Threshold Resummation for single-inclusive Hadron production

Daniel de Florian FCEyN - UBA Argentina

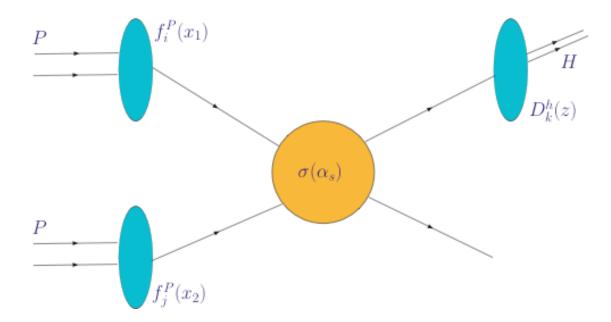
In collaboration with Werner Vogelsang

Phys. Rev.D71:114004,2005 Phys. Rev.D72:014014,2005 and hep-ph/0704.1677

Outline:

- Introduction
- Large Logarithms
- Resummation
- Hadron production
- Prompt photon production
- Jet production
- Conclusions

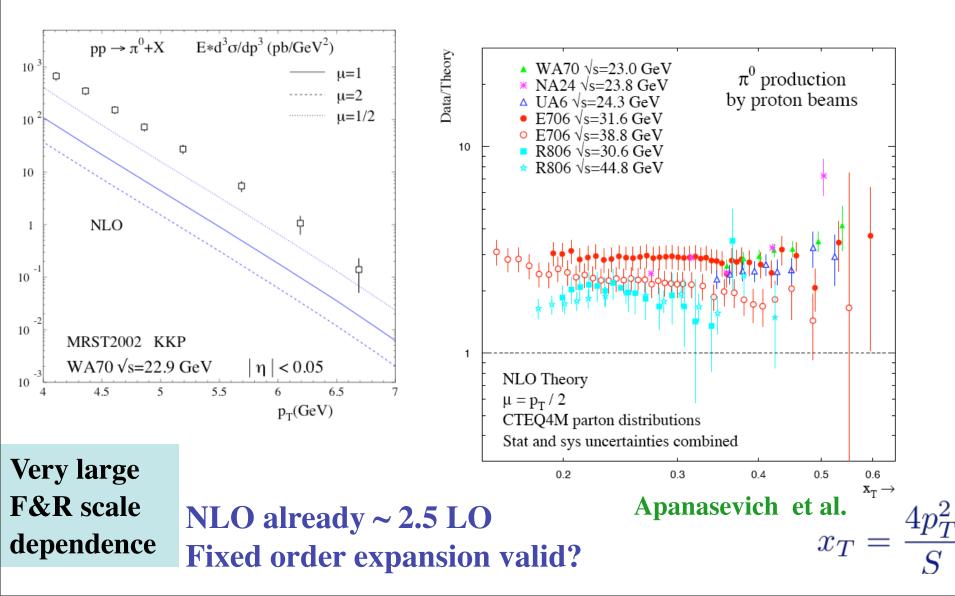
Relevance of hadron production in hadronic collisions



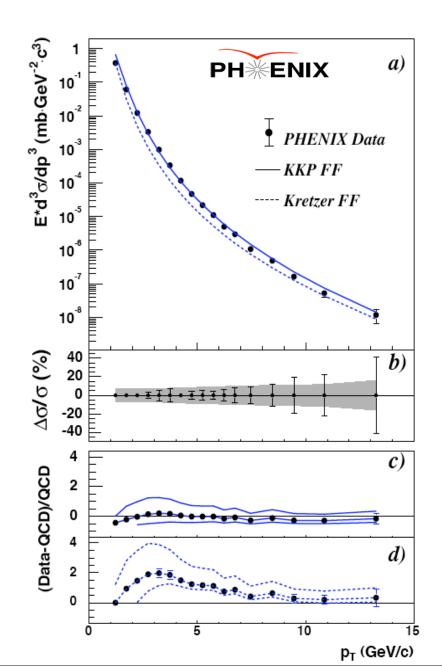
Involves almost all ingredients of QCD: coupling constant, hard cross-section, factorization, PDFs, FFs, non-pert. effects

$$d\sigma(pp \to h) = \sum_{i,j,k} \int_0^1 dx_1 f_i^P(x_1, \mu_{FI}^2) \int_0^1 dx_2 f_j^P(x_2, \mu_{FI}^2) \int_0^1 dz D_k^h(z, \mu_{FF}^2) d\hat{\sigma}(ij \to k) d\hat{\sigma}(ij \to$$

Severe disagreement between data and pQCD (NLO) calculations for fixed target data



