Neutrino physics using Nuclear Reactors

J. Magnin Centro Brasileiro de Pesquisas Físicas Rio de Janeiro - Brazil

Outline

- <u>Theory</u>:
 - Neutrino masses in the SM
 - Mixing Matrix
 - Neutrino Oscillations
 - <u>Experiment</u>:
 - Present status
 - Summary of experimental results
 - Reactor experiments
 - Measurement of θ_{13}
 - 1^{rst} generation experiments
 - 2nd generation experiments
 - <u>Conclusions</u>

Theory: v masses in the SM

 Masses for v 's in the SM are generated in the same way that for charged leptons and quarks (Dirac neutrinos):

$$\begin{split} \bar{\Psi}_{i}^{L}(x)\Phi(x)M_{ij}\psi_{j}^{R}(x) + \bar{\psi'}_{i}^{R}(x)\tilde{M}_{ij}\tilde{\Phi}^{\dagger}(x)\Psi_{j}^{L}(x) + c.c. \\ \Psi^{L}(x) &= \begin{pmatrix} \nu_{i} \\ l \end{pmatrix}_{L,i} \quad \Phi(x) = \begin{pmatrix} \phi^{+} \\ \phi^{0} \end{pmatrix} \quad \psi^{L}(x) = \frac{1-\gamma_{5}}{2}\psi(x) \\ \psi_{i}^{R}(x) &= \nu_{i}^{R}(x) \\ \psi_{i}^{R}(x) &= l_{i}^{R}(x) \quad \tilde{\Phi}(x) = \begin{pmatrix} \phi^{0} \\ \phi^{-} \end{pmatrix} \quad \psi^{R}(x) = \frac{1+\gamma_{5}}{2}\psi(x) \end{split}$$

• Once in the unitary gauge and after spontaneous symmetry breaking $(SU(2)_{ch} \times U(1)_{Y} \rightarrow U(1)_{em})$, the mass terms read

$$\bar{\psi}_i^L(x)M_{ij}\psi_j^R(x) + \bar{\psi}_i^R(x)\tilde{M}_{ij}\psi_j^L(x) + c.c.$$

$$\tilde{\Phi}(x) = \left(\begin{array}{c} \rho + \sigma(x) \\ 0 \end{array}\right)$$

←___U

• M and \tilde{M} are arbitrary complex 3 X 3 matrices.

Mixing Matrix

• Physical fields:

• Charged Currents:

$$J_{cc}^{\mu} \propto \bar{l} \,_{i}^{L}(x) \,\gamma^{\mu} \,\nu \,_{i}^{L}(x) \to J_{cc}^{\mu} \propto \bar{l} \,_{i}^{L}(x) \,\gamma^{\mu} \,\left(A_{L}^{-1}A_{R}\right)_{i,j} \nu \,_{j}^{L}(x)$$

$$A_L^{-1}A_R = U_{PMNS}$$
 Pontecorvo-Maki-Nakagawa-Sakata
mixing matrix

Effect of the mixing matrix:

$$\begin{pmatrix} \nu_e \\ \nu_\mu \\ \nu_\tau \end{pmatrix} = \begin{pmatrix} c_1 c_3 & c_1 s_3 & s_1 e^{-i\delta} \\ -c_2 s_3 - s_1 s_2 c_3 e^{i\delta} & c_2 c_3 - s_1 s_2 s_3 e^{i\delta} & c_1 s_2 \\ s_2 s_3 - s_1 c_2 c_3 e^{i\delta} & -s_2 c_3 - s_1 c_2 s_3 e^{i\delta} & c_1 c_2 \end{pmatrix} \times \begin{pmatrix} \nu_1 \\ \nu_2 \\ \nu_3 \end{pmatrix}$$
$$\theta_1 = \theta_{13} \quad \theta_2 = \theta_{23} \quad \theta_3 = \theta_{12} \\ c_i = \cos \theta_i \quad s_i = \sin \theta_i \quad i = 1; 2; 3$$

