

The Color Glass Condensate and JIMWLK Equation

João Thiago de Santana Amaral

thiago.amaral@ufrgs.br

Instituto de Física, Universidade Federal do Rio Grande do Sul, Porto Alegre, Brazil

GFPAE - UFRGS

http://www.if.ufrgs.br/gfpae

- The Effective Theory for the Color Glass Condensate
- The Quantum evolution of the Color Glass Condensate: JIMWLK equation

EFPAE Light-cone kinematics

• Let z be the longitudinal axis of the collision. For an arbitrary 4-vector $v^{\mu} = (v^0, v^1, v^2, v^3)$, the light-cone (LC) coordinates are defined as

$$v^{+} \equiv \frac{1}{\sqrt{2}}(v^{0} + v^{3}), \qquad v^{-} \equiv \frac{1}{\sqrt{2}}(v^{0} - v^{3}), \qquad \boldsymbol{v} \equiv (v^{1}, v^{2})$$
(1)

- One usually writes $v_{\perp} \equiv |\boldsymbol{v}| = \sqrt{(v^1)^2 + (v^2)^2}$
- In these coordinates, $x^+ \equiv \frac{1}{\sqrt{2}}(t+z)$ is the LC time and $x^- \equiv \frac{1}{\sqrt{2}}(t-z)$ is the LC longitudinal coordinate.
- The invariant scalar product of two 4-vectors reads

$$p \cdot x = p^{0}x^{0} - p^{1}x^{1} - p^{2}x^{2} - p^{3}x^{3}$$

= $\frac{1}{2}(p^{+} + p^{-})(x^{+} + x^{-}) - \frac{1}{2}(p^{+} - p^{-})(x^{+} - x^{-}) - \mathbf{p} \cdot \mathbf{x}$
= $p^{-}x^{+} + p^{+}x^{-} - \mathbf{p} \cdot \mathbf{x}$ (2)

 This form of the scalar product suggests that p⁻ should be interpreted as the LC energy and p⁺ as the LC longitudinal momentum.

EFPAE Light-cone kinematics

• For particles on the mass-shell, $k^{\pm} = (E \pm k_z)/\sqrt{2}$, with $E = (m^2 + k^2)$

$$k^{+}k^{-} = \frac{1}{2}(E^{2} - k_{z}^{2}) = \frac{1}{2}(\mathbf{k}^{2} + m^{2}) \equiv m_{\perp}^{2}$$
(3)

• One needs also the *rapidity*

$$y \equiv \frac{1}{2} \ln \frac{k^+}{k^-} = \frac{1}{2} \ln \frac{2k^{+2}}{m_\perp^2}$$
(4)

- Under a longitudinal Lorentz boost ($k^+ \rightarrow \beta k^+$, $k^- \rightarrow (1/\beta)k^-$, with constant β), the rapidity is shifted only by a constant, $y \rightarrow y + \beta$
- For a parton inside a right-moving (in the positive z direction) hadron, we introduce the boost-invariant longitudinal momentum fraction x

$$x \equiv \frac{k^+}{P^+} \tag{5}$$

GFPAE The McLerran-Venugopalan (MV) model

- Consider a nucleus in the infinite momentum frame (IMF) with momentum $P^+ \rightarrow \infty$ and with a nearly infinite transverse extent with a uniform matter distribution
- Partons which carry large fractions of momentum valence partons are Lorentz contracted to a distance $\sim 2R_A/\gamma$, with $\gamma = P^+/M = p^+/m_N$ ($p^+ = P^+/A$ is the longitudinal momentum of a single nucleon and $m_N = M/A$ is its mass)
- The wee partons with longitudinal momentum fractions $x \ll 1$ are delocalized in the x^- direction over relatively large distances $\sim 1/xp^+$
- For $x \ll A^{-1/3}$ these distances are much larger than the Lorentz contracted nuclear diameter; these partons 'see' the valence partons as an infinitely thin sheet of color charge
- The MV model assumes a simple kinematic distinction between wee and valence partons

The McLerran-Venugopalan (MV) model

The wee partons also have very short lifetimes, given by the uncertainty and the LC dispersion relation

$$\Delta x^{+} \sim \frac{1}{k^{-}} = \frac{2k^{+}}{m_{\perp}^{2}} \equiv \frac{2xP^{+}}{m_{\perp}^{2}}$$
(6)

which implies that the wee parton lifetime is much shorter than that of the valence partons: the valence parton sources are static sources of color charge

 Since the momenta of the valence partons are large, they are also recoilless sources of color charge; in this *eikonal approximation* the wee partons couple only to the plus component of the LC current

$$J^{\mu,a} = \delta^{\mu+}\delta(x^{-})\rho^{a}(\boldsymbol{x}), \qquad (7)$$

where $\rho^a(\mathbf{x})$ is the valence quark color charge density in the transverse plane. . Actually, $\delta(x^-)\rho^a(\mathbf{x}) \to \rho^a(x^-, \mathbf{x})$, where $\rho^a(x^-, \mathbf{x})$ is localized near $x^- = 0$

GFPAE How to generate $ho^a(oldsymbol{x})$?

