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Relevance of hadron production in hadronic collisions
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Involves almost all ingredients of QCD: coupling constant,
hard cross-section, factorization, PDFs, FFs, non-pert. effects
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Severe disagreement between data and pQCD (NLO) calculations

for fixed target data
pp — 1 +X  Esxd’o/dp’ (pb/GeV) -
10 B S
=] u=1 2
S u=2 g
lﬂl\\\ .D s M=1J,|'2 3
-i\“‘\\ o 10
10 T N
Hx\ 7
I NLO \ o e
0 ) N\\Rxx.. ' T
0 N
MRST2002 KKP ) L
. WAT0Vs=229GeV  |n|<005 "
0 4 4.5 5 5.5 [ 6.5 7
p(GeV)
Very large
F&R scale  Ny,0 already ~ 2.5 LO

+ WAT70 Vs=23.0 GeV
* NA24 Vs=23.8 GeV
A UA6 Vs=24.3 GeV
e E706Vs=31.6 GeV
o E706 Vs=38.8 GeV

e production
by proton beams

R806 Vs=30.6 GeV
R806 Vs=44.8 GeV

| NLO Theory

- W=pgp/2

I CTEQA4M parton distributions

| Stat and sys uncertainties combined

0.2 0.3 0.4

Apanasevich et al.

dependence  pyyeq order expansion valid?

0.5 0.6




Situation is much better for collider experiments
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Hadron production relevant for prompt photons: PP — 7X

‘“/direct” contribution “fragmentation”’ contribution
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like 0 production, but different
vy fragmentation function
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One phenomenological approach:

eAd-hoc intrinsic X needed to cover the gap

f(ijQ) — /dkT

f(ma Qza kT)
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(2, Q% kr) ~ f(x, Q%)e tFr

kr ~ Agcp reasonable but
kr > 1GeV Needed!

Most of it could have
more ‘“perturbative” origin:

Go beyond fixed order !







Hadron production: corrections are large enough to bring
agreement with fixed target data

e Photon production: resolved contribution increased.
Reduction of Theoretical deficit at small transverse momentum




Hadron production: corrections are large enough to bring
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e Photon production: resolved contribution increased.
Reduction of Theoretical deficit at small transverse momentum

Some phenomena usually explained by non-perturbative
arguments can actually be (at least partially) understood in
terms of (all orders) pQCD




Hadron production: corrections are large enough to bring
agreement with fixed target data

e Photon production: resolved contribpution increased.
Reduction of Theoretical deficit at small transverse momentum

Some phenomena usually explgined by non-perturbative
arguments can actually be (at Jeast partially) understood in
terms of (all orders) pQCD

[ Why? ]




Large Logarithms in QCD

Any process involving two or more scales: Perturbative coefficients

contain logs of scale ratios

Not a problem unless the scales are very different

Fixed order calculation g = CU g Cl

Logs appear in the coefficients as (', ~ log

(Ig Cz

2n—1 &
Es

when Ey ~ Ey > Agep — a5 < 1 and C), ~ O(1)
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Large Logarithms in QCD

Any process involving two or more scales: Perturbative coefficients
contain logs of scale ratios

Not a problem unless the scales are very different

Fixed order calculation g = Co g Cl Cfg 02

2n—1 &
Es

Logs appear in the coefficients as (), ~ log
when Ey ~ Ey > Agep — a5 < 1 and C), ~ O(1)

pQCD series converges well. Typically NLO calculations OK

But if £1 > E5 convergence is spoiled: even if coupling constant
is small, power of Logs grows twice as fast! log (1 — 4}9% / §)




Origin of the Logs

Unbalanced cancellation of real and virtual contributions at the
boundaries of the phase space (soft gluon radiation)

Q2
Example: Drell-Yan < =
(1-z) Momentum fraction carrled by the emltted gluon

f J

Both contrlbutlons infrared divergent: cancellation at z=1

Full after / dz (inclusive), otherwise some logs remain
0

"1 -z
In the elastic limit (threshold) ( ] (_ " )) can be very large
_+_




Each gluon contributes with a double log (soft-collinear) at most
Typically one encounters corrections like 7 ], g2n
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But even for” < 1 parton distributions prefer z— 1
*Steeply falling densities leave partons with just enough
energy for the process — partonic threshold (often) reached
Even more when fragmentation functions involved!




