

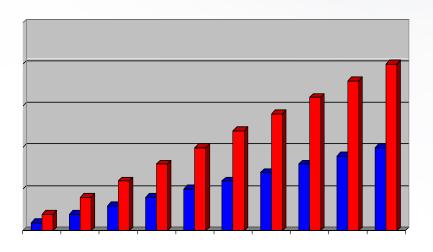
Processamento em Grid: Muito Além de Altas Energias

Sérgio F. Novaes IFT/UNESP

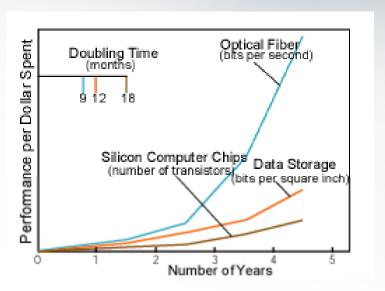
O que é o Grid?

Processadores X Conexão

Processador	Ano	Transistores
4004	1971	2.250
8008	1972	2.500
8080	1974	5.000
8086	1978	29.000
286	1982	120.000
386™	1985	275.000
486™ DX	1989	1.180.000
Pentium®	1993	3.100.000
Pentium II	1997	7.500.000
Pentium III	1999	24.000.000
Pentium 4	2000	42.000.000

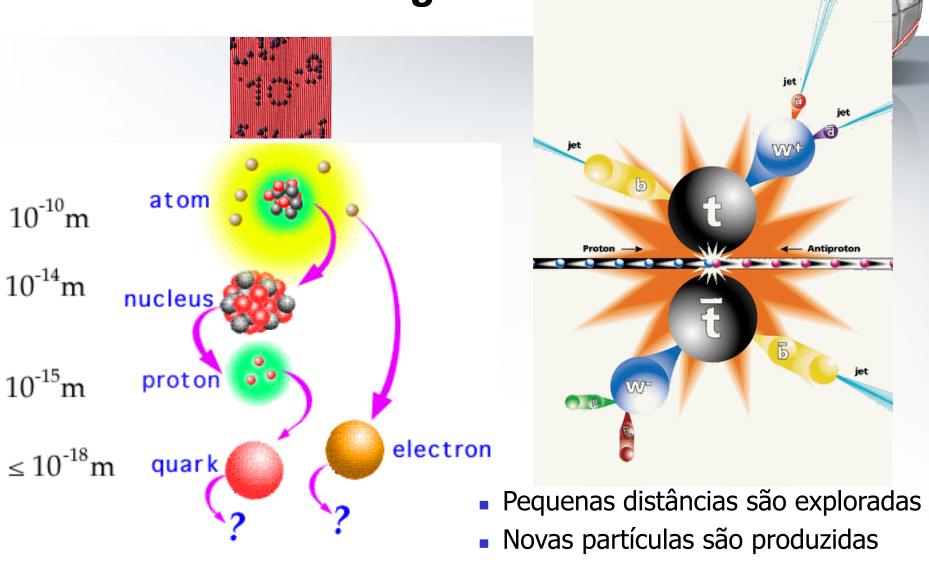

Tecnologia	Ano	Conexão (bps)
Analógica	1985	9.600
Digital	1989-1994	256.000
Shared	1990-1993	1.500.000
	1996-1998	4.000.000
	1999-2000	20.000.000
	2001-2002	310.000.000
	2002-2003	622.000.000
Lambda	2003-2004	2.500.000.000
	2005	10.000.000.000

Poder Computacional X Network


Capacidade dos transistores dobra a cada 18 meses

Capacidade de armazenamento de dados dobra a cada 12 meses

Banda de transmissão de dados dobra a cada 9 meses



Significa que as redes evoluem 100 vezes mais em 10 anos

E tornam-se cada vez mais baratas...

Física de Altas Energias

Colaborações Internacionais

Grandes colaborações internacionais. CMS:

39 Países182 Instituições2972 Pesquisadores

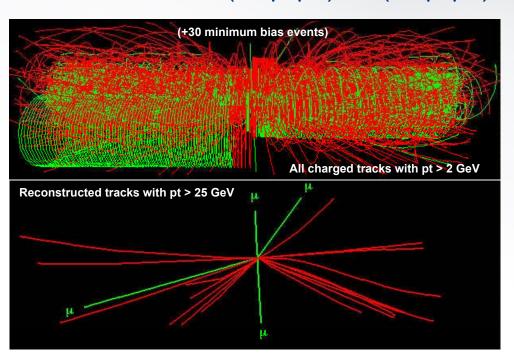
- Enorme complexidade dos experimentos: detector, eletrônica e software
- Trabalho colaborativo: Físicos, Engenheiros e Cientistas da Computação
- Benefícios secundários: o WWW foi proposto no CERN para:

Permitir o acesso à informação dos experimentos de Altas Energias.

Disponibilizar facilmente novas informações.

Incorporar vários servidores de armazenamento de informação, permitindo acesso à informação dos vários experimentos.