- Nucleus interacting with an external probe which can resolve distances of size Δx in the transverse plane that are much smaller than the nucleon size $\sim \Lambda_{QCD}$.
- The small probe which has $x \ll A^{-1/3}$ simultaneously couples to partons from nucleons all along the nuclear diameter; since its transverse size is much smaller than the nucleon size, it sees them as sources of color charge
- The number ΔN of these sources can be estimated as the product $n\Delta S_{\perp}$ between the density $n \equiv N_c A / \pi R_A^2$ of valence quarks in the transverse plane and the area $\Delta S_{\perp} \sim (\Delta x)^2$ covered by the external probe

$$\Delta N \approx n \Delta S_{\perp} = \Delta S_{\perp} \frac{N_c A}{\pi R_A^2} \sim \frac{\Lambda_{\text{QCD}}^2}{Q^2} N_c A^{1/3} \tag{8}$$

where Q^2 is the external resolution and $R_A = R_0 A^{1/3}$ with $R_0 \sim \Lambda_{QCD}$

GFPAE How to generate $ho^a(oldsymbol{x})$?

- If Q^2 is small enough to satisfy $\Lambda^2_{QCD} \ll Q^2 \ll \Lambda^2_{QCD} N_c A^{1/3}$, the area ΔS_{\perp} covers a large number $\Delta N \gg 1$ of valence quarks
- The valence quarks are then randomly distributed, in such a way that the total color charge seen by the probe

$$\langle Q^a \rangle = 0, \qquad \langle Q^a Q^a \rangle = g^2 C_f \Delta N = \Delta S_\perp \frac{g^2 C_f N_c A}{\pi R_A^2},$$
 (9)

- One can treat this charge as classical since, when ΔN is large enough, we can ignore commutators of charges: $|[Q^a, Q^b]| = |if^{abc}Q^c| \ll Q^2$
- In order to take the continuum limit, it is convenient to introduce the color charge densities $\rho^a(x^-, \mathbf{x})$ and

$$\rho^{a}(\boldsymbol{x}) \equiv \int dx^{-} \rho^{a}(x^{-}, \boldsymbol{x})$$
(10)

Then

$$\mathcal{Q}^{a} = \int_{\Delta S_{\perp}} d^{2} \boldsymbol{x} \rho^{a}(\boldsymbol{x}) = \int_{\Delta S_{\perp}} d^{2} \boldsymbol{x} \int dx^{-} \rho^{a}(x^{-}, \boldsymbol{x}), \qquad (11)$$

GFPAE How to generate $ho^a(oldsymbol{x})$?

• One has
$$(C_f = (N_c^2 - 1)/2N_c)$$
 :

$$\langle \rho_{a}(\boldsymbol{x})\rho_{b}(\boldsymbol{y})\rangle_{A} = \delta_{ab}\delta^{(2)}(\boldsymbol{x}-\boldsymbol{y})\,\mu_{A}^{2}, \qquad \mu_{A}^{2} \equiv \frac{g^{2}A}{2\pi R_{A}^{2}},$$

$$\langle \rho_{a}(\boldsymbol{x}^{-},\boldsymbol{x})\rho_{b}(\boldsymbol{y}^{-},\boldsymbol{y})\rangle_{A} = \delta_{ab}\delta^{(2)}(\boldsymbol{x}-\boldsymbol{y})\delta(\boldsymbol{x}^{-}-\boldsymbol{y}^{-})\,\lambda_{A}(\boldsymbol{x}^{-}),$$

$$\int d\boldsymbol{x}^{-}\,\lambda_{A}(\boldsymbol{x}^{-}) = \mu_{A}^{2}$$
(12)

where $\mu_A^2 \sim A^{1/3}$ is the average color charge squared of the valence quarks per unit transverse area and per color, and $\lambda_A(x^-)$ is the corresponding density per unit volume

