriedade de confinamento de cor assim não podemos observar quarks e glúons livres.

- Colisão entre um lépton(elétron) e um hádron(próton).
- O elétron emite um fóton.
- O fóton interage com o próton.
- O Próton é quebrado.
- Assim surge o termo inelástico.

- Através da seção de choque diferencial podemos obter as informações que buscamos a respeito do interior do hádron.
- É importante também definir uma quantidade muito importante, a virtualidade do fóton: Q² = (k - k')² = -q², que informa a profundidade do espalhamento.

Para obtermos a seção de choque diferencial precisamos do módulo quadrado da amplitude de espalhamento que é:

$$|\mathcal{M}|^{2} = \frac{e^{4}}{Q^{4}} L^{(e)}_{\mu\nu} W^{\mu\nu} \left(4\pi m_{p}\right).$$
⁽¹⁾

• Onde $L_{\mu\nu}^{(e)}$ é o tensor leptônico e $W^{\mu\nu}$ é o tensor hadrônico.

$$L_{\mu\nu}^{(e)} = 2\left(k'_{\mu}k_{\nu} + k'_{\nu}k_{\mu} - \left(k'\cdot k - m^{2}\right)g_{\mu\nu}\right)$$
(2)

$$W^{\mu\nu} = -W_1 \left(-g^{\mu\nu} + \frac{q^{\mu}q^{\nu}}{q^2} \right) + W_2 \frac{1}{m_{\rho}^2} \left(p^{\mu} - \frac{p \cdot q}{q^2} q^{\mu} \right) \left(p^{\nu} + -\frac{p \cdot q}{q^2} q^{\nu} \right)$$
(3)

Podemos então renomear as variáveis W_1 e W_2 da seguinte forma:

$$F_1\left(\mathbf{x}, \mathbf{Q}^2\right) = m_p W_1$$
 e $F_2\left(\mathbf{x}, \mathbf{Q}^2\right) = \frac{p \cdot q}{m_p} W_2.$ (4)

Alexander L. dos Santos (UFPel)

Desta forma a seção de choque diferencial do processo é:

$$\frac{d^2\sigma}{dx\,dQ^2} = \frac{4\pi\alpha^2}{xQ^4} \left[y^2 x F_1\left(x,Q^2\right) + (1-x)F_2\left(x,Q^2\right) \right],\tag{5}$$

onde

$$y = \frac{Q^2}{xs} \quad e \quad x = \frac{Q^2}{2p \cdot q}.$$
 (6)

Aqui x e y são variáveis adimensionais.

 Podemos obter seção de choque diferencial por outro método.

Figure: Espalhamento elétron-párton.

- Podemos obter seção de choque diferencial por outro método.
- O modelo de pártons.

Figure: Espalhamento elétron-párton.

- Podemos obter seção de choque diferencial por outro método.
- O modelo de pártons.

Figure: Espalhamento elétron-párton.

Consideramos a troca do fóton entre o elétron e um quark.

$$\frac{d^2\sigma}{dx\,dQ^2} = \sum_q \int_0^1 d\xi f_q(\xi) \left(\frac{d^2\sigma}{dx\,dQ^2}\right)_{eq} \tag{7}$$

Alexander L. dos Santos (UFPel)

Com isso obtemos a seção de choque diferencial do sub-processo

$$\frac{d^2\sigma}{dx\,dQ^2}\Big|_{eq} = \frac{2\pi\alpha^2 e_q^2}{Q^4} \left[1 + (1-y)^2\right]\delta(x-\xi).$$
(8)

Ficamos com a seção de choque diferencial do processo da forma:

$$\frac{d^2\sigma}{dx\,dQ^2}\Big|_{eP\to eX} = \frac{4\pi\alpha^2 e_q^2}{xQ^4} \sum_i \int d\xi f_i(\xi) e_q^2 \frac{x}{2} \left[1 + (1-y)^2\right] \delta(x-\xi).$$
(9)

 Aqui x passará a ser, para grandes virtualidades, a fração de momentum do próton portado pelo quark.