Experimentos: Aceleradores



Uma avalanche de dados

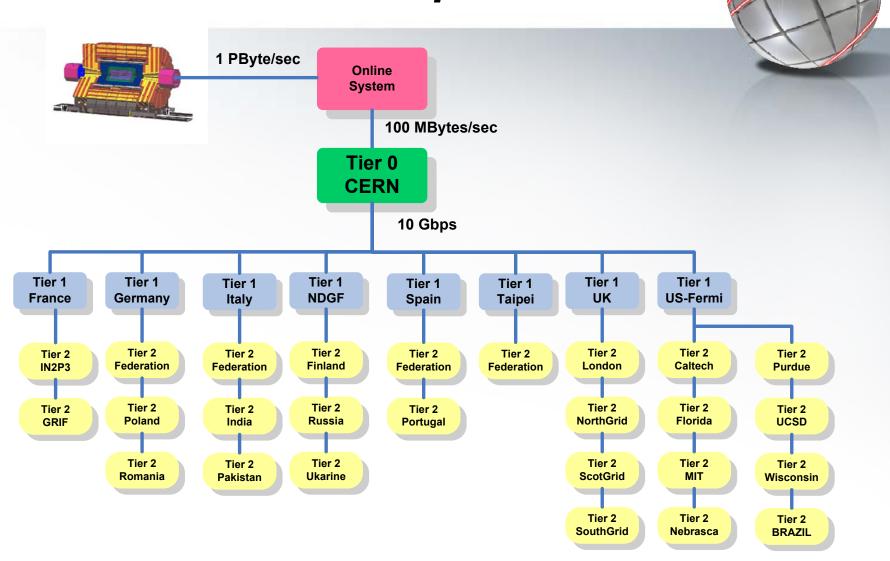
- Eventos são extremamente complexos
- Enorme quantidade de dados produzidos

- Dados
- 10 PB / ano
- Usuários
 - > 5.000

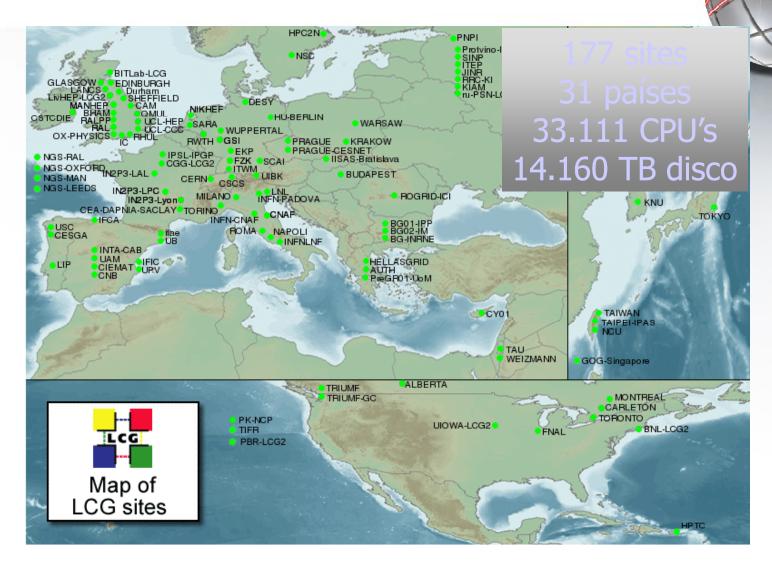
$$H \rightarrow Z(\rightarrow \mu^{+}\mu^{-}) + Z(\rightarrow \mu^{+}\mu^{-})$$

A Era do Exabyte

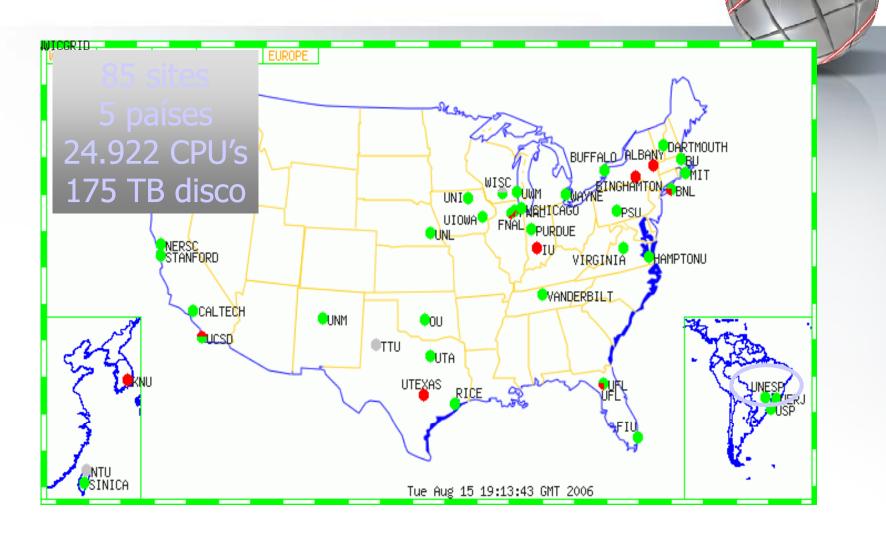
1 Caráter (letra, número, etc)	1 byte
1/2 Página de Texto	1 KB (Kilobyte) = 10³ bytes
1 Livro	1 MB (Megabyte) = 10 ⁶ bytes
1 Sinfonia em Alta Fidelidade	1 GB (Gigabyte) = 10 ⁹ bytes
1/20 da Biblioteca do Congresso Americano	1 TB (Terabytes) = 10 ¹² bytes
1/10 Toda Informação Existente na Web	1 PB (Petabyte) =10 ¹⁵ bytes
1/5 Toda Informação Gerada em 2002	1 EB (Exabyte) =10 ¹⁸ bytes