Then the weak eigenstates $|\nu_l\rangle$ are a linear superposition of the mass eigenstate: $|\nu_i\rangle$

v oscillations

Weak eigenstates $|\nu_l\rangle$ are a linear superposition of mass eigenstates $|\nu_i\rangle$

$$\left|\nu_{l}\right\rangle = \sum_{i} U_{l,i} \left|\nu_{i}\right\rangle$$

The mass eigenstate propagates according to

$$|\nu_i(t)\rangle = e^{-i(E_i t - p_i L)} |\nu_i(0)\rangle \simeq e^{-i(m_i^2/2E)L} |\nu_i(0)\rangle$$

where L=flight path and $m_i << p_i$, L

A neutrino that was created as at L=0 as a weak eigenstat $|\nu_l\rangle$, at L will be described by

$$|\nu_l(L)\rangle \simeq \sum_i U_{l,i} e^{-i(m_i^2/2E)L} |\nu_i\rangle$$
$$\simeq \sum_{l'} \sum_i e^{-i(m_i^2/2E)L} U_{l,i} U_{l',i}^* |\nu_{l'}\rangle$$

This is a purely quantum mechanical effect

We have to go back to the weak eigenstate since the only way a neutrino can be detected is through their weak charged currents

The probability for the I \rightarrow I' transition is

$$P(\nu_{l} \to \nu_{l'}) = \left| \sum_{i} e^{-i(m_{i}^{2}/2E)L} U_{l,i} U_{l',i}^{*} \right|^{2} \\ \sum_{i} \left| U_{l,i} U_{l',i}^{*} \right| + \mathcal{R} \sum_{i} \sum_{i \neq j} \\ \times U_{l,i} U_{l',i}^{*} U_{l,j}^{*} U_{l',j} e^{i|m_{i} - m_{j}|^{2}L/2p} \right|^{2}$$

 $P(\nu_l \rightarrow \nu_{l'}) \neq 0$ if at least one of the m_i $\neq 0$ and at least one nondiagonal matrix element of the matrix U is $\neq 0$

 $P(\nu_l \rightarrow \nu_{l'})$ s an oscillating function of the distance L

 $|m_i - m_j|^2 \rightarrow Oscillation length$

 $U \rightarrow oscillation amplitude$

CP violation ?

Yes if
$$P(\nu_l \to \nu_{l'}) \neq P(\bar{\nu}_l \to \bar{\nu}_{l'})$$

Magnitude of CP violation characterized by

$$P(\bar{\nu}_{\mu} \rightarrow \bar{\nu}_{e}) - P(\nu_{\mu} \rightarrow \nu_{e})$$

$$= -[P(\bar{\nu}_{\mu} \rightarrow \bar{\nu}_{\tau}) - P(\nu_{\mu} \rightarrow \nu_{\tau})]$$

$$= -[P(\bar{\nu}_{e} \rightarrow \bar{\nu}_{\tau}) - P(\nu_{e} \rightarrow \nu_{\tau})]$$

$$= -4c_{1}^{2}s_{1}c_{2}s_{2}c_{3}s_{3}\sin\delta [\sin\Delta_{12} + \sin\Delta_{23} + \sin\Delta_{31}]$$

 $\Delta_{ij} = (m_i^2 - m_j^2) x L/2E$

CP violation is observable only if all three masses are different and all three angles are non-vanishing

Experiment: present status

- <u>Atmospheric neutrino anomaly</u>:
 - Cosmic rays impinging on H and O at the top of the earth's atmosphere produce mostly pions which decay through $\pi^- \rightarrow \mu^- \nu_{\mu}$; $\mu^- \rightarrow e^- \nu_e \nu_\mu$ (and c.c.).
 - After the full development of the decay chains, it is expected a v $_{\mu}$:v_e=2:1 ratio. This ratio is essentially independent of the neutrino production processes.
 - The **measured** v_{μ} : v_{e} ratio is only about 60% of the expected value (result confirmed by at least 4 detectors).
 - Best explanation → Neutrino masses
 - Preferred scenario: $v_{\mu} \rightarrow v_{\tau}$ oscillation
 - $\rightarrow \Delta m_{23}^2$; sin²(θ_{23})

- However, it is not clear that $v_{\mu} \rightarrow v_{e}$ can be fully excluded...