Comparando este resultado com o obtido a partir do módulo quadrado da amplitude de espalhamento podemos determinar quem são as funções $F_1 e F_2$.

- A função de estrutura é determinada experimentalmente e tem papel fundamental para o conhecimento do interior do próton.
- No modelo de pártons original ela depende apenas de x, ou seja ela escala apenas com x dando origem ao escalamento de Bjorken.

$$2xF_1 = F_2 = \sum_i e_q^2 x f_i(x)$$
 (10)

 No modelo de pártons da QCD este escalamento é violado, passando a depender também de Q².

$$F_2 = F_2(x, Q^2)$$
 (11)

Alexander L. dos Santos (UFPel)

• A função de estrutura F_2 depende explicitamente das funções $f(x, Q^2)$.

- A função de estrutura F_2 depende explicitamente das funções $f(x, Q^2)$.
- Estas funções chamadas de funções de distribuição de pártons (PDF's), estão presentes nas equações propostas por Dokchitzer, Gribov, Lipatov, Altarelli e Parisi (DGLAP).

- A função de estrutura F_2 depende explicitamente das funções $f(x, Q^2)$.
- Estas funções chamadas de funções de distribuição de pártons (PDF's), estão presentes nas equações propostas por Dokchitzer, Gribov, Lipatov, Altarelli e Parisi (DGLAP).
- As equações DGLAP são equações integro-diferencias acopladas que ditam a evolução das PDF's.

- A função de estrutura F_2 depende explicitamente das funções $f(x, Q^2)$.
- Estas funções chamadas de funções de distribuição de pártons (PDF's), estão presentes nas equações propostas por Dokchitzer, Gribov, Lipatov, Altarelli e Parisi (DGLAP).
- As equações DGLAP são equações integro-diferencias acopladas que ditam a evolução das PDF's.

São dadas por:

$$\frac{\partial f_q(\mathbf{x}, \mathbf{Q}^2)}{\partial \ln \mathbf{Q}^2} = \frac{\alpha_s}{2\pi} \int_{\mathbf{x}}^1 \frac{d\xi}{\xi} \left[f_q(\xi, \mathbf{Q}^2) P_{qq}(\frac{\mathbf{x}}{\xi}) + f_g(\xi, \mathbf{Q}^2) P_{qg}(\frac{\mathbf{x}}{\xi}) \right]$$
(12)

- A função de estrutura F_2 depende explicitamente das funções $f(x, Q^2)$.
- Estas funções chamadas de funções de distribuição de pártons (PDF's), estão presentes nas equações propostas por Dokchitzer, Gribov, Lipatov, Altarelli e Parisi (DGLAP).
- As equações DGLAP são equações integro-diferencias acopladas que ditam a evolução das PDF's.

São dadas por:

$$\frac{\partial f_q(\mathbf{x}, \mathbf{Q}^2)}{\partial \ln \mathbf{Q}^2} = \frac{\alpha_s}{2\pi} \int_{\mathbf{x}}^1 \frac{d\xi}{\xi} \left[f_q(\xi, \mathbf{Q}^2) \mathcal{P}_{qq}(\frac{\mathbf{x}}{\xi}) + f_g(\xi, \mathbf{Q}^2) \mathcal{P}_{qg}(\frac{\mathbf{x}}{\xi}) \right]$$
(12)

e:

$$\frac{\partial f_g(x, Q^2)}{\partial \ln Q^2} = \frac{\alpha_s}{2\pi} \int_x^1 \frac{d\xi}{\xi} \left[f_q(\xi, Q^2) P_{qg}(\frac{x}{\xi}) + f_g(\xi, Q^2) P_{gg}(\frac{x}{\xi}) \right]$$
(13)

Figure: Diagramas de Feynman das funções de desdobramento.