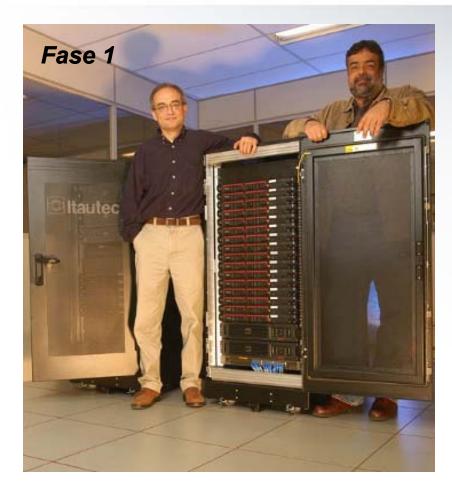


• LHC


- 1 Exabyte de dados in 5–8 anos
- Equivalente a 1,43 bilhões de CD's

Pilha de 1.857 km 4.700 Pães de Açúcar 210 Montes Everest


Grid: Estrutura Hierárquica


Europa: LHC Computing Grid

EUA: Open Science Grid

SPRACE

Reprocessamento de Dados do DØ

Dados são frequentemente reprocessados utilizando a versão mais recente do software de reconstrução

- SPRACE
 - P17 Reprocessing (Março–Novembro/2005)

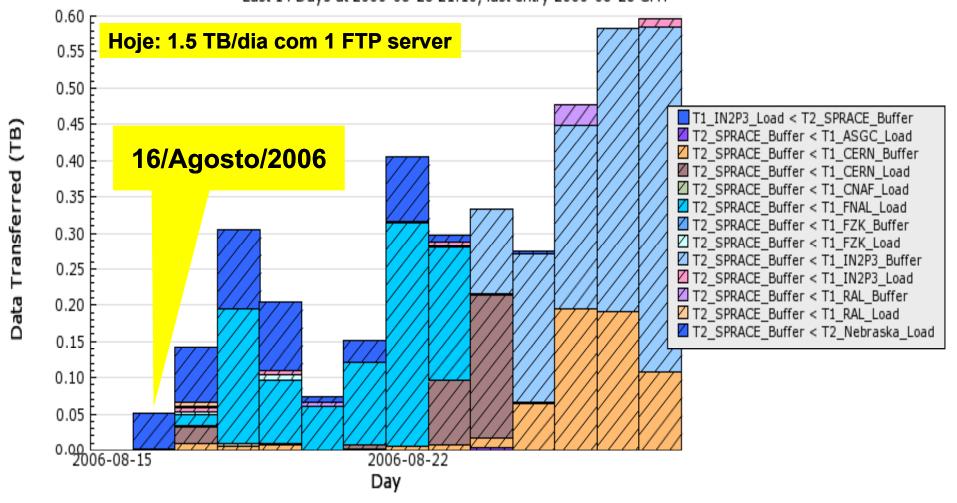
Inicio em August 2005 = 10 milhões de eventos



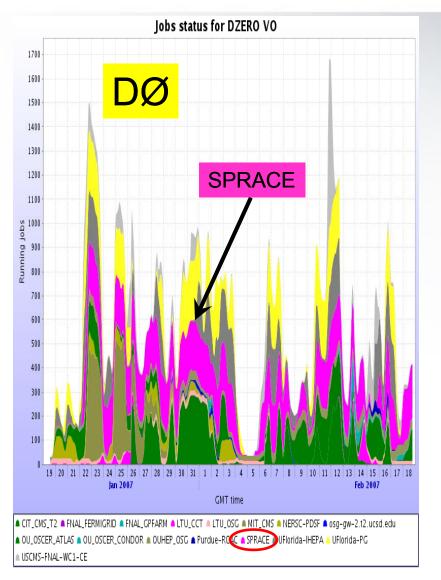
– P20 Reprocessing (Fevereiro–Abril/2007)

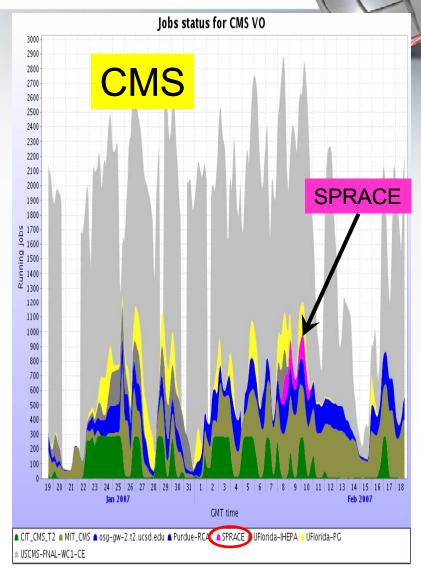
500 milhões de eventos a serem processados