• The nonzero correlators (12) are generated by the weight function ($\vec{x} = (x^-, x)$)

$$W_A[\rho] = \mathcal{N}\exp\left\{-\frac{1}{2}\int d^3x \frac{\rho_a(\vec{x})\rho_a(\vec{x})}{\lambda_A(x^-)}\right\}$$
(13)

which is a Gaussian in ρ_a , with a local kernel, which is gauge-invariant, so the variable ρ_a can be the color source in any gauge

Towards an effective theory

• The local Gaussian form of the weight function (13) is valid, by construction, for a large nucleus and with some restricted kinematical range, namely

$$\Lambda_{\rm QCD}^2 \ll Q^2 \ll \Lambda_{\rm QCD}^2 N_c A^{1/3},\tag{14}$$

for relatively small $x \ll A^{-1/3}$, but such that $\alpha_s \ln(1/x) \ll 1$

- For even smaller values of x or larger values of Q², the QCD quantum evolution cannot be neglected anymore, and the gluon distribution at the scale of interest is then dominated by the *quantum* color sources
- For sufficiently high Q^2 the system becomes very dilute, and the classical approximation breaks down
- Finally, the assumption that the valence quarks are uncorrelated must fail for transverse separations $\gtrsim \Lambda_{QCD}$

GFPAE Towards an effective theory

- The color fields computed carry longitudinal momenta k^+ much lower than those of their sources, the valence quarks \Rightarrow the weight function can be seen as part of an *effective theory* for gluon correlations at momenta k^+ smaller than some upper cutoff Λ^+
- However, for the classical approximations underlying the expression for the weight function to be valid, the value k^+ of interest should be not *much* smaller than Λ^+
 - O Indeed, as we shall see, new color sources with momenta $p^+ < \Lambda^+$ are produced by radiation from the original sources at $p^+ ≥ \Lambda^+$
- If the gap between k^+ and Λ^+ is relatively large, these new sources, which are mostly gluons, will completely dominate the physics at the scale k^+ of interest
- These new sources can be explicitly constructed by integrating out layers of quantum fluctuations in a renormalization group analysis, but the ensuing weight function is generally *not* a Gaussian
 - ^o Still, the Gaussian $W_A[\rho]$ may be a good initial condition for this quantum evolution

GFPAE The Color Glass Condensate (CGC)

- The effective theory depends upon the value of *x* at which we probe the hadron wavefunction
- Then, it is convenient to introduce the longitudinal momentum scale

$$\Lambda^+ = xP^+ \tag{15}$$

and distinguish between 'fast' ($k^+ > \Lambda^+$) and 'soft' ($k^+ \le \Lambda^+$) degrees of freedom

- The effective theory will be a theory for gluon correlations at the soft scale Λ^+ as obtained after having integrated out the fast modes
- This strong separation in longitudinal momenta implies that the small-x and large-x dynamics decouple from each other and can be treated separately
- Any observable pertinent to a small-x process can be first computed for a *fixed* configuration of the color sources, and the averaged over all the possible configurations with some *classical* probability distribution

GFPAE The Classical Theory

- The structure of the classical theory is the same as in the MV model: the fast color sources are represented by a color current $J_a^{\mu} = \delta^{\mu+}\rho_a$ where ρ_a is static and random
- The small-*x* gluons are the color fields generated by this current according to the Yang-Mills equation

$$(D_{\nu}F^{\nu\mu})_{a}(x) = \delta^{\mu+}\rho_{a}(\vec{x})$$
 (16)

where $D_{\nu} = \partial_{\nu} - ig A^a_{\nu} T^a$ and $(T^a)_{bc} = -if_{abc}$

All the interesting correlations are included in the functional weight function W_{Λ+}[ρ] (≥ 0),

$$\int \mathcal{D}[\rho] W_{\Lambda^+}[\rho] = 1, \quad \mathcal{D}[\rho] \equiv \prod_a \prod_{x^-} \prod_{x} d\rho_a(x^-, x)$$
(17)

• The observables are first evaluated on the solution $\mathcal{A}^{\mu} = \mathcal{A}^{\mu}[\rho]$ to the Yang-Mills equations, and then averaged over ρ

$$\langle \mathcal{O}[\mathcal{A}^{\mu}] \rangle_{\Lambda^{+}} = \int \mathcal{D}[\rho] W_{\Lambda^{+}}[\rho] \mathcal{O}[\mathcal{A}^{\mu}]$$
(18)

GFPAE The Quantum Calculations

- The quantum aspect refers to the evolution of the weight function with decreasing Λ^+
- The generating functional for gluon correlations at momenta $k^+ \leq \Lambda^+$

$$Z[j] = \int \mathcal{D}\rho W_{\Lambda^{+}}[\rho] \left\{ \frac{\int^{\Lambda^{+}} \mathcal{D}[\delta A] \,\delta(A^{+}) \,\mathrm{e}^{\,iS[A,\,\rho] - \int j \cdot A}}{\int^{\Lambda^{+}} \mathcal{D}[\delta A] \,\delta(A^{+}) \,\mathrm{e}^{\,iS[A,\,\rho]}} \right\}$$
(19)