Alexander L. dos Santos (UFPel)

DAS Generalizado

Funções de distribuição partônicas

- Usando a proposição de Kotikov e colaboradores para obtermos as PDF's a partir das equações DGLAP que considera uma generalização do duplo escalamento assintótico.
- Usando também a condição inicial:

$$x f_a(x, Q_0^2) = A_a \quad (a = q, g)$$
 (14)

Abaixo temos as distribuições partônicas em NLO:

$$\begin{aligned} f_a^-(x, Q^2) &= A_a^-(Q^2, Q_0^2) \exp\left[-d_-(1)s - D_-p\right] + \mathcal{O}(x), \\ f_q^+(x, Q^2) &= A_q^+(Q^2, Q_0^2) \tilde{J}_0(\sigma) \exp\left[-\bar{d}_+(1)s - \bar{D}_+p\right] + \mathcal{O}(\rho), \end{aligned}$$
(15)

$$f(\mathbf{x}, \mathbf{Q}^2) = A_g^+(\mathbf{Q}^2, \mathbf{Q}_0^2) I_0(\sigma) \exp\left[-d_+(1)\mathbf{s} - D_+ \mathbf{p}\right] + \mathcal{O}(\rho), \tag{16}$$

$$f_{q}^{+}(\mathbf{x}, \mathbf{Q}^{2}) = A_{q}^{+}(\mathbf{Q}^{2}, \mathbf{Q}_{0}^{2}) \left\{ \left[1 - \bar{d}_{+-}^{q} \frac{\alpha_{s}(\mathbf{Q}^{2})}{4\pi} \right] \rho \tilde{l}_{1}(\sigma) + 20 \frac{\alpha_{s}(\mathbf{Q}^{2})}{4\pi} \tilde{l}_{1}(\sigma) \right\} \times \exp \left[-\bar{d}_{+}(1)s - \bar{D}_{+}\rho \right] + \mathcal{O}(\rho),$$
(17)

Onde

$$\sigma = 2\sqrt{(\hat{a}_+ s + \hat{D}_+ p)\ln x}, \qquad \rho = \sqrt{\frac{(\hat{a}_+ s + \hat{D}_+ p)}{\ln x}}, \tag{18}$$

$$A_{g}^{+}(Q^{2}, Q_{0}^{2}) = \left[1 - \frac{80}{81}n_{f}\frac{\alpha_{s}(Q^{2})}{4\pi}\right]A_{g} + \frac{4}{9}\left[1 + 3\left(1 + \frac{1}{81}n_{f}\right)\frac{\alpha_{s}(Q_{0}^{2})}{4\pi} - \frac{80}{81}n_{f}\frac{\alpha_{s}(Q^{2})}{4\pi}\right],$$
(19)

$$A_{g}^{-}(Q^{2}, Q_{0}^{2}) = A_{g} - A_{g}^{+}(Q^{2}, Q_{0}^{2})$$
⁽²⁰⁾

$$A_{q}^{+}(Q^{2}, Q_{0}^{2}) = \frac{n_{f}}{9} \left(A_{g} + \frac{4}{9} A_{q} \right) , \qquad A_{q}^{-} = A_{q} - 20 \frac{\alpha_{s}(Q_{0}^{2})}{4\pi} A_{q}^{+}$$
(21)

е

$$\tilde{l}_{\nu}(\sigma) = \begin{cases} l_{\nu}(\bar{\sigma}) & \text{para} \quad \sigma^2 = \bar{\sigma}^2 \ge 0, \\ i^{\nu} J_{\nu}(\bar{\sigma}) & \text{para} \quad \sigma^2 = -\bar{\sigma}^2 < 0, \end{cases}$$
(22)

Seminário de Mestrado

A função de estrutura em NLO apresenta a seguinte forma

$$F_2(x, Q^2) = e\left(f_q(x, Q^2) + \frac{2}{3}n_f\frac{\alpha_s(Q^2)}{4\pi}f_g(x, Q^2)\right)$$

Alexander L. dos Santos (UFPel)

(23)

 Para obtermos as expressões de F₂ usamos a forma canônica NLO é dada por:

$$\alpha_{s}^{NLO}(\mathbf{Q}^{2}) = \frac{4\pi}{\beta_{0}\ln\left(\frac{\mathbf{Q}^{2}}{\Lambda_{NLO}^{2}}\right)} \left[1 - \frac{\beta_{1}}{\beta_{0}^{2}} \frac{\ln\left(\ln\left(\frac{\mathbf{Q}^{2}}{\Lambda_{NLO}^{2}}\right)\right)}{\ln\left(\frac{\mathbf{Q}^{2}}{\Lambda_{NLO}^{2}}\right)}\right]$$