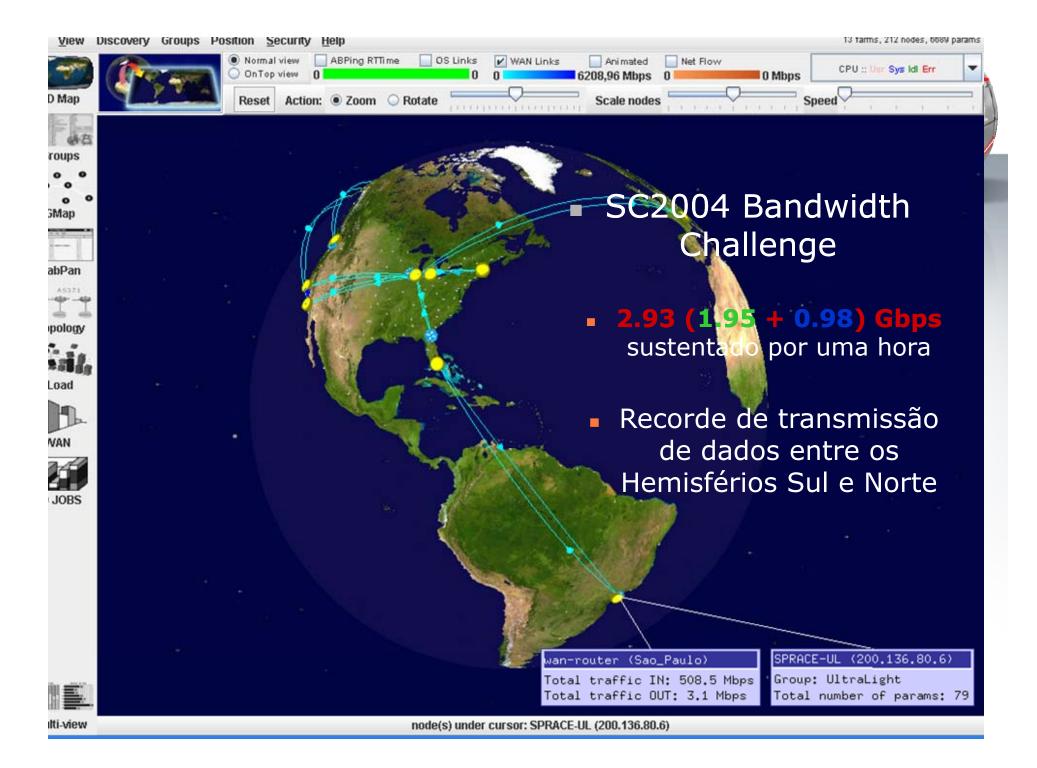
2,300 CPU's necessárias: 30 s/evento @ 1 GHz CPU



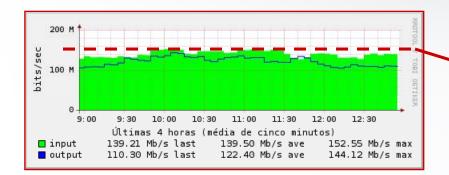
Transferências do CMS: OSG e LCG

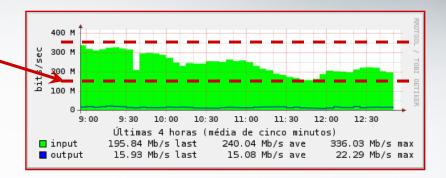


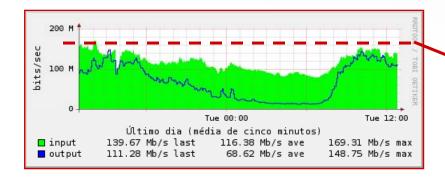

PhEDEx SC4 Data Transfers By Links matching 'SPRACE'

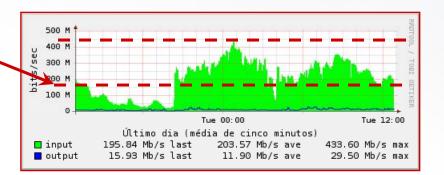

Last 14 Days at 2006-08-28 21:10, last entry 2006-08-28 GMT

Monitoramento (MonALISA)






Tráfego UNESP X SPRACE

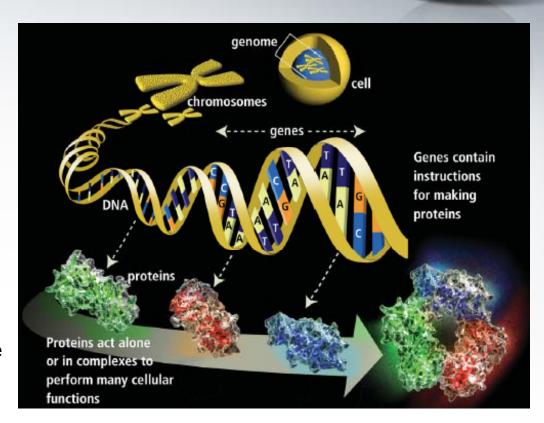


SPRACE

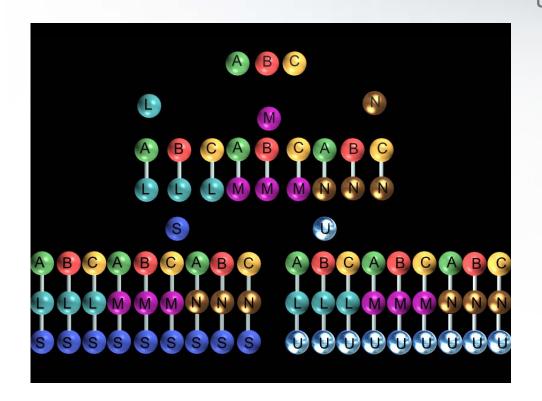
20/Mar/2007

Genômica e Proteômica

Proteinas


- Responsáveis pelas funções vitais
- Função biológica é determinada pela estrutura 3D (enovelamento)
- Estrutura é estabelecida por comparação das cadeias disponíveis nos bancos de dados.