• The 2-point function is given by (the symbol T denoting normal ordering in x^+)

$$\langle \mathrm{T}A^{\mu}(x)A^{\nu}(y)\rangle_{k^{+}} = \int \mathcal{D}\rho \, W_{\Lambda^{+}}[\rho] \left\{ \frac{\int^{\Lambda^{+}} \mathcal{D}[\delta A] \,\delta(A^{+}) \,A^{\mu}(x)A^{\nu}(y) \,\mathrm{e}^{\,iS[A,\,\rho]}}{\int^{\Lambda^{+}} \mathcal{D}[\delta A] \,\delta(A^{+}) \,\,\mathrm{e}^{\,iS[A,\,\rho]}} \right\}$$
(20)

The averaging procedure involves two types of functional integrals

(i) A *classical* integral over the color charge density ρ , which represents the fast partons with $k^+ \gg \Lambda^+$

(ii) A quantum path integral over the gluon fluctuations δA^{μ} with momenta $k^+ \leq \Lambda^+$

GFPAE The Quantum Calculations

- The total field A^{μ} at momenta $k^+ \leq \Lambda^+$ is the sum $A^{\mu} = \mathcal{A}^{\mu}[\rho] + \delta A^{\mu}$ between the classical field \mathcal{A}^{μ} and the *quantum fluctuations*
- The action $S[A, \rho]$ describes the dynamics of the soft gluons in the presence of the classical color charge ρ
 - ^{\circ} In particular, when $k^+ \sim \Lambda^+$, the effects of the quantum fluctuations are negligible, and the path integral in the equation for the 2-point function can be evaluated in the saddle point approximation

$$\frac{\delta S}{\delta A^{\mu}} = 0 \Rightarrow A^{\mu} = \mathcal{A}^{\mu}[\rho] \tag{21}$$

and the 2-point function reduces to

$$\langle A^{\mu}_{a}(x^{+},\vec{x})A^{\nu}_{b}(x^{+},\vec{y})\rangle_{\Lambda^{+}} = \int \mathcal{D}\rho \ W_{\Lambda^{+}}[\rho] \mathcal{A}^{\mu}_{a}(\vec{x})\mathcal{A}^{\nu}_{b}(\vec{y})$$
(22)

The classical color field

• It is always possible find a solution to the classical equations of motion (EOM) $(D_{\nu}F^{\nu\mu})_{a}(x) = \delta^{\mu+}\rho_{a}(\vec{x})$ with the properties

$$F_a^{ij} = 0, \qquad A_a^- = 0, \qquad A_a^+, A_a^i : \text{ static},$$
 (23)

• The transverse fields A^i form a two-dimensional pure gauge; that is, there exists a gauge rotation $U(x^-, \mathbf{x}) \in SU(N)$ such that

$$A^{i}(x^{-}, x_{\perp}) = \frac{i}{g} U(x^{-}, x_{\perp}) \partial^{i} U^{\dagger}(x^{-}, \boldsymbol{x}) .$$
(24)

(in matrix notations appropriate for the adjoint representation: $A^i = A^i_a T^a$, etc)

• We consider first the covariant (COV) gauge $\partial_{\mu}A^{\mu} = 0$. In this gauge, $\tilde{\mathcal{A}}^{\mu}_{a}(x) = \delta^{\mu+}\alpha_{a}(x^{-}, \boldsymbol{x})$, with $\alpha_{a}(\vec{x})$ linearly related to the color source $\tilde{\rho}_{a}$ in the COV-gauge :

$$-\nabla_{\perp}^2 \alpha_a(\vec{x}) = \tilde{\rho}_a(\vec{x}).$$
⁽²⁵⁾

FPAE The classical color field

• The solution is:

$$\alpha_{a}(x^{-}, \boldsymbol{x}) = \int d^{2}\boldsymbol{y} \langle \boldsymbol{x} | \frac{1}{-\nabla_{\perp}^{2}} | \boldsymbol{y} \rangle \, \tilde{\rho}_{a}(x^{-}, \boldsymbol{y})$$
$$= \int \frac{d^{2}\boldsymbol{y}}{4\pi} \ln \frac{1}{(\boldsymbol{x} - \boldsymbol{y})^{2} \mu^{2}} \, \tilde{\rho}_{a}(x^{-}, \boldsymbol{y}), \qquad (26)$$