Alexander L. dos Santos (UFPel)

Seminário de Mestrado

A forma analítica NLO proposta por Shirkov e Solovtsov:

$$\alpha_{\mathrm{an}}^{NLO}(\mathsf{Q}^2) = \alpha_{s}^{NLO}(\mathsf{Q}^2) - \frac{1}{2\beta_0} \frac{\Lambda_{NLO}^2}{\mathsf{Q}^2 - \Lambda_{NLO}^2} + \dots,$$
(25)

Valores de A e outras definições

Teorema de desacoplamento

- Se $Q^2 < m_i^2$, onde *i* é o indice de sabor do quark, o quark é desacoplado.
- Exemplo: Em $Q^2 = 22.5625 \text{ GeV}^2$, que é a massa do quark *b* ao quadrado, este quark se desacopla e o número de sabores que antes era $n_f = 5$ agora passa a ser $n_f = 4$.
- Com a mudança no número de sabores, α_s torna-se descontínuo.
- Devemos alterar algum parâmetro para termos continuidade.
- Este parâmetro é o Λ_{QCD}, que no exemplo dado acima passa de Λ₅ para Λ₄.

$$\alpha_s^{LO}(\mathbf{Q}^2) = \frac{4\pi}{\beta_0 \ln\left(\frac{\mathbf{Q}^2}{\Lambda^2}\right)}, \quad \text{onde} \quad \beta_0 = 11 - \frac{2}{3}n_f.$$
(26)

Valores de A e outras definições

- O valor de Λ é fixado usando o valor de Q² = M_z² onde M_z = 91, 1876 GeV, como referência.
- Na colaboração MRST em 2004 este valor foi definido como α_s(M²_z) = 0.1165 ± 0.0040.
- Já em uma publicação de 2009 o valor obtido foi $\alpha_s(M_z^2) = 0.1202^{+0.0012}_{-0.0015}$.
- Porém temos uma margem de erro para o valor de α_s(M²_z), ou seja, 0.1125 < α_s(M²_z) < 0.1214.
- Para $\alpha_s(M_z^2) = 0.1125$ temos $\Lambda_4 \approx 245$ MeV.
- E para $\alpha_s(M_z^2) = 0.1214$, temos $\Lambda_4 \approx 445$ MeV.

Figure: Valores de χ^2/DoF em função dos valores de Λ_4 . Para as versões canônica (Quadrados) e analítica (círculos) do acoplamento forte.

Figure: Comparação entre as descrição dos dados da função de estrutura F_2 obtidas por meio dos ajustes utilizando o acoplamento canônico NLO da QCD (curvas cheias) e o acoplamento analítico NLO da QCD (curvas tracejadas). Curvas obtidas fixando-se $\Lambda_4 = 245$ MeV.

Alexander L. dos Santos (UFPel)

09 de agosto de 2010 24 / 39

	A_g	A_q	Q ₀ ² [GeV ²]	χ^2/DoF
NLO	-0.239±0.017	1.048±0.020	0.388±0.015	2.95
NLOan	-0.170±0.016	$1.079 {\pm} 0.019$	0.458±0.015	3.34

Table: Valores dos parâmetros A_g , $A_q \in Q_0^2$ obtidos por meio dos ajustes dos dados experimentais de F_2 . Os erros dos parâmetros foram obtidos adotando-se um intervalo de confiança de 90%.

Analisando o resultado de χ^2 /DoF acima, podemos notar que o resultado é bastante ruim, pois o valor é grande. Portanto, mesmo com a solução para as PDF's determinada para a região cinemáitca do Infravermelho, os acoplamentos canônico e analítico não apresentam bons resultados. O que nos faz buscar uma alternativa para este problema.

