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Outline

• The Effective Theory for the Color Glass Condensate

• The Quantum evolution of the Color Glass Condensate: JIMWLK equation
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Light-cone kinematics

• Let z be the longitudinal axis of the collision. For an arbitrary 4-vector
vµ = (v0, v1, v2, v3), the light-cone (LC) coordinates are defined as

v+ ≡ 1√
2
(v0 + v3), v− ≡ 1√

2
(v0 − v3), v ≡ (v1, v2) (1)

• One usually writes v⊥ ≡ |v| =
p

(v1)2 + (v2)2

• In these coordinates, x+ ≡ 1√
2
(t + z) is the LC time and x− ≡ 1√

2
(t − z) is the LC

longitudinal coordinate.

• The invariant scalar product of two 4-vectors reads

p · x = p0x0 − p1x1 − p2x2 − p3x3

=
1

2
(p+ + p−)(x+ + x−) − 1

2
(p+ − p−)(x+ − x−) − p · x

= p−x+ + p+x− − p · x (2)

• This form of the scalar product suggests that p− should be interpreted as the LC
energy and p+ as the LC longitudinal momentum.
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Light-cone kinematics

• For particles on the mass-shell, k± = (E ± kz)/
√

2, with E = (m2 + k2)

k+k− =
1

2
(E2 − k2

z) =
1

2
(k2 + m2) ≡ m2

⊥ (3)

• One needs also the rapidity

y ≡ 1

2
ln

k+

k− =
1

2
ln

2k+2

m2
⊥

(4)

• Under a longitudinal Lorentz boost (k+ → βk+, k− → (1/β)k−, with constant β), the
rapidity is shifted only by a constant, y → y + β

• For a parton inside a right-moving (in the positive z direction) hadron, we introduce the
boost-invariant longitudinal momentum fraction x

x ≡ k+

P+
(5)
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The McLerran-Venugopalan (MV) model

• Consider a nucleus in the infinite momentum frame (IMF) with momentum P+ → ∞
and with a nearly infinite transverse extent with a uniform matter distribution

• Partons which carry large fractions of momentum – valence partons – are Lorentz
contracted to a distance ∼ 2RA/γ, with γ = P+/M = p+/mN (p+ = P+/A is the
longitudinal momentum of a single nucleon and mN = M/A is its mass)

• The wee partons with longitudinal momentum fractions x ≪ 1 are delocalized in the x−

direction over relatively large distances ∼ 1/xp+

• For x ≪ A−1/3 these distances are much larger than the Lorentz contracted nuclear
diameter; these partons ’see’ the valence partons as an infinitely thin sheet of color
charge

• The MV model assumes a simple kinematic distinction between wee and valence
partons
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The McLerran-Venugopalan (MV) model

• The wee partons also have very short lifetimes, given by the uncertainty and the LC
dispersion relation

∆x+ ∼ 1

k− =
2k+

m2
⊥

≡ 2xP+

m2
⊥

(6)

which implies that the wee parton lifetime is much shorter than that of the valence
partons: the valence parton sources are static sources of color charge

• Since the momenta of the valence partons are large, they are also recoilless sources of
color charge; in this eikonal approximation the wee partons couple only to the plus
component of the LC current

Jµ,a = δµ+δ(x−)ρa(x) , (7)

where ρa(x) is the valence quark color charge density in the transverse plane. .
Actually, δ(x−)ρa(x) → ρa(x−, x), where ρa(x−, x) is localized near x− = 0
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How to generate ρ
a(x)?

• Nucleus interacting with an external probe which can resolve distances of size ∆x in
the transverse plane that are much smaller than the nucleon size ∼ ΛQCD .

• The small probe which has x ≪ A−1/3 simultaneously couples to partons from
nucleons all along the nuclear diameter; since its transverse size is much smaller than
the nucleon size, it sees them as sources of color charge

• The number ∆N of these sources can be estimated as the product n∆S⊥ between the
density n ≡ NcA/πR2

A of valence quarks in the transverse plane and the area
∆S⊥ ∼ (∆x)2 covered by the external probe

∆N ≈ n∆S⊥ = ∆S⊥
NcA

πR2
A

∼ Λ2
QCD

Q2
NcA1/3 (8)

where Q2 is the external resolution and RA = R0A1/3 with R0 ∼ ΛQCD
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How to generate ρ
a(x)?