Situation is much better for collider experiments

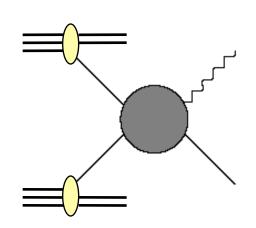


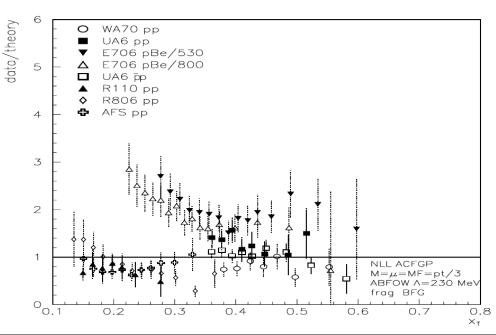
$$pp \to \pi^0 X \quad \text{at RHIC}$$

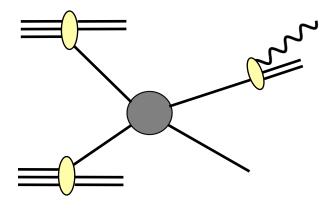
Hadron production relevant for prompt photons: $\mathbf{pp} \rightarrow \gamma \mathbf{X}$

"direct" contribution

"fragmentation" contribution







like π⁰ production, but different fragmentation function

Problems with some fixed target data sets.

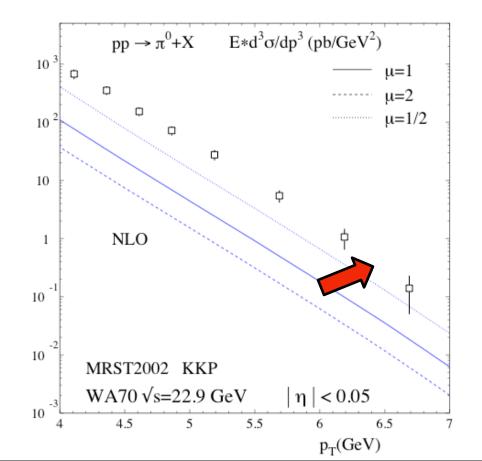
Also some "extreme" choices of scales needed $\mu_{F,R} = P_T/3$

Aurenche et al.

One phenomenological approach:

•Ad-hoc intrinsic k_T needed to cover the gap

$$f(x,Q^2) \to \int dk_T f(x,Q^2,k_T)$$



$$f(x,Q^2,k_T) \sim f(x,Q^2)e^{-bk_T^2}$$

 $k_T \sim \Lambda_{QCD}$ reasonable but $k_T > 1 \text{GeV}$ Needed!

Most of it could have more "perturbative" origin:

Go beyond fixed order !

•Hadron production: corrections are large enough to bring agreement with fixed target data

• Photon production: resolved contribution increased. Reduction of Theoretical deficit at small transverse momentum

•Hadron production: corrections are large enough to bring agreement with fixed target data

• Photon production: resolved contribution increased. Reduction of Theoretical deficit at small transverse momentum

Some phenomena usually explained by non-perturbative arguments can actually be (at least partially) understood in terms of (all orders) pQCD

•Hadron production: corrections are large enough to bring agreement with fixed target data

• Photon production: resolved contribution increased. Reduction of Theoretical deficit at small transverse momentum

Some phenomena usually explained by non-perturbative arguments can actually be (at least partially) understood in terms of (all orders) pQCD

Why?

Any process involving two or more scales: Perturbative coefficients contain logs of scale ratios

Not a problem unless the scales are very different

Fixed order calculation $\sigma = C_0 + \alpha_s C_1 + \alpha_s^2 C_2 + \dots$

Logs appear in the coefficients as $C_n \sim \log^{2n-1} \frac{E_1}{E_2}$

when $E_1 \sim E_2 \gg \Lambda_{QCD} \rightarrow \alpha_s \ll 1$ and $C_n \sim \mathcal{O}(1)$

Any process involving two or more scales: Perturbative coefficients contain logs of scale ratios

Not a problem unless the scales are very different

Fixed order calculation $\sigma = C_0 + \alpha_s C_1 + \alpha_s^2 C_2 + \dots$

Logs appear in the coefficients as $C_n \sim \log^{2n-1} \frac{E_1}{E_2}$

when $E_1 \sim E_2 \gg \Lambda_{QCD} \rightarrow \alpha_s \ll 1$ and $C_n \sim \mathcal{O}(1)$ pQCD series converges well. Typically NLO calculations OK Any process involving two or more scales: Perturbative coefficients contain logs of scale ratios