- <u>Missing solar neutrinos</u>:
 - The Sun produces an intense flux of v_e as a by-product of the fusion reactions that generate solar power.
 - Solar structure and fusion reactions inside the Sun are well understood → energy spectrum of neutrinos can be confidently predicted.
 - 7 experiments have been measuring solar v flux → All of them reported a deficit !
 - The only viable explanation of the deficit appears to be ν oscillations (supported at the 3σ level).

- Best explanation \rightarrow Neutrino masses
- Δm_{12}^2 ; sin ² (θ_{12}) ($\nu_e \rightarrow \nu_\mu$ oscillation)
- Two solutions: $\Delta m_{12}^2 \approx 10^{-5} \text{ eV}^2 \text{ and}$ $\checkmark \text{ SMA} \rightarrow \text{ sin}^2(2\theta_{12}) \approx 10^{-2}$
✓ LMA → $sin^2(2\theta_{12}) \ge 0.5$

- Liquid Scintillator Neutrino Detector (LSND):
 - Appearance experiment: v_{μ} coming from π and μ decays at rest, v_{μ} coming from π decays in flight.
 - Evidence for $v_{\mu} \rightarrow v_{e}$ oscillations
 - Evidence for $v_{\mu} \rightarrow v_{e}$ oscillations (with limited statistics)
 - Claiming evidence for sterile neutrinos

Results not confirmed by other experiments !

Figure 1.1: Solar and atmospheric allowed regions from the global oscillation data analysis at 90 %, 95 %, 99 %, and 3σ C.L. for 2 degrees of freedom [Mal03].

Most solar data + KamLand reactor experiment

$$\longrightarrow$$

 $\Delta m_{21}^{2} = (7 + 2.0 - 3.0) \times 10^{-5} \text{ eV}^{2}$ $\sin^{2}(2\theta_{12}) = 0.8 + 0.2 - 0.2$

Summary of experimental results (~ 2005) - II

- Large mixing angle solution confirmed (LMA)
- $\rightarrow \delta$ accessible if θ_{13} not too small...
- LSND results not confirmed (almost excluded).
- $\sin^2(2\theta_{13}) < 0.16$ assuming $|\Delta m^2_{32}| = 2.0 \times 10^{-3} \text{ eV}^2$ (CHOOZ) (result strongly correlated with
- $|\Delta m_{32}^2|$). $\Delta m_{31}^2 = 2.0 \times 10^{-3} \text{ eV}^2$.

Reactor experiments

- Nuclear reactors are an isotropic source of ν_e coming from the fission products.
- The reactor v spectrum is well known (if the nuclear fuel composition is well known...)
- Very low cost as compared to accelerator neutrino experiments.
- The energy of the \mathbf{v}_{e} is in the range of a few MeV 's, then they cannot produce μ 's or τ 's (which could subsequently produce v_{μ} 's or v_{τ} 's).

• Given the low energy of the $\overline{\nu}_e$, it is possible to measure the survival probability $P(\overline{\nu}_e \rightarrow \overline{\nu}_e)$

$$P(\bar{\nu}_e \to \bar{\nu}_e) \simeq 1 - \sin^2 2\theta_{13} \, \sin^2(\Delta m_{31}^2 L/4E)$$

 Measurement free of ambiguities associated with matter effects and mass hierarchy and CP violating phase.

Figure 3: Probability of ν_e disappearance versus L/E for θ_{13} at its current upper limit

is $m_1 < m_2 < m_3$

 $< m_1 < m_2$?

mass hierarchy

Measurement of θ_{13}

 A typical fission process liberates about 200 MeV of energy and produces about 6 v_e, then for a typical commercial reactor (3 GW thermal energy)

 $3 \text{ GW} \sim 2 \times 10^{21} \text{ MeV/s} \rightarrow 6 \times 10^{20} \text{ v}_{e}/\text{s}$

Two prompt coincident signal

 $\forall v_e$ are observed through the reaction

- The observable neutrino spectrum is the product of the neutrino flux times the inverse β -decay cross section

Figure 4: Schematic layout of a two detector reactor neutrino oscillation experiment.