• If Q2 is small enough to satisfy Λ2
QCD ≪ Q2 ≪ Λ2

QCDNcA1/3, the area ∆S⊥ covers a
large number ∆N ≫ 1 of valence quarks

• The valence quarks are then randomly distributed, in such a way that the total color
charge seen by the probe

〈Qa〉 = 0, 〈QaQa〉 = g2Cf∆N = ∆S⊥
g2Cf NcA

πR2
A

, (9)

• One can treat this charge as classical since, when ∆N is large enough, we can ignore
commutators of charges: | [Qa,Qb] |= | ifabcQc |≪ Q2

• In order to take the continuum limit, it is convenient to introduce the color charge
densities ρa(x−, x) and

ρa(x) ≡
Z

dx−ρa(x−, x) (10)

• Then

Qa =

Z

∆S⊥

d2xρa(x) =

Z

∆S⊥

d2x

Z

dx− ρa(x−, x), (11)
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How to generate ρ
a(x)?

• One has (Cf = (N2
c − 1)/2Nc) :

〈ρa(x)ρb(y)〉A = δabδ
(2)(x− y) µ2

A, µ2
A ≡ g2A

2πR2
A

,

〈ρa(x−, x)ρb(y
−, y)〉A = δabδ

(2)(x− y)δ(x− − y−) λA(x−),
Z

dx− λA(x−) = µ2
A (12)

where µ2
A ∼ A1/3 is the average color charge squared of the valence quarks per unit

transverse area and per color, and λA(x−) is the corresponding density per unit volume

• The nonzero correlators (12) are generated by the weight function (~x = (x−, x))

WA[ρ] = N exp



− 1

2

Z

d3x
ρa(~x)ρa(~x)

λA(x−)

ff

(13)

which is a Gaussian in ρa, with a local kernel, which is gauge-invariant, so the variable
ρa can be the color source in any gauge
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Towards an effective theory

• The local Gaussian form of the weight function (13) is valid, by construction, for a large
nucleus and with some restricted kinematical range, namely

Λ2
QCD ≪ Q2 ≪ Λ2

QCDNcA1/3, (14)

for relatively small x ≪ A−1/3, but such that αs ln(1/x) ≪ 1

• For even smaller values of x or larger values of Q2, the QCD quantum evolution cannot
be neglected anymore, and the gluon distribution at the scale of interest is then
dominated by the quantum color sources

• For sufficiently high Q2 the system becomes very dilute, and the classical
approximation breaks down

• Finally, the assumption that the valence quarks are uncorrelated must fail for transverse
separations >∼ ΛQCD

Seminrio GFPAE, João Thiago de Santana Amaral – p. 10



Towards an effective theory

• The color fields computed carry longitudinal momenta k+ much lower than those of
their sources, the valence quarks ⇒ the weight function can be seen as part of an
effective theory for gluon correlations at momenta k+ smaller than some upper cutoff
Λ+

• However, for the classical approximations underlying the expression for the weight
function to be valid, the value k+ of interest should be not much smaller than Λ+

◦ Indeed, as we shall see, new color sources with momenta p+ < Λ+ are produced
by radiation from the original sources at p+ ≥ Λ+

• If the gap between k+ and Λ+ is relatively large, these new sources, which are mostly
gluons, will completely dominate the physics at the scale k+ of interest

• These new sources can be explicitly constructed by integrating out layers of quantum
fluctuations in a renormalization group analysis, but the ensuing weight function is
generally not a Gaussian
◦ Still, the Gaussian WA[ρ] may be a good initial condition for this quantum evolution
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The Color Glass Condensate (CGC)

• The effective theory depends upon the value of x at which we probe the hadron
wavefunction

• Then, it is convenient to introduce the longitudinal momentum scale

Λ+ = xP+ (15)

and distinguish between ’fast’ (k+ > Λ+) and ’soft’ (k+ ≤ Λ+) degrees of freedom

• The effective theory will be a theory for gluon correlations at the soft scale Λ+ as
obtained after having integrated out the fast modes

