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A process to measure a reliable signal of the Higgs boson

@ Central particle production: in high energy regime to produce the
central system in Higgs case! limits of mass:
113 GeV < my < 200 GeV;

@ Rapidity gaps events: easy identification; diffractive IPIP scattering
or photon-photon (v7) interactions;

@ Very low background; precise measurements of Higgs proprieties
(spin, mass);
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@ Proton-proton scattering amplitude:
> dQF 2 2 2 2
/ /
@ Q4 fg(X17 X1 Wy mH/4)fg(X27X27 QTﬂ mH/4)
e W

(1)

1.3
App—pHp = VT

where V is related to gg — H vertex (+ NLO corr.).
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Khoze-Martin-Ryskin model

@ Partonic amplitude = hadronic amplitude: parton distributions;
@ Proton-proton scattering amplitude:

@ Qr

fg(X17X{a Q?I'a m,2_,/4)fg(X2,X£, Q%’? mlz-l/4)

(1)

_ 3
App;»pHp - V7T

where V is related to gg — H vertex (+ NLO corr.).

@ f;: proton off-diagonal unintegrated gluon density

) 9
fole X Qh %) = Ry [VT(@rie(x. Q1] ()
T

where R, is the ratio of off-diagonal and conventional distr.
(Rg ~ 1.2); g(x, Q%), integrated gluon distr. (CTEQ);
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@ T is the survival probability of hard gluons (Sudakov factor):

T(QT’M):eXp{_/Q: Cz(tztasz(:t)/o_ dz [Zng(Z)+zq:qu]}
(3)
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@ T is the survival probability of hard gluons (Sudakov factor):

#2 dk2 k2 1-A
T(Qr,p) = exp {—/ T;asz(ﬁt) /0 dz lZng(Z) + Z qu] }
t q

%
(3)

@ 0yt includes a soft rapidity survival gap (S2).
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@ Change to the nuclear gluon distribution (EKS98, EPS08, DS):
xg(x, Q?F) - AR;(Xv Q%’)Xg(xa Q?I') (4)
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where 0.,y is the hard c.s. for vy — H and F is a "folded”
photon spectra:

o0 o0

27
Flonwg) — 27 / budby [ bydby / doé Na(wa, b1) N (ws, b2)
Ra Rg 0

X@(b — RA — RB),

with b? = b2 + b3 — 2b1 b cos ¢; Ra g, the particles radii. : @
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® Ny g is the Weizsacker-Williams equivalent photon flux,

Z’a w \? K2(x wb
ety = S5 (5) [0+ 2 =2
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E.P.A. (cont.)

® Ny g is the Weizsacker-Williams equivalent photon flux,

N(w, b) = ZZO;em ( © )2 [Kf(x)+ Kigx)} Cox=2

s W v

@ The hard process c.s. 7y — H:

8 2
0w w0g) = / ds 8(awaw = 5) X Ty b(s = i) (1)
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E.P.A. (cont.)

Na g is the Weizsacker-Williams equivalent photon flux,
Z20em ( w \ [, K (x) wb
Moo= S (25) W0+ B22) =22 @

The hard process c.s. vy — H:

872
0w w0g) = / ds 8(awaw = 5) X Ty b(s = i) (1)

Performing a approximation in the luminosities (Cahn/Jackson)
82 dl
TAA—AHA = mierﬂw |:Td7':| (8)
dc 1624 . , muR
E ], Z“ o= O
MHyry = 3keV(mH /100 GeV)>. (10) <

9/15



Introduction Gluon fusion production Photon fusion production Results Conclusions

Present calculation

@ Choice of parameters in KMR: Qunin = 0.3GeV, N. =3, Nf =4,
/\QCD =160 MeV, VNLO = 1.5.
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@ Choice of parameters in KMR: Quin = 0.3GeV, N. =3, Nf =4,
/\QCD =160 MeV, VNLO = 1.5.

@ Soft survival probability gap is process dependent (work in progress):
52 = 3% (same as pp in KMR) or $2 = 0.00008% (in PbPb by
Miller/Levin) for gluon fusion and $2 ~ 1 for photon fusion.

@ Luminosities in EPA: in “full” calculation, R, ~ 0.7 fm,
Ra ~ 1.2fmA/3; in “effective” calculation, pp are Ohnemus, Walsh
and Zerwas result:
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Conclusions
@ The proposed process can be used to observe the Higgs boson;

@ Test field for diffractive physics.

Forthcomings:

@ pA process; calculation of S? in the nuclear case (medium effects);

@ Production of resonances: mesons, SUSY, etc.
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