1^{rst} generation experiments

- Chooz (France)
 - Data taking completed (04/1997 07/1998).
 - Chooz detector in an underground cavity under ~100 m rock overburden (~ 300 m.w.e) for cosmic radiation shielding.
 - Detector with liquid scintillator loaded with 0.1% Gd
 - Two reactors with 8.5 GW_{th} total power.
 - Baseline of 1115 m and 998 m from each reactor.

FIG. 16. Aerial view of the CHOOZ power plant. The detector is located in a tunnel under the hills on the bottom right of the photograph.

	Time (h)	$\int W_{th} dt ({\rm GWh}_{th})$
Total run	8761.7	
Live	8209.3	
Dead	552.4	
Reactor 1 ON only	2058.0	8295
Reactor 2 ON only	1187.8	4136
Both reactors ON	1543.1	8841
Both reactors OFF	3420.4	0

- <u>PaloVerde (USA Arizona desert)</u>:
 - Data taking completed (10/1998 07/2000).
 - Segmented detector with liquid scintillator loaded with 0.1% Gd.
 - Three reactor with 11.6 GW_{th} total power.
 - Two reactors located at 890 m from the detector and the third at 750 m.
 - Total of 350.0 days of data taking.

FIG. 29. Exclusion plot showing the allowed region of θ_{13} and Δm^2 based on the Super-Kamiokande preliminary analysis (the region inside the dotted curve). The regions excluded by the neutrino reactor experiments are to the right of the corresponding continuous curves.

2nd generation experiments

- <u>Double Chooz</u>:
 - Two identical detectors with 12.7 m³ of liquid scintillator loaded with 1% Gd.
 - Far near configuration of the detectors
 - Far detector → 1.05 Km from reactors, 300 m.w.e shielding
 - Near detector → 100 to 200 m away from the reactors, underground cavity with 50 to 80 m.w.e. shielding.
 - Typical three volume detectors.
 - Data taking starting in 2008 2009.

Two detectors in the far-near configuration:

- \bullet cancelation of systematic errors coming from the lack of detailed knowledge of the ν flux and spectrum.
- reduction of systematic errors related to the detector and to the event selection procedure

Figure 3.1: Overview of the experiment site.

- Angra dos Reis (Brazil):
 - Two detectors in the far-near configuration.
 - Far detector:
 - 2000 m.w.e. overburden
 - 500 ton of liquid scintillator doped with Gd
 - 12.5 m diameter
 - 1500 m away from the reactors
 - <u>Near detector</u>:
 - 250 m.w.e. overburden
 - 50 ton liquid scintillator doped with Gd
 - 7.2 m diameter
 - 300 m away from reactors
 - 3 volume standard detectors.
 - Two reactors with 4 GW_{th} total power
 - Sensitivity up to $sin^2(2\theta_{13}) \sim 0.006$

"Morro do Frade"

	Very Near	Near	Far
Signal (avanta/day)	1800	2500	1000
Signal (events/day)	(50m)	(300m)	(1500m)
Muon rate (Hz)	150	~ 30	0.3
Correlated background (⁹ Li) (events/day)	44	< 20	~ 2

- Extra: Neutrino applied physics
 - Very near detector for a safeguard program
 - 1ton three volume detector
 - L < 50 m from the reactor cores
 - ~ 3 m diameter
 - Useful also to:
 - study background
 - study of systematic errors
 - test of detector elements and performance (electronics, PMT's, geometry, liquid scintillator, etc.)
- Angra experiment
 - Full detector array $\rightarrow \sim 2010-2011$ (?)
 - Very near detector $\rightarrow \sim 2008$ (?)

Conclusions

- Measurement of PMNS matrix parameters is in the beginning
- Reactor experiments able to measure θ $_{13}$ with a good precision
- If $\theta_{13} \neq 0$ then it is possible to measure the CP violating phase δ
- Other measurements are possible with reactor neutrino's experiments: $sin^2\theta_w$, fuel monitoring (safeguards), neutrino magnetic moment, etc.