Therefore large logs can be dominant even at collider energies

In order to be able to perform a quantitative analysis of the data
Logs have to be resummed to all orders in the coupling constant

=Restoration of perturbative series
"Precise predictions
sStructure of pQCD series at large orders

Technicalities

o)=Y [r)e @) o= [ e
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Trade convolutions into products : Mellin log™(1 — 2)
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e Resummation: reorganize perturbative structure L = ln(N)
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e Resummation: reorganize perturbative structure L = lll(N)

Fixed order >
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e Resummation: reorganize perturbative structure L = lll(N)

Fixed order >
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e Resummation: reorganize perturbative structure L = lll(N)

Fixed order >
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Resummation achieved by exponentiation of logarithmic terms:
Sudakov form factor not trivial in QCD: color correlations

Catani, Trentadue

gres E S
Ij N }CE ™ 13 . k£ Sterman

Bonciani, Catani, Mangano, Nason

After rapidity integration

c R Gc Born
[ n o) ~otn=0)+001/N)
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e How does resummed formula look ?

usually,
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L
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As a result of exponentiation: ‘‘simple’ set of rules for each parton
participating (in many cases universal):radiative factors

Initial state (pdf): soft gluon radiation collinear to parton

1 ZN_l 1 (1— z) Q2 dq P
& = exp{ | 5=/, T
0 — < p? q* — O

FI

Final state identified parton: same as initial state pdf «— {f

Final state not-identified parton (jet): collinear (soft or hard)

N lZN_l—l (1—2)Q* di 1 - )
J% = exp{/o — [/{ e gz Aa(0x(8) + 5 Bulan((1-2)Q ))”

Large angle soft gluons: process dependent (color interference)
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Aznt ab :d exp {/ z 1 1DI ab—cd(as((1 — Z)QQ))}
0 — Z
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Coefficients have a perturbative expansion (free of logs)
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At leading log, exponents behave like (color interf. NLL)
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Sudakov enhancement Sudakov supression
(PDF or FF already much supression in factorization)  (final state not ID)

Ca

Important: the effect is amplified if hard gluons present




Pion production in pp collisions log(1 — x7) rr = ﬁ

After integration over rapidity

o(N) =Y faym (N +1,13) foyar (N +1, p31) Dpje(2N +3, 3 ) Gap—ca(N)
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AégeiCd(N) ab—»cd Aa, Ab AC JN Z;Ga,b_)CdA (int)ab—cd &élgfzg(N)
Y A /

Hard partons  Color interferences

Kidonakis, Oderda,
Sterman




2pr
Pion production in pp collisions log(1 — x7) xr = ﬁ

C contains virtual
correctlons

After integration over rapidity
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Kidonakis, Oderda,
Sterman




2pr
Pion production in pp collisions log(1 — z7) rr = E

C contains virtual
corrections

70 V) = Cuca Sy Ak AR I |3 Gapoca AN 00770 (N)
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h Y

Enhancement Kidonakis, Oderda,

Hard partons  Color interferences

Sterman




Several subprocesses, largest enhancement from
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e always want to keep benefits of full fixed-order calculation:

— ‘“matching”’:

O_matched — gres. _ sres. + O.f.o.

in phenomenological applications

e Avoid Landau Pole: Mellin contour as

Minimal prescription

(Catani, Mangano, Nason, Trentadue)
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eValidity of resummation (kinematical range) :
Compare full NLO to soft approximation (expansion of resummed)
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eValidity of resummation (kinematical range) :
Compare full NLO to soft approximation (expansion of resummed)
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eValidity of resummation (kinematical range) :
Compare full NLO to soft approximation (expansion of resummed)
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eValidity of resummation (kinematical range) :
Compare full NLO to soft approximation (expansion of resummed)

pp — T +X pi*dm’de (nb*Gesz

At collider energies soft app. :
overestimates NLO: hard -
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Faliure at RHIC not a surprise: 7 much smaller at colliders
eFar away from threshold