Protein Data Bank


- 25.000 estruturas 3D
- 300 PC's/um ano

Encyclopedia of Life

 Catálogo do proteoma completo de todas as espécies vivas.

Química Combinatória

Método rápido e barato de sinte

um grande número de moléculas com propriedades desejadas:

- Fármacos
- Catalisadores
 - Polímeros
- Novos materiais
 - Pigmentos
- Defensivos agrícolas.

Split & Mix:

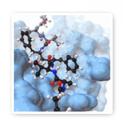
- 3 X n reações → 3ⁿ compostos
 - Triagem de desempenho
- Identificação do componente ativo

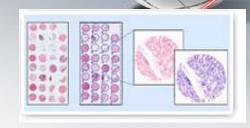
Mamografia

Primeiro sinal de câncer de mama:

- → Depósitos de cálcio
- Algumas dezenas de mícrons
 - 120 MB / exame

Poucos especialistas Imagens heterogêneas Grandes bancos de dados




Varíola: busca de drogas para controle da varíola é acelerado pelo uso do grid.

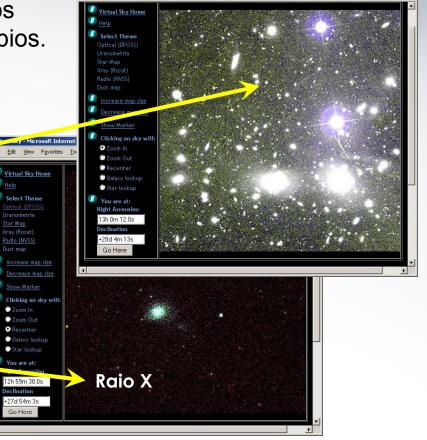
Enovelamento de Proteínas Humanas (Nov/04): identificando as proteínas que compõe o Proteoma Humano pode-se buscar tratamento para doenças como o câncer, HIV/AIDS, SARS e malaria.

FightAIDS@Home (Nov/05): uso de métodos computacionais para identificar drogas com as características necessárias para bloquear protease do HIV ("Structure-Based Drug Design").

Help Defeat Cancer (Jul/06)

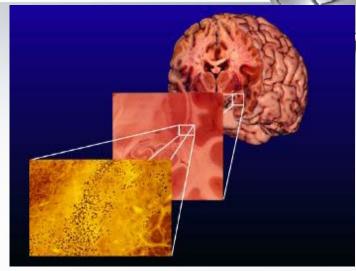
exame de tecidos para melhorar o tratamento do câncer através do diagnostico correto e precoce.

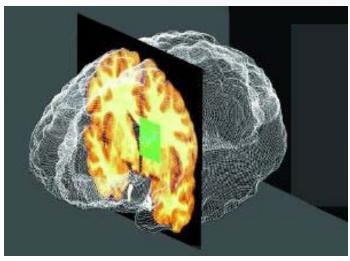
Enovelamento de Proteínas Humanas 2 (Jun/06):


Objetivos: obter estruturas com maior resolução para proteínas específicas; explorar a capacidade de predição dos softwares.

National Virtual Observatory NVI

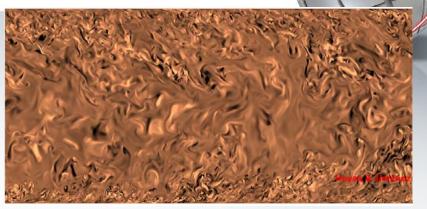
Ferramentas para localizar, acessar e analisar dados astronômicos de um catálogo universal e comparar modelos teóricos com as observações dos telescópios. 2008: 10 PB/ano





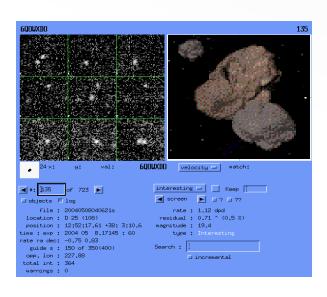
Biomedical Informatics Research Network

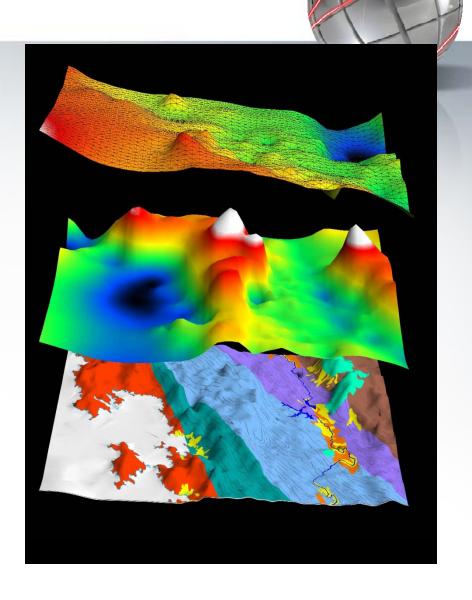
BIRN BIOMEDICAL INFORMATICS RESEARCH NETWORK