• This strong separation in longitudinal momenta implies that the small-x and large-x
dynamics decouple from each other and can be treated separately

• Any observable pertinent to a small-x process can be first computed for a fixed
configuration of the color sources, and the averaged over all the possible configurations
with some classical probability distribution
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The Classical Theory

• The structure of the classical theory is the same as in the MV model: the fast color
sources are represented by a color current Jµ

a = δµ+ρa where ρa is static and random

• The small-x gluons are the color fields generated by this current according to the
Yang-Mills equation

(DνF νµ)a(x) = δµ+ρa(~x) (16)

where Dν = ∂ν − igAa
νT a and (T a)bc = −ifabc

• All the interesting correlations are included in the functional weight function WΛ+ [ρ]

(≥ 0),
Z

D[ρ] WΛ+ [ρ] = 1, D[ρ] ≡
Y

a

Y

x−

Y

x

dρa(x−, x) (17)

• The observables are first evaluated on the solution Aµ = Aµ[ρ] to the Yang-Mills
equations, and then averaged over ρ

〈O[Aµ]〉Λ+ =

Z

D[ρ] WΛ+ [ρ]O[Aµ] (18)
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The Quantum Calculations

• The quantum aspect refers to the evolution of the weight function with decreasing Λ+

• The generating functional for gluon correlations at momenta k+ ≤ Λ+

Z[j] =

Z

Dρ WΛ+ [ρ]

8

<

:

R Λ+

D[δA] δ(A+) e iS[A, ρ]−
R

j·A
R Λ+ D[δA] δ(A+) e iS[A, ρ]

9

=

;

(19)

• The 2-point function is given by (the symbol T denoting normal ordering in x+)

〈TAµ(x)Aν(y)〉k+ =

Z

Dρ WΛ+ [ρ]

8

<

:

R Λ+

D[δA] δ(A+) Aµ(x)Aν(y) e iS[A, ρ]

R Λ+ D[δA] δ(A+) e iS[A, ρ]

9

=

;

(20)

• The averaging procedure involves two types of functional integrals

(i) A classical integral over the color charge density ρ, which represents the fast
partons with k+ ≫ Λ+

(ii) A quantum path integral over the gluon fluctuations δAµ with momenta k+ ≤ Λ+
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The Quantum Calculations

• The total field Aµ at momenta k+ ≤ Λ+ is the sum Aµ = Aµ[ρ] + δAµ between the
classical field Aµ and the quantum fluctuations

• The action S[A, ρ] describes the dynamics of the soft gluons in the presence of the
classical color charge ρ

◦ In particular, when k+ ∼ Λ+, the effects of the quantum fluctuations are negligible,
and the path integral in the equation for the 2-point function can be evaluated in the
saddle point approximation

δS

δAµ
= 0 ⇒ Aµ = Aµ[ρ] (21)

and the 2-point function reduces to

〈Aµ
a(x+, ~x)Aν

b (x+, ~y)〉Λ+ =

Z

Dρ WΛ+ [ρ]Aµ
a(~x)Aν

b (~y) (22)
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The classical color field

• It is always possible find a solution to the classical equations of motion (EOM)
(DνF νµ)a(x) = δµ+ρa(~x) with the properties

F ij
a = 0, A−

a = 0, A+
a , Ai

a : static , (23)

• The transverse fields Ai form a two-dimensional pure gauge; that is, there exists a
gauge rotation U(x−, x) ∈ SU(N) such that

Ai(x−, x⊥) =
i

g
U(x−, x⊥) ∂iU†(x−, x) . (24)

(in matrix notations appropriate for the adjoint representation: Ai = Ai
aT a, etc)

• We consider first the covariant (COV) gauge ∂µAµ = 0. In this gauge,
Ãµ

a(x) = δµ+αa(x−, x), with αa(~x) linearly related to the color source ρ̃a in the
COV-gauge :

−∇2
⊥αa(~x) = ρ̃a(~x) . (25)
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The classical color field

• The solution is:

αa(x−, x) =

Z

d2y 〈x| 1

−∇2
⊥

|y〉 ρ̃a(x−, y)