Massa Dinâmica de glúons

- As equações de Schwinger-Dyson formam um conjunto infinito de integrais acopladas.
- Para a obtenção de uma solução para estas equação é necessário que se faça um truncamento.
- Através de uma técnica de Pinch, utilizada por Cornwall, obtem-se soluções que são invariantes de calibre.
- Nesta solução surge a expressão para o acoplamento forte da forma:

$$\bar{\alpha}_{s}(Q^{2}) = \frac{4\pi}{\beta_{0} \ln\left[(Q^{2} + 4M_{g}^{2}(Q^{2}))/\Lambda^{2}\right]}$$
(27)

onde

$$M_g^2(Q^2) = m_g^2 \left[\frac{\ln\left(\frac{Q^2 + 4m_g^2}{\Lambda^2}\right)}{\ln\left(\frac{4m_g^2}{\Lambda^2}\right)} \right]^{-\frac{12}{11}}$$
(28)

Alexander L. dos Santos (UFPel)

Seminário de Mestrado

Ansatz 1

Usando a propriedade de renormalizabilidade multiplicativa temos que α
^{LO}_s → α
^{LO}_s quando Q² ≫ 1 GeV². Assim, se esta relação é válida para LO, deverá também ser válida para NLO, ou seja, com Q² grande, deveremos ter α
^{NLO}_s → α
^{NLO}_s. Desta forma, na região perturbativa, teremos

$$\frac{\bar{\alpha}_{s}^{NLO}}{\bar{\alpha}_{s}^{LO}} = \frac{\alpha_{s}^{NLO}}{\alpha_{s}^{LO}},$$
(29)

onde a razão $\frac{\alpha_s^{NLO}}{\alpha_s^{LO}}$ é conhecida:

$$\frac{\alpha_s^{NLO}(Q^2)}{\alpha_s^{LO}(Q^2)} = 1 - \frac{\beta_1}{\beta_0^2} \frac{\ln \ln(\frac{Q^2}{\Lambda^2})}{\ln(\frac{Q^2}{\Lambda^2})} \equiv R(Q^2), \tag{30}$$

Ansatz 1

 Portanto, nosso primeiro ansatz para o acoplamento dinâmico em NLO tem a forma

$$\bar{\alpha}_{[1]}^{NLO}(Q^2) = \begin{cases} \bar{\alpha}_s^{LO}(Q^2) R(Q^2) & \text{para} \quad Q^2 \ge Q_0'^2, \\ \\ \bar{\alpha}_s^{LO}(Q^2) \left[a + b \, Q^2 \right] & \text{para} \quad Q^2 < Q_0'^2; \end{cases}$$
(31)

onde

$$a = R(Q_0^{\prime 2}) - b Q_0^{\prime 2}, \qquad (32)$$

е

$$b = \frac{\beta_1}{\beta_0^2} \frac{1}{Q_0'^2 \left(\ln(\frac{Q_0'^2}{\Lambda^2}) \right)^2} \left[1 - \ln\left(\ln\left(\frac{Q_0'^2}{\Lambda^2}\right) \right) \right].$$
 (33)

Alexander L. dos Santos (UFPel)

Propomos também uma outra forma para o acoplamento NLO como alternativa. Nesta proposição tomamos o acoplamento canônico apresentado na equação (24) e fazemos uma substituição simples do tipo $Q^2 \rightarrow Q^2 + 4M_q^2(Q^2)$ e desta forma obtemos:

$$\bar{\alpha}_{s}^{NLO_{[2]}}(Q^{2}) = \frac{4\pi}{\beta_{0}\ln\left(\frac{Q^{2}+4M_{g}^{2}(Q^{2})}{\Lambda_{NLO}^{2}}\right)} \left[1 - \frac{\beta_{1}}{\beta_{0}^{2}} \frac{\ln\left(\ln\left(\frac{Q^{2}+4M_{g}^{2}(Q^{2})}{\Lambda_{NLO}^{2}}\right)\right)}{\ln\left(\frac{Q^{2}+4M_{g}^{2}(Q^{2})}{\Lambda_{NLO}^{2}}\right)}\right], (34)$$

Figure: Comparação dos comportamentos NLO do acoplamento forte da QCD nas versões canônica (linha pontilhada), ansatz 1 (linha cheia) e ansatz 2 (linha tracejada).