- Imagens cerebrais fornecem informação que possibilitam desenvolver terapias para desordens neurológicas:
 - Esclerose múltipla
 - Esquizofrenia
 - Alzheimer
 - Parkinson
- Colaboração de dezenas de laboratórios
 - Amostragem de grandes populações
- 400 TB de dados: mais imagens com maior resolução

Fluxo Turbulento

- Fluxo turbulento ocorre para altos números de Reynolds (força inercial >> força viscosa): redemoinhos, vórtices, etc
- $R_e = 2.000$:
 - melhor cálculo executado até hoje
 - Mare Nostrum (5° do mundo)
 - 10.240 processadores
 - Capela da Torre Girona
- Output: 25 TB de dados





Capilla de la Torre Girona

E Muito Mais...

- Simulação de Terremotos e da Dinâmica Geológica
 - Pesquisas de Clima
 - Desenho de Superfícies
 Aerodinâmicas e Aeronaves
- Rastreamento de asteróides

GridUNESP

- UNESP : Estrutura multicampi
 - Perfil ideal para implementação da arquitetura Grid de processamento distribuído:

Distribuição equitativa dos recursos Acesso de todos à infra-estrutura computacional compartilhada Acompanhamento dos avanços mais recentes em tecnologia da informação

- Março 2004 → Identificação dos grupos de pesquisa com demanda de recursos computacionais de alto desempenho:
 - PROPP: Programa de Integração da Capacidade Computacional da UNESP Projetos de Pesquisa Levantamento da Infra-estrutura de Rede e das Necessidades de Processamento e Armazenamento de Dados
- Maio 2004: Reunião de Trabalho
 - Apresentação dos projetos
 - Discussão sobre programa
 - Preparação do projeto científico global

Algumas Iniciativas Americanas

- Harvard (Crimson Grid)
 - http://www.harvard.edu/
 - Terremotos, Tumores cancerígenos, Partículas subatômicas, Modelos oceanográficos
- Wisconsin (GLOW)
 - http://www.cs.wisc.edu/condor/g low/
 - Engenharia, Genômica,
 Nanotecnologia, Altas Energias,
 Ciência da Computação
- Texas (UTGrid)
 - http://www.utgrid.utexas.edu/
 - Pesquisa acadêmica e educação

- Michigan (MGRID)
 - http://www.mgrid.umich.edu
 - Bio-informática, Física e HPC
- Buffalo (ACDC)
 - https://grid.ccr.buffalo.edu/
 - Biomedicina, Engenharia de Terremotos, Química, Ciências da Terra, Hidrodinâmica, Estrutura molecular
- lowa (HawkGrid)
 - http://grow.its.uiowa.edu/
 - Física, Astronomia, Geografia, Radiologia, Estatística e Engenharia.

Projeto Científicos

São Paulo

- Simulacoes Numéricas de Larga Escala em Física, IFT
- SPRACE e <u>HEP</u> Grid-Brazil, IFT

Araraquara

- Caracterização de Novos Materiais e Desenvolvimento de Ligas Especiais de Titânio, IQ
- Bioprospecção Químico-Farmacológica para Obtenção de Bioprodutos, IQ

Rio Claro

- UNESP-Gridgene, DEMAC
- Aspectos Termodinâmicos no Processo de Enovelamento de Proteínas, IGCE – Física
- Modelagem Tridimensional de Dados Geológicos, Fisiográficos, Hidrográficos e Geoambientais, IGCE – Petrologia e Metalogenia

Botucatu

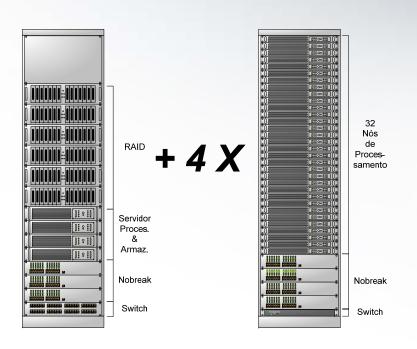
 Definição de Regiões Genômicas Críticas Envolvidas na Progressão, Resposta a Tratamento e Metástase em Tumores Humanos, Medicina

Bauru

- Dinâmica de Vórtices em Supercondutores de Alta Temperatura Crítica do Tipo II, Física
- Estudo Mecânico Quântico de Processos Não Radiativos em Moléculas de Interesse Biológico, Química
- Estudo Numérico de Sistemas de Elétrons Fortemente Correlacionados em Baixa Dimensionalidade, Física
- Modelagem das Propriedades Elétricas de Cerâmicas Semicondutoras, Matemática
- Caracterização Teórica das Propriedades Elétricas e Canalizadoras de Óxidos, Matemática