=

Z

d2y

4π
ln

1

(x− y)2µ2
ρ̃a(x−, y), (26)

• The classical solution in the LC-gauge A+ = 0

◦ This is of the form Aµ
a = δµiAi

a with Ai
a(x−, x) a “pure gauge”

◦ The gauge rotation U(~x) can be most simply obtained by a gauge rotation of the
solution in the COV-gauge:

Aµ = U
`

Ãµ +
i

g
∂µ

´

U†, (27)

where the gauge rotation U(~x) is chosen such that A+ = 0, i.e.,

U†(x−, x) = P exp

(

ig

Z x−

−∞
dz− αa(z−, x)T a

)

(28)
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The classical color field

• The explicit expression for the LC-gauge solution Ai in terms of the color source ρ̃ in
the COV-gauge is

〈Ai(x+, ~x)Aj(x+, ~y) · · · 〉Λ+ =

Z

Dρ̃ WΛ+ [ρ̃]Ai
x[ρ̃]Aj

y [ρ̃] · · · . (29)

• Recall that ρ has is localized near x− = 0

◦ In particular, it can be shown that

Ai(x−, x) ≈ θ(x−)
i

g
Vx(∂iV †

x ) (30)

where

V †
x = V †(x) = U†(x− → ∞, x) ≡ P exp



ig

Z ∞

−∞
dz− α(z−, z)

ff

(31)

Seminrio GFPAE, João Thiago de Santana Amaral – p. 18



The gluon distribution

• G(x, Q2)dx the number of gluons in the hadron wavefunction having longitudinal
momenta between xP+ and (x + dx)P+, and a transverse size ∆x ∼ 1/Q

• In other terms, the gluon distribution xG(x, Q2) is the number of gluons with transverse
momenta k⊥ <∼ Q per unit rapidity

• In the LC-gauge

xG(x, Q2) =
1

π

Z

d2k

(2π)2
Θ(Q2 − k2)

˙

F i+
a (~k)F i+

a (−~k)
¸

, (32)

• The “unintegrated gluon distribution”, or the “gluon occupation number” is defined as:

ϕτ (k) ≡ 4π3

N2
c − 1

1

πR2

d3N

dτd2k
=

1

πR2

〈F i+
a (~k)F i+

a (−~k)〉
N2

c − 1
, (33)

where τ ≡ ln
`

1
x

´

= ln
“

P+

k+

”
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The gluon distribution in the MV model

• Starting with the low density regime, when the atomic number A is not too high, so the
corresponding classical field is weak and can be computed in the linear approximation

Ai
a(k) ≃ − ki

k+ + iε

ρa(k+, k)

k2
, F+i

a (k) ≃ i
ki

k2
ρa(~k) , (34)

and then

〈F i+
a (~k)F i+

a (−~k)〉A ≃ 1

k2
〈ρa(~k)ρa(−~k)〉A = πR2

A(N2
c − 1)

µ2
A

k2
(35)

• The following estimates for the gluon density and distribution function are obtained

ϕA(k) ≃ µ2
A

k2
, (36)

xGA(x, Q2) ≃ (N2
c − 1)R2

A

4π
µ2

A

Z Q2

Λ2
QCD

dk2
⊥

k2
=

αsANcCf

π
ln

Q2

Λ2
QCD

,

with αs = g2/4π; after taking into account quantum evolution, the actual scale for the
screening of the infrared physics is not ΛQCD but the saturation scale Qs
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Gluon saturation in a large nucleus

• One needs to recompute the gluon distribution by using the exact, non-linear solution
for the classical field; By using F+i

a (~x) = U†
ab(−∂iαb), one can express the relevant

LC-gauge field-field correlator in terms of the color field in the COV-gauge:

〈F+i
a (~x)F+i

a (~y)〉A =
D

∂iαb(~x)∂iαc(~y)
E D

U†
ab(~x)Uca(~y)

E

= δ(x− − y−)〈Tr U†(~x)U(~y)〉
`

−∇2
⊥γA(x−, x− y)

´

(37)

where

γA(x−, k⊥) ≡ 1

k4
⊥

λA(x−) (38)