*K-factors and convergence of resummed expression

dO' ma,tch /de|O( 24n

dO.(NLO)/de

Kn: )

Very slow convergence even for
fixed target and low transverse
momentum: all orders needed!
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*K-factors and convergence of resummed expression

6
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*K-factors and convergence of resummed expression
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Very slow convergence even for
fixed target and low transverse
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-3
I

[t

Comparison to data

[

only approximation: rapidity 4 s épT 789

p% do.(ma,tch) dO'(NLO)

(res pT

(1 in exp. range)

(ninexp. range) =

dpr dpr
n integrated |_|Z\ OK for prompt photons!
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Same for WA70

No need of exotic scalesio?

M = P71 isenough
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At RHIC energies resummed cross section overestimates data

Hard effects dominate over soft, not expected to work rr < 1

= pp—+X  Exd’oldp’ (mb/GeV?)
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V'S = 200GeV
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But at lower energies the situation is much better even at RHIC

V'S = 62.4GeV
NLO
| pp > 10+ X Exd%/dpd(pb/GeV")|
108 Vs=62.4 GeV .
\ A o Preliminary
106 \ O PHENIX

106

NLL

0+ X Exd30/dpd(pb/GeV")

Vs=62.4 GeV _

Preliminary
O PHENIX

At 62.4 GeV (half way between fixed target and *““colliders”)

soft logs still dominate




Prompt Photons: direct contribution resummed some time ago

Some enhancement, not enough for E706
resolved contribution only at fixed order
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Resolved component similar to pion production: just use photon

fragmentation functions (GRYV)

~40% increase at low PT
K-Resolved not as big as for pions
Less gluon to photon fragmentation
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~40% increase at low PT
K-Resolved not as big as for pions  «
Less gluon to photon fragmentation
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Resolved component similar to pion production: just use photon
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Resolved contribution becomes more
important (see ratios)




Increase not enough, but helps at large transverse momentum
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Nice improvements for R806 and UA6

E do/d°p (pb/GeV?) R806 E do/d°p (pb/GeV?) UAB

pr (GeV)

Threshold resummation can not “solve” prompt photons but
certainly helps to improve agreement, besides providing more
reliable predictions




eJet production

Same partonic subprocesses but different logarithmic structure:
final state is an observed jet, not an “‘isolated’’ hadron
f.s. singularities regularized by jet mass/cone size

Ja

massive jet no leading log Some issues about jet definition

/ might even be

Jo

Only slight enhancement expected

Calculation within the small cone approximation b.de F & W.Vogelsang
Full NLL with matching to NLO
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Full NLL with matching to NLO




Effect rather small, <10% at largest transverse momentum CDF
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Very good convergence already at 3rd order

1.8 TeV




Effect rather small, <10% at largest transverse momentum CDF
1.8 TeV

1.1

1.05

- Jet Production CTEQ6 NLO 1
- Sqrt(S)=1.8 TeV all |n| R=0.7 y

Resummed /A

100 200 300 400 500 600

Pr

1025

. do/dp, (nb/GeV) pp — jets

10

~ CDFVs=1800 GeV  R=0.7
" CTEQ6 0.1<|n|<07

NLO

Resummed :

Up= U= Pr

50

Il L
100

1
150

L 1 s
200

Very good convergence already at 3rd order

250
p(GeV)

| L
300

1 L
350

1 L 1 n
400 450

500

Hardly noticeable in Log plot
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Small improvement at large transverse momentum
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Conclusions

Hadron production: corrections are large enough to bring
agreement with fixed target data

e Photon production: resolved contribution increased.
Not enough to solve all problems but reduction of theoretical

deficit at small transverse momentum

oJet production: 10% increase at very large transverse momentum




Conclusions

Hadron production: corrections are large enough to bring
agreement with fixed target data

e Photon production: resolved contribution increased.
Not enough to solve all problems but reduction of theoretical
deficit at small transverse momentum

oJet production: 10% increase at very large transverse momentum

Some phenomena usually explained by non-perturbative

arguments (intrinsic £7 for hadrons and photons, gluon distribution
for jets) can actually be (at least partially) understood in

terms of (all orders) pQCD: take care!
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