- The classical solution in the LC-gauge $A^+ = 0$
 - $^{\odot}~$ This is of the form $\mathcal{A}^{\mu}_{a}=\delta^{\mu i}\mathcal{A}^{i}_{a}$ with $\mathcal{A}^{i}_{a}(x^{-},\pmb{x})$ a "pure gauge"
 - ^o The gauge rotation $U(\vec{x})$ can be most simply obtained by a gauge rotation of the solution in the COV-gauge:

$$\mathcal{A}^{\mu} = U \big(\tilde{\mathcal{A}}^{\mu} + \frac{i}{g} \partial^{\mu} \big) U^{\dagger}, \qquad (27)$$

where the gauge rotation $U(\vec{x})$ is chosen such that $\mathcal{A}^+ = 0$, i.e.,

$$U^{\dagger}(x^{-}, \boldsymbol{x}) = \operatorname{P} \exp\left\{ ig \int_{-\infty}^{x^{-}} dz^{-} \alpha_{a}(z^{-}, \boldsymbol{x}) T^{a} \right\}$$
(28)

The classical color field

• The explicit expression for the LC-gauge solution \mathcal{A}^i in terms of the color source $\tilde{\rho}$ in the COV-gauge is

$$\langle A^{i}(x^{+},\vec{x})A^{j}(x^{+},\vec{y})\cdots\rangle_{\Lambda^{+}} = \int \mathcal{D}\tilde{\rho} \ W_{\Lambda^{+}}[\tilde{\rho}] \mathcal{A}_{x}^{i}[\tilde{\rho}] \mathcal{A}_{y}^{j}[\tilde{\rho}]\cdots.$$
(29)

• Recall that ρ has is localized near $x^- = 0$

 $^{\circ}$ In particular, it can be shown that

$$\mathcal{A}^{i}(x^{-}, \boldsymbol{x}) \approx \theta(x^{-}) \,\frac{i}{g} \, V_{x}(\partial^{i} V_{x}^{\dagger}) \tag{30}$$

where

$$V_x^{\dagger} = V^{\dagger}(\boldsymbol{x}) = U^{\dagger}(x^- \to \infty, \boldsymbol{x}) \equiv \operatorname{Pexp}\left\{ig \int_{-\infty}^{\infty} dz^- \,\alpha(z^-, \boldsymbol{z})\right\}$$
(31)

GFPAE The gluon distribution

- $G(x,Q^2)dx$ the number of gluons in the hadron wavefunction having longitudinal momenta between xP^+ and $(x + dx)P^+$, and a transverse size $\Delta x \sim 1/Q$
- In other terms, the *gluon distribution* $xG(x,Q^2)$ is the number of gluons with transverse momenta $k_{\perp} \leq Q$ per unit rapidity
- In the LC-gauge

$$xG(x,Q^2) = \frac{1}{\pi} \int \frac{d^2 \mathbf{k}}{(2\pi)^2} \Theta(Q^2 - \mathbf{k}^2) \langle F_a^{i+}(\vec{k}) F_a^{i+}(-\vec{k}) \rangle,$$
(32)

The "unintegrated gluon distribution", or the "gluon occupation number" is defined as:

$$\varphi_{\tau}(\mathbf{k}) \equiv \frac{4\pi^3}{N_c^2 - 1} \frac{1}{\pi R^2} \frac{d^3 N}{d\tau d^2 \mathbf{k}} = \frac{1}{\pi R^2} \frac{\langle F_a^{i+}(\vec{k}) F_a^{i+}(-\vec{k}) \rangle}{N_c^2 - 1}, \qquad (33)$$

where $\tau \equiv \ln\left(\frac{1}{x}\right) = \ln\left(\frac{P^+}{k^+}\right)$

The gluon distribution in the MV model

• Starting with the low density regime, when the atomic number *A* is not too high, so the corresponding classical field is weak and can be computed in the linear approximation

$$\mathcal{A}_{a}^{i}(k) \simeq -\frac{k^{i}}{k^{+}+i\varepsilon} \frac{\rho_{a}(k^{+},\boldsymbol{k})}{\boldsymbol{k}^{2}}, \qquad \mathcal{F}_{a}^{+i}(k) \simeq i\frac{k^{i}}{\boldsymbol{k}^{2}} \rho_{a}(\vec{k}), \qquad (34)$$

and then

$$\langle \mathcal{F}_{a}^{i+}(\vec{k})\mathcal{F}_{a}^{i+}(-\vec{k})\rangle_{A} \simeq \frac{1}{k^{2}} \langle \rho_{a}(\vec{k})\rho_{a}(-\vec{k})\rangle_{A} = \pi R_{A}^{2}(N_{c}^{2}-1)\frac{\mu_{A}^{2}}{k^{2}}$$
 (35)