Alexander L. dos Santos (UFPel)

Seminário de Mestrado

09 de agosto de 2010 30 / 39

Figure: Valores de χ^2/DoF em função dos valores de Λ_4 . Para o *ansatz* 1 (Quadrados) e *ansatz* 2 (círculos) do acoplamento forte.

Figure: Comparação entre as descrição dos dados de $F_2 \operatorname{com} \bar{\alpha}_{[1]}^{NLO}$ (curvas cheias) e $\bar{\alpha}_{[2]}^{NLO}$ (curvas tracejadas).

Alexander L. dos Santos (UFPel)

Seminário de Mestrado

Alexander L. dos Santos (UFPel)

09 de agosto de 2010 33 / 39

	A_g	A_q	Q ₀ ² [GeV ²]	χ^2/DoF
NLO _[1]	-0.042 ± 0.027	0.981±0.020	0.241±0.011	3.14
NLO _[2]	$0.129{\pm}0.015$	0.713±0.023	$0.000 {\pm} 0.013$	2.05

Table: Valores dos parâmetros A_g , $A_q \in Q_0^2$ obtidos por meio dos ajustes dos dados experimentais de F_2 . Valores obtidos fixando-se $\Lambda_4 = 245$ MeV e $m_g = 370$ MeV.

Massa dinâmica

- É importante ressaltar e observar o valor do parâmetro Q₀² para o ansatz 2, que está em vermelho.
- Podemos considerá-lo como nulo e introduzirmos um novo parâmetro que absorve o comportamento de Q₀². Portanto o novo parâmetro livre a ser ajustado é a massa dinâmica m_g.

Comparação do A

Uma última comparação pode ser feita tomando em conta o comportamento da figura (9). Onde podemos observar uma melhora no valor de χ²/DoF para valores cada vez melhores de Λ. Portanto fizemos uma extrapolação igualando Λ₄ = Λ₅. Na tabela asseguir vemos a comparação dos resultados para valores distintos de Λ, agora com a massa dinâmica como parâmetro livre.

	A_g	A_q	<i>m</i> _g [GeV]	χ^2/DoF
$NLO_{[2]}$ (A ₄ = 245 MeV)	0.080±0.031	$0.708 {\pm} 0.024$	$0.355{\pm}0.008$	1.99
$NLO_{[2]}$ ($\Lambda_4 = 163 \text{ MeV}$)	$0.435 {\pm} 0.037$	$0.559{\pm}0.026$	$0.323{\pm}0.008$	1.65

Table: Valores dos parâmetros A_g , $A_q \in m_g$ obtidos por meio dos ajustes dos dados experimentais de F_2 . Valores obtidos fixando-se $\Lambda_4 = 245$ e 163 MeV. de 90%.

- Vemos nesta tabela dois pontos importantes:
 - O valor da massa dinâmica obtido é compatível com os valores obtidos em outros trabalhos, ficando dentro do limite m_g = 500 MeV±200 MeV;
 - O valor de χ^2 /DoF tem uma redução significativa.

Figure: Comparação entre as descrição dos dados de F_2 obtidas utilizando o acoplamento dinâmico $\bar{\alpha}_{[2]}^{NLO}$. Curvas obtidas fixando-se $\Lambda_4 = 245$ MeV (curvas cheias) e $\Lambda_4 = \Lambda_5 = 163$ MeV (curvas tracejadas).

Conclusões e perspectivas

- Os resultados obtidos com as versões canônica e analítica são bastante ruins.
- Ambos os ansatzes apresentam um bom resultado, porém com um valor menor de χ²/DoF para o ansatz 2.
- Na nossa análise o valor de m_g é compatível com valores de outras nálises encontradas na literatura.
- Esta é a primeira vez que se propõe uma versão NLO para o acoplamento do Cornwall.
- Para valores menores de Λ_4 temos melhores valores de χ^2 /DoF.
- Artigo publicado: QCD effective charge and the structure function F₂ at small-x, E.G.S. Luna, A.A. Natale, A.L.dos Santos. Phys.Lett. B 698 (2011) 52-58.