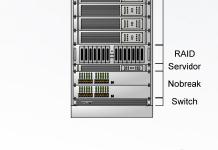

São José do Rio Preto

- Genoma Estrutural Rede de Biologia Molecular Estrutural, IBILCE – Física
- Implementação Otimizada de Algoritmos Estocásticos para Alinhamento Múltiplo de Sequências em Clusters Beowulf, IBILCE – Computação Estatística


Ilha Solteira

 Métodos Analíticos e Numéricos em Engenharia Mecânica, Eng. Mecânica

ProInfra (MCT/FINEP)



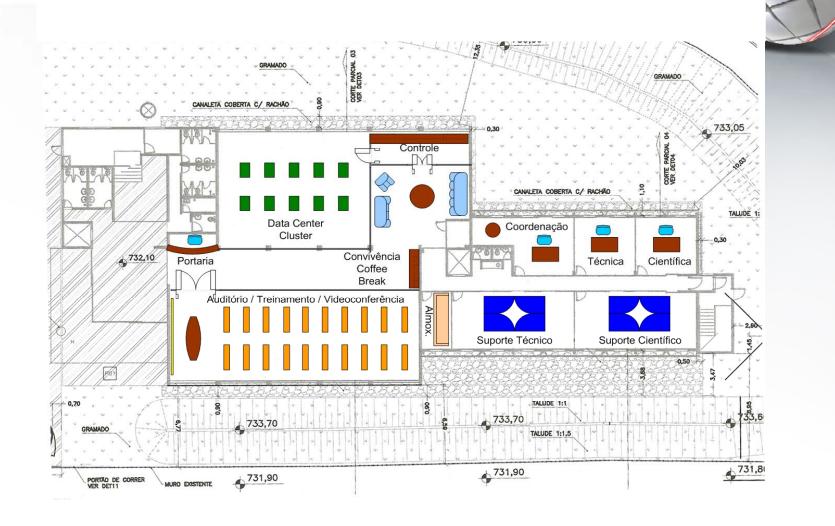
Hardware

Cluster Central

1 Processing Server + 3 Storage Servers 128 two Quad Core Intel Xeon processor (InfiniBand) RAID: 64 X 500 GB = 32 TB

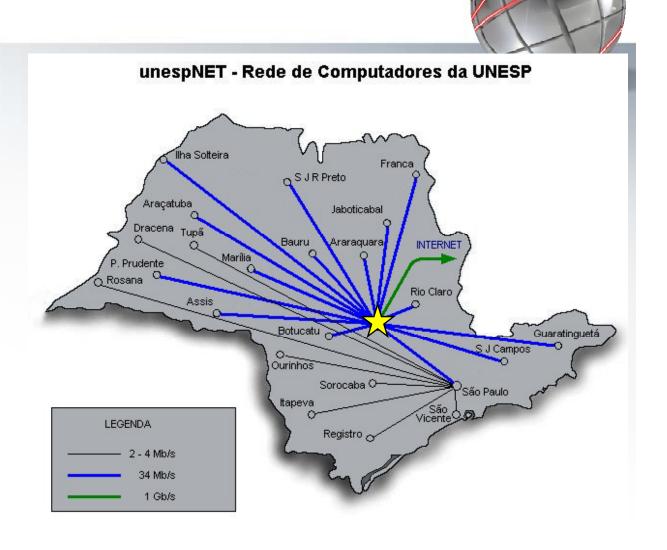
7 X

16


Nós

Processamento

Clusters Distribuídos


1 Server 16 two Quad Core nodes RAID = 4 TB

Data Center

unespNET

- Integra:
 - 40 campi
 - 23 cidades
- Conexão:
 - WAN: 34 Mb/s:
 - LAN: > 100 Mb/s:
- Topologia: estrela
 - Nó central: NAP do Brasil.

MetroSampa

ANSP

Academic Network at Sao Paulo **BIREME**

Centro Latino-Americano e do Caribe de Informação em Ciências da Saúde CEFET

Centro Federal de Educação Tecnológica IButantan

Instituto Butantan

InCOR

Fundação Zerbini/Instituto do Coração

Instituto de Pesquisas Energéticas e Núcleares
IPT

Instituto de Pesquisas Tecnológicas do Estado de São Paulo

Mackenzie

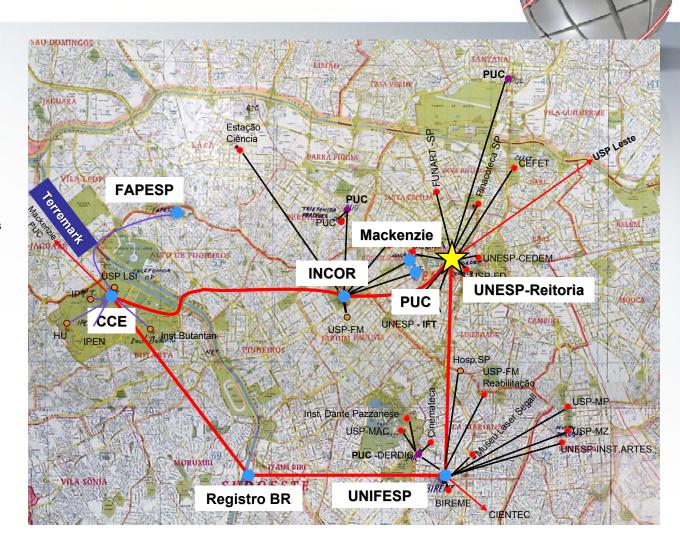
Universidade Presbiteriana Mackenzie
PUC