The following estimates for the gluon density and distribution function are obtained

$$\varphi_A(\mathbf{k}) \simeq \frac{\mu_A^2}{\mathbf{k}^2}, \tag{36}$$

$$(N_c^2 - 1)R_{A-2}^2 \int^{Q^2} dk_\perp^2 = \alpha_s A N_c C_f = Q^2$$

$$xG_A(x,Q^2) \simeq \frac{(N_c^2-1)R_A^2}{4\pi} \mu_A^2 \int_{\Lambda_{QCD}^2}^{Q} \frac{dk_{\perp}^2}{k^2} = \frac{\alpha_s A N_c C_f}{\pi} \ln \frac{Q^2}{\Lambda_{QCD}^2},$$

with $\alpha_s = g^2/4\pi$; after taking into account quantum evolution, the actual scale for the screening of the infrared physics is not Λ_{QCD} but the saturation scale Q_s

• One needs to recompute the gluon distribution by using the exact, non-linear solution for the classical field; By using $\mathcal{F}_a^{+i}(\vec{x}) = U_{ab}^{\dagger}(-\partial^i \alpha^b)$, one can express the relevant LC-gauge field-field correlator in terms of the color field in the COV-gauge:

$$\langle \mathcal{F}_{a}^{+i}(\vec{x})\mathcal{F}_{a}^{+i}(\vec{y})\rangle_{A} = \left\langle \partial^{i}\alpha^{b}(\vec{x})\partial^{i}\alpha^{c}(\vec{y})\right\rangle \left\langle U_{ab}^{\dagger}(\vec{x})U_{ca}(\vec{y})\right\rangle = \delta(x^{-}-y^{-})\langle \operatorname{Tr} U^{\dagger}(\vec{x})U(\vec{y})\rangle \left(-\nabla_{\perp}^{2}\gamma_{A}(x^{-},\boldsymbol{x}-\boldsymbol{y})\right)$$
(37)

where

$$\gamma_A(x^-, k_\perp) \equiv \frac{1}{k_\perp^4} \,\lambda_A(x^-) \tag{38}$$

The trace

$$S_A(x^-, \boldsymbol{r} = \boldsymbol{x} - \boldsymbol{y}) \equiv \frac{1}{N_c^2 - 1} \langle \operatorname{Tr} U^{\dagger}(x^-, \boldsymbol{x}) U(x^-, \boldsymbol{y}) \rangle_A , \qquad (39)$$

can be explicitly computed as

$$S_A(x^-, \mathbf{r}) = \exp\{-g^2 N_c \int_{-\infty}^{x^-} dz^- [\gamma_A(z^-, \mathbf{0}) - \gamma_A(z^-, \mathbf{r})]\},$$
 (40)

• The integrand is

$$\gamma_A(x^-, \mathbf{0}) - \gamma_A(x^-, \mathbf{r}) = \lambda_A(x^-) \int \frac{d^2 \mathbf{k}}{(2\pi)^2} \frac{1}{\mathbf{k}^4} \left[1 - e^{i\mathbf{k}\cdot\mathbf{r}} \right].$$
(41)

• Ton leading-log accuracy, i.e., by keeping only terms enhanced by the large logarithm $\ln(1/r^2\Lambda_{QCD}^2)$, one obtains

$$S_A(x^-, \boldsymbol{r}) \simeq \exp\left\{-\frac{\alpha_s N_c}{4} \, \boldsymbol{r}^2 \, \mu_A^2(x^-) \ln \frac{1}{\boldsymbol{r}^2 \Lambda_{QCD}^2}\right\},\tag{42}$$

and finally

$$\varphi_A(\mathbf{k}) = \int d^2 \mathbf{r} \mathrm{e}^{-i\mathbf{k}\cdot\mathbf{r}} \frac{1 - \exp\left\{-\frac{1}{4}\,\mathbf{r}^2 Q_A^2 \ln\frac{1}{\mathbf{r}^2 \Lambda_{QCD}^2}\right\}}{\pi \alpha_s N_c \mathbf{r}^2} \,, \tag{43}$$

where

$$Q_A^2 \equiv \alpha_s N_c \mu_A^2 = \alpha_s N_c \int dx^- \lambda_A(x^-) \sim A^{1/3}.$$
 (44)