• The trace

SA(x−, r = x− y) ≡ 1

N2
c − 1

〈Tr U†(x−, x)U(x−, y)〉A , (39)

can be explicitly computed as

SA(x−, r) = exp
˘

− g2Nc

Z x−

−∞
dz−[γA(z−,0) − γA(z−, r)]

¯

, (40)
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Gluon saturation in a large nucleus

• The integrand is

γA(x−,0) − γA(x−, r) = λA(x−)

Z

d2k

(2π)2
1

k4

ˆ

1 − eik·r ˜

. (41)

• Ton leading-log accuracy, i.e., by keeping only terms enhanced by the large logarithm
ln(1/r2Λ2

QCD), one obtains

SA(x−, r) ≃ exp

(

− αsNc

4
r2 µ2

A(x−) ln
1

r2Λ2
QCD

)

, (42)

and finally

ϕA(k) =

Z

d2re−ik·r
1 − exp

˘

− 1
4

r2Q2
A ln 1

r2Λ2
QCD

¯

παsNcr2
, (43)

where

Q2
A ≡ αsNcµ2

A = αsNc

Z

dx−λA(x−) ∼ A1/3. (44)
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Gluon saturation in a large nucleus

• Let us first introduce the saturation momentum Qs(A) which is the scale separating
between linear and non-linear behaviours and defined by the condition that, for
r⊥ = 2/Qs(A), the exponent ϕA(k) becomes of order one

Q2
s(A) ≃ αsNcµ2

A ln
Q2

s(A)

Λ2
QCD

∼ A1/3 ln A . (45)

• Two regimes can be distinguished:
◦ At high momenta k⊥≫Qs(A), the integral is dominated by small r⊥≪1/Qs(A),

and can be evaluated by expanding out the exponential:

ϕA(k⊥) ≈ 1

αsNc

Q2
A

k2
⊥

=
µ2

A

k2
⊥

for k⊥ ≫ QA. (46)

◦ At small momenta, k⊥≪Qs(A), the dominant contribution comes from large
distances r⊥≫1/Qs(A) and

ϕA(k⊥) ≈ 1

αsNc
ln

Q2
s(A)

k2
⊥

for k⊥ ≪ QA. (47)
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Gluon saturation in a large nucleus

• The distribution in ϕA(k⊥) given previously, which takes into account the non-linear
effects in the classical Yang-Mills equations, rises only logarithmically as a function of
both A and 1/k2

⊥: This is saturation

• At saturation, the gluon occupation factor is parametrically of order 1/αs and is the
maximum density allowed by the repulsive interactions between the strong color fields
Āi =

p

〈AiAi〉 ∼ 1/g

• When increasing the atomic number A, the new gluons are produced preponderantly at
large transverse momenta >∼ Qs(A), where this repulsion is less important

2
1
k

~ 

(A1)Λ QCD

A

Qs

1

A2 A1>

A

φ

kQ (s A )2
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BFKL evolution

• Consider the emission of a soft gluon with longitudinal momentum k+ = xP+ ≪ P+

by a fast moving parton (say, a valence quark) with momentum p+ = x0P+ and
1 > x0 ≫ x

• As we have seen, the enhancement of the gluon distribution at small-x proceeds via the
(BFKL) gluon cascades

p+

p+

p

+k

1

1

+

+p

+k

+k

.. . +

+

2

+

1

2
+

p

p

nn

p

a) b) c)

p

<<

• In the cascade the successive gluons are strongly ordered in longitudinal momenta

p+ ≫ p+
1 ≫ p+

2 ≫ · · · ≫ p+
n ≫ k+ (48)
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Nonlinear evolution for the CGC

• Let us consider the first radiative correction, the one-gluon emission

• The typical contributions of this correction come from momenta p+
1 such that

p+ ≫ p+
1 ≫ k+, that is, the condition of separation of scales is indeed satisfied for the

intermediate gluon with momentum p+
1 to be treated as a ‘frozen’ color source for the

final gluon with momentum k+

• The effect of this quantum correction is therefore simply to renormalize the effective
color source at scale k+

p+

+k

1

k

+

p+

+ +k

p ����
����
����
����
����

����
����
����
����
����

+ = 

ρ

• By iterating this argument, a whole BFKL cascade can be included in the definition of
the classical color source at the scale Λ+ = xP+ of interest
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Nonlinear evolution for the CGC