Pontifícia Universidade Católica

RNP

Rede Nacional de Ensino e Pesquisa

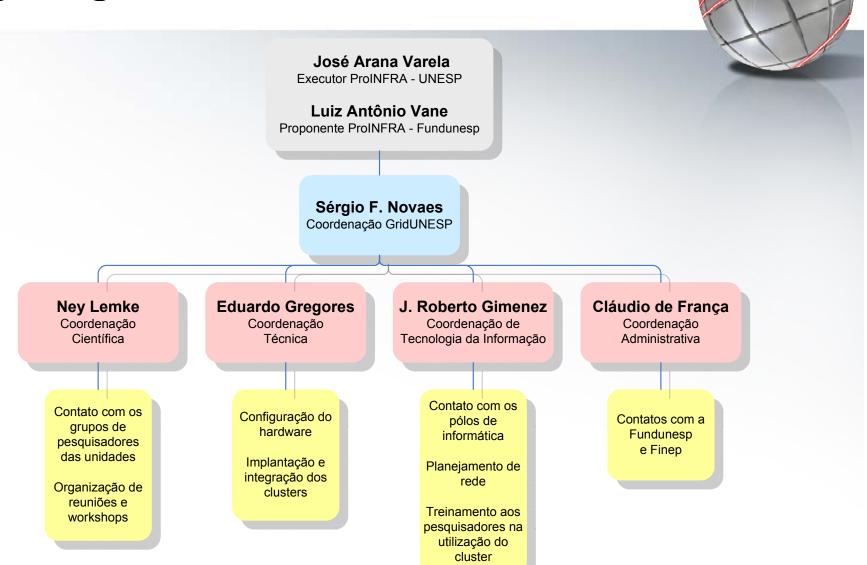
UNESP


Universidade Estadual Paulista

UNIFESP

Universidade Federal de São Paulo Escola Paulista de Medicina

USP


Universidade de São Paulo

Cronograma de Execução

	1	2	3	4	5	6	7	8	9	1	1	1 2	1 3	1 4	1 5	1	1 7	1 8	1	2	2	2 2	2	2 4
Levantamento dos fornecedores, realização da concorrência pública e compra do equipamento																				-				
Entrega do equipamento, instalação, configuração básica e teste de funcionamento.																								
Integração em cluster dos componentes locais (NIS, NFS, Condor)																								
Habilitação para integração em Grid dos clusters locais (certificação e autenticação Tier 0 e 1)																								
Instalação serviços de clientes de Grid nos clusters locais e testes de submissão e monitoramento																								
Instalação dos serviços de gerenciamento da VO GridUNESP no cluster central (Tier 0)																								
Inclusão dos clusters locais (Tiers 1) na VO GridUnesp e registro de usuários certificados.																								
Desenvolvimento de interface (Portal) para submissão dos jobs de grupos de pesquisa.																								

Organograma

Desafios

 Implementar a estrutura física em todo Estado de São Paulo: apenas primeiro passo

Desafio:

 Tornar o GridUNESP uma estrutura realmente útil para toda a universidade

Construção de uma Portal para submissão de jobs Fornecer treinamento adequado ao pesquisadores Implantar conexão de rede compatível com Grid Dar manutenção para o sistema

Fornecer suporte permanente aos usuários Incorporar demais recursos computacionais da universidade

Parceria com o Open Science Grid

- Grid and network organizations, international, national, regional and campus grids parteners:
 - Data Intensive Science University Network (DISUN)
 - Enabling Grids for E-SciencE (EGEE)
 - Grid Laboratory of Wisconsin (GLOW)
 - Grid Operations Center at Indiana University
 - Grid Research and Education Group at Iowa (GROW)
 - Nordic Data Grid Facility (NorduGrid)
 - Northwest Indiana Computational Grid (NWICG)
 - TeraGrid
 - Texas Internet Grid for Research and Education (TIGRE)
 - TWGrid (Academica Sinica Grid Computing)
 - Worldwide LHC Computing Grid Collaboration (WLCG)

Benefícios à UNESP

- Aumentar a produção científica em áreas de fronteira que ainda não produzem melhores resultados devido à carência de recursos computacionais adequados;
- Permitir o envolvimento de pesquisadores em novas áreas que requerem processamento e armazenamento de grande quantidade de dados;
- Gerar produtos de alto valor agregado para a indústria farmacêutica, de cosméticos, nanomateriais e materiais cerâmicos;
- Integrar a universidade nas estruturas de Grid internacionais, como o Open Science Grid (OSG) norte-americano e o Enabling Grids for EsciencE (EGEE) europeu;
- Incrementar o intercâmbio internacional com grupos que compartilham os mesmos interesses e necessidades, como os laboratórios nacionais nos EUA e Europa;
- Gerar parcerias da universidade com áreas de alta tecnologia que vêm tendo cada vez mais interesse no desenvolvimento da arquitetura Grid de processamento;
- Aperfeiçoar a formação de pesquisadores em Tecnologia da Informação com a implantação da estrutura de Grid na universidade.