• Let us first introduce the saturation momentum $Q_s(A)$ which is the scale separating between linear and non-linear behaviours and defined by the condition that, for $r_{\perp} = 2/Q_s(A)$, the exponent $\varphi_A(\mathbf{k})$ becomes of order one

$$Q_s^2(A) \simeq \alpha_s N_c \mu_A^2 \ln \frac{Q_s^2(A)}{\Lambda_{QCD}^2} \sim A^{1/3} \ln A.$$
(45)

- Two regimes can be distinguished:
 - ^o At high momenta $k_{\perp} \gg Q_s(A)$, the integral is dominated by small $r_{\perp} \ll 1/Q_s(A)$, and can be evaluated by expanding out the exponential:

$$\varphi_A(k_\perp) \approx \frac{1}{\alpha_s N_c} \frac{Q_A^2}{k_\perp^2} = \frac{\mu_A^2}{k_\perp^2} \quad \text{for} \quad k_\perp \gg Q_A.$$
 (46)

[◦] At small momenta, $k_{\perp} \ll Q_s(A)$, the dominant contribution comes from large distances $r_{\perp} \gg 1/Q_s(A)$ and

$$\varphi_A(k_\perp) \approx \frac{1}{\alpha_s N_c} \ln \frac{Q_s^2(A)}{k_\perp^2} \quad \text{for} \quad k_\perp \ll Q_A.$$
 (47)

- The distribution in $\varphi_A(k_{\perp})$ given previously, which takes into account the non-linear effects in the classical Yang-Mills equations, rises only logarithmically as a function of both *A* and $1/k_{\perp}^2$: This is *saturation*
- At saturation, the gluon occupation factor is parametrically of order $1/\alpha_s$ and is the maximum density allowed by the repulsive interactions between the strong color fields $\bar{A}^i = \sqrt{\langle A^i A^i \rangle} \sim 1/g$
- When increasing the atomic number A, the new gluons are produced preponderantly at large transverse momenta $\gtrsim Q_s(A)$, where this repulsion is less important

- Consider the emission of a soft gluon with longitudinal momentum $k^+ = xP^+ \ll P^+$ by a fast moving parton (say, a valence quark) with momentum $p^+ = x_0P^+$ and $1 > x_0 \gg x$
- As we have seen, the enhancement of the gluon distribution at small-x proceeds via the (BFKL) gluon cascades

In the cascade the successive gluons are strongly ordered in longitudinal momenta

$$p^+ \gg p_1^+ \gg p_2^+ \gg \dots \gg p_n^+ \gg k^+ \tag{48}$$

- Let us consider the first radiative correction, the one-gluon emission
- The typical contributions of this correction come from momenta p_1^+ such that $p^+ \gg p_1^+ \gg k^+$, that is, the condition of separation of scales is indeed satisfied for the intermediate gluon with momentum p_1^+ to be treated as a 'frozen' color source for the final gluon with momentum k^+
- The effect of this quantum correction is therefore simply to renormalize the *effective* color source at scale k^+

• By iterating this argument, a whole BFKL cascade can be included in the definition of the classical color source at the scale $\Lambda^+ = xP^+$ of interest

• The fusion between two gluon cascades can be represented in the CGC theory as a nonlinear effect in the *classical* dynamics of the color fields generated by this effective source

However, nonlinear effects are important also in the *quantum* evolution

- The diagram (a) is an immediate generalization of the one-gluon emission; what is renormalized by the scattering off the "semi-fast" ($\Lambda^+ \gg p^+ \gg k^+$) quantum fluctuation is the classical field $\mathcal{A}^i[\rho]$ at scale Λ^+ , which in turn is non-linear in ρ .
- The diagram (b) shows an additional source of non-linearity, arising from the propagation of the radiated gluon in the classical 'background' field $\mathcal{A}^i[\rho]$.
- If $\Lambda^+ = xP^+$ is small enough ($x \ll 1$), the classical field is very strong, $\mathcal{A}^i \sim 1/g$, and gluon rescatterings must be included to all orders in \mathcal{A}^i
- Both can be taken into account as the cut of the diagram (c). The classical field that enters the vertices is the fully non-linear solution $\mathcal{A}^i[\rho]$ and the propagator of the quantum gluon is computed to *all* orders in this background field
- The diagram (c) is manifestly a quantum correction to the 2-point function of the gauge fields at scale k^+ , and is of order $\alpha_s \ln(\Lambda^+/k^+)$; for this to be computable in perturbation theory, the separation of scales between Λ^+ and k^+ must not be too large: $\Lambda^+ \gg k^+$, but $\alpha_s \ln(\Lambda^+/k^+) \ll 1$