• The fusion between two gluon cascades can be represented in the CGC theory as a
nonlinear effect in the classical dynamics of the color fields generated by this effective
source

����
����
����
����

����
����
����
����

�����
�����
�����
�����

�����
�����
�����
�����

��������
��������
��������
��������
��������

��������
��������
��������
��������
��������

��������
��������
��������
��������

��������
��������
��������
��������

ρ ρ

• However, nonlinear effects are important also in the quantum evolution

+p

Λ+

k+

A[ρ]

k+ k+

A[ρ]
���
���
���
���

��
��
��

��
��
��

���
���
���

���
���
���

���
���
���
���

���
���
���
���

��
��
��

��
��
��

��
��
��

��
��
��ρ

Λ >> p >>k

a) b)

+ +

.

+

.

c)

ρρ

k+

ρ ρ
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Nonlinear evolution for the CGC

• The diagram (a) is an immediate generalization of the one-gluon emission; what is
renormalized by the scattering off the “semi-fast” (Λ+ ≫ p+ ≫ k+) quantum
fluctuation is the classical field Ai[ρ] at scale Λ+, which in turn is non-linear in ρ.

• The diagram (b) shows an additional source of non-linearity, arising from the
propagation of the radiated gluon in the classical ‘background’ field Ai[ρ].

• If Λ+ = xP+ is small enough (x ≪ 1), the classical field is very strong, Ai ∼ 1/g, and
gluon rescatterings must be included to all orders in Ai

• Both can be taken into account as the cut of the diagram (c). The classical field that
enters the vertices is the fully non-linear solution Ai[ρ] and the propagator of the
quantum gluon is computed to all orders in this background field

• The diagram (c) is manifestly a quantum correction to the 2-point function of the gauge
fields at scale k+, and is of order αs ln(Λ+/k+); for this to be computable in
perturbation theory, the separation of scales between Λ+ and k+ must not be too
large: Λ+ ≫ k+, but αs ln(Λ+/k+) ≪ 1
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Nonlinear evolution for the CGC

• The quantum modes must be integrated out in layers of p+, within a renormalization
group procedure. At each step in this procedure, one has to perform a one-loop
quantum calculation, but with the exact background field propagator for the “semi-fast”
gluons (the quantum gluons that are integrated out in that particular step).

• Such an all-order inclusion of the classical field effects permits one to resum not only
the large energy logarithms, but also the dominant high density effects

• The condition that the new correlations induced by integrating out quantum fluctuations
be reproduced by the CGC effective theory leads to a functional renormalization group
equation (RGE) for the weight function WΛ+ [ρ] ≡ Wτ [ρ]

∂Wτ [ρ]

∂τ
=

1

2

Z

xy

δ

δρa
τ (x)

χab(x, y)[ρ]
δ

δρb
τ (y)

Wτ [ρ] , (49)

• This is the so-called Jalilian-Marian-Iancu-McLerran-Weigert-Leonidov-Kovner –
JIMWLK – equation
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The α-representation

• It is often preferable to use the ‘α–representation’, by performing the following change:
Wτ [α] ≡ Wτ [ρ̃ = −∇2

⊥α]; after this change of variables, the JIMWLK equation takes
the following (Hamiltonian) form:

∂Wτ [α]

∂τ
= −HWτ [α] ≡ 1

2

Z

xy

δ

δαa
τ (x)

ηab(x, y)[α]
δ

δαb
τ (y)

Wτ [α] (50)

where

ηab(x, y) =
1

π

Z

d2z

(2π)2
Kxy,z

˘

1 + V †
x Vy − V †

x Vz − V †
z Vy

¯ab
, (51)

the kernel

Kxy,z ≡ K(xy, z) =
(xi − zi)(yi − zi)

(x⊥ − z⊥)2(y⊥ − z⊥)2
(52)

and

V †
x ≡ P exp



ig

Z ∞

−∞
dz− α(z−, x)

ff

= P exp



ig

Z

dy αa
y(x)ta

ff

(53)
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