- The quantum modes must be integrated out in layers of p⁺, within a renormalization group procedure. At each step in this procedure, one has to perform a one-loop quantum calculation, but with the exact background field propagator for the "semi-fast" gluons (the quantum gluons that are integrated out in that particular step).
- Such an all-order inclusion of the classical field effects permits one to resum not only the large energy logarithms, but also the dominant high density effects
- The condition that the new correlations induced by integrating out quantum fluctuations be reproduced by the CGC effective theory leads to a functional *renormalization group* equation (RGE) for the weight function $W_{\Lambda^+}[\rho] \equiv W_{\tau}[\rho]$

$$\frac{\partial W_{\tau}[\rho]}{\partial \tau} = \frac{1}{2} \int_{\boldsymbol{x}\boldsymbol{y}} \frac{\delta}{\delta \rho_{\tau}^{a}(\boldsymbol{x})} \chi_{ab}(\boldsymbol{x}, \boldsymbol{y})[\rho] \frac{\delta}{\delta \rho_{\tau}^{b}(\boldsymbol{y})} W_{\tau}[\rho], \qquad (49)$$

 This is the so-called Jalilian-Marian-Iancu-McLerran-Weigert-Leonidov-Kovner – JIMWLK – equation

Γ_{FPAE} The α -representation

• It is often preferable to use the ' α -representation', by performing the following change: $W_{\tau}[\alpha] \equiv W_{\tau}[\tilde{\rho} = -\nabla_{\perp}^2 \alpha]$; after this change of variables, the JIMWLK equation takes the following (Hamiltonian) form:

$$\frac{\partial W_{\tau}[\alpha]}{\partial \tau} = -HW_{\tau}[\alpha] \equiv \frac{1}{2} \int_{\boldsymbol{x}\boldsymbol{y}} \frac{\delta}{\delta \alpha_{\tau}^{a}(\boldsymbol{x})} \eta^{ab}(\boldsymbol{x},\boldsymbol{y})[\alpha] \frac{\delta}{\delta \alpha_{\tau}^{b}(\boldsymbol{y})} W_{\tau}[\alpha]$$
(50)

where

$$\eta^{ab}(\boldsymbol{x},\boldsymbol{y}) = \frac{1}{\pi} \int \frac{d^2 \boldsymbol{z}}{(2\pi)^2} \,\mathcal{K}_{\boldsymbol{x}\boldsymbol{y},\boldsymbol{z}} \left\{ 1 + V_x^{\dagger} V_y - V_x^{\dagger} V_z - V_z^{\dagger} V_y \right\}^{ab},\tag{51}$$

the kernel

$$\mathcal{K}_{\boldsymbol{x}\boldsymbol{y},\boldsymbol{z}} \equiv \mathcal{K}(\boldsymbol{x}\boldsymbol{y},\boldsymbol{z}) = \frac{(x^i - z^i)(y^i - z^i)}{(x_\perp - z_\perp)^2(y_\perp - z_\perp)^2}$$
(52)

and

$$V_{\boldsymbol{x}}^{\dagger} \equiv \operatorname{Pexp}\left\{ig \int_{-\infty}^{\infty} dz^{-} \alpha(z^{-}, \boldsymbol{x})\right\} = \operatorname{Pexp}\left\{ig \int dy \,\alpha_{y}^{a}(\boldsymbol{x})t^{a}\right\}$$
(53)

- E. lancu and R. Venugopalan, hep-ph/0303204
- L.McLerran and R. Venugopalan, Phys. Rev. D 49 (1994) 2233; *ibid.* 49 (1994) 3352; *ibid.* 50 (1994) 2225
- A. Ayala, J. Jalilian-Marian, L. D. McLerran and R. Venugopalan, Phys. Rev. D 52, 2935 (1995); *ibid.* 53, 458 (1996)
- A. H. Mueller, Parton Saturation—An Overview, hep-ph/0111244, in QCD Perspectives on Hot and Dense Matter, NATO Science Series, Kluwer, 2002
- E. Iancu, A. Leonidov and L. McLerran, *The Colour Glass Condensate: An Introduction*, hep-ph/0202270, in *QCD Perspectives on Hot and Dense Matter*, NATO Science Series, Kluwer, 2002; E. Iancu, hep-ph/0210236, invited talk, Quark Matter 2002, Nantes, France, 18–24 July 2002
- E. Iancu, A. Leonidov and L. McLerran, Nucl. Phys. A 692 (2001) 583; *Phys. Lett. B* 510 (2001) 133; E. Ferreiro, E. Iancu, A. Leonidov and L. McLerran, Nucl. Phys. A 703 (2002) 489