Not a problem unless the scales are very different

Fixed order calculation $\sigma = C_0 + \alpha_s C_1 + \alpha_s^2 C_2 + \dots$

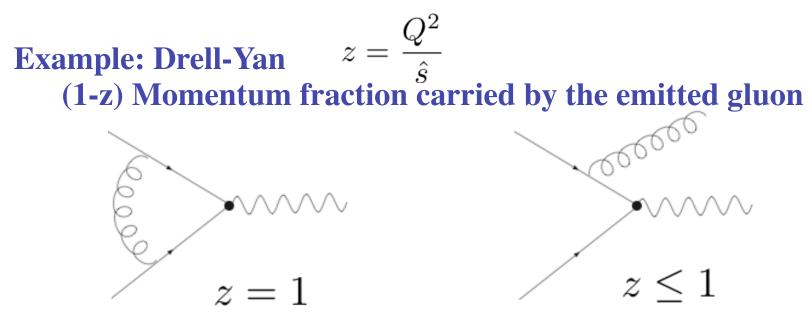
Logs appear in the coefficients as $C_n \sim \log^{2n-1} \frac{E_1}{E_2}$

when $E_1 \sim E_2 \gg \Lambda_{QCD} \rightarrow \alpha_s \ll 1$ and $C_n \sim \mathcal{O}(1)$

pQCD series converges well. Typically NLO calculations OK But if $E_1 \gg E_2$ convergence is spoiled: even if coupling constant is small, power of Logs grows twice as fast! $\log (1 - 4p_T^2/\hat{s})$

Origin of the Logs

Unbalanced cancellation of real and virtual contributions at the boundaries of the phase space (soft gluon radiation)

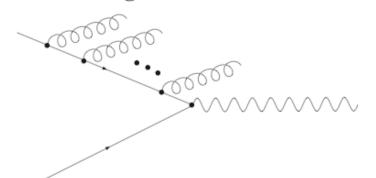


Both contributions infrared divergent: cancellation at z=1 Full after $\int_0^1 dz$ (inclusive), otherwise some logs remain

In the elastic limit (threshold)

$$\left(\frac{\log^m(1-z)}{1-z}\right)_+$$
 can be very large

Each gluon contributes with a double log (soft-collinear) at most Typically one encounters corrections like $\alpha_s^n \log^{2n}$



•Where relevant?

$$\sigma(\tau) = \int_{\tau}^{1} \frac{dz}{z} \sum_{i} \hat{\sigma}(z) \ q_{i}\left(\frac{\tau}{z}, Q^{2}\right) \bar{q}_{i}\left(\frac{\tau}{z}, Q^{2}\right)$$

For sure if $\tau = \frac{Q^{2}}{S_{H}}$ close to 1 (hadronic threshold)

But even for *τ* ≪ 1 parton distributions prefer z → 1
Steeply falling densities leave partons with just enough energy for the process → partonic threshold (often) reached Even more when fragmentation functions involved!

Therefore large logs can be dominant even at collider energies

In order to be able to perform a quantitative analysis of the data Logs have to be **resummed** to all orders in the coupling constant

- Restoration of perturbative series
- Precise predictions
- Structure of pQCD series at large orders

Technicalities

$$\sigma(\tau) = \sum_{i,j} \int f_i(x_i) \otimes f_j(x_j) \otimes \hat{\sigma}_{ij}(z)$$

$$\sigma(N) = \int_0^1 \tau^{N-1} \,\sigma(\tau)$$

 $\left(\frac{\log^m(1-z)}{1-z}\right)$

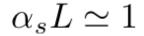
Trade convolutions into products : Mellin

$$\sigma(N) = \sum_{i,j} f_i(N+1) \times f_j(N+1) \times \hat{\sigma}_{ij}(N)$$

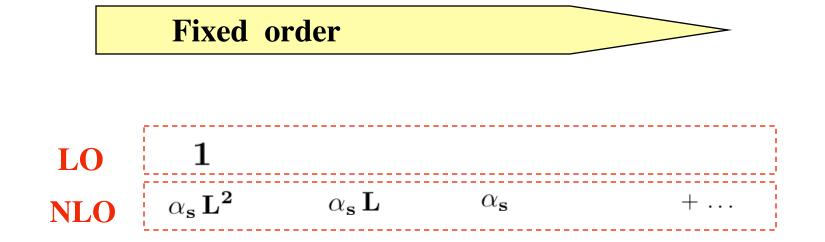
$$z
ightarrow 1 \; (au
ightarrow 1) \;$$
 corresponds to $\; N
ightarrow \infty$

$\alpha_s L \simeq 1$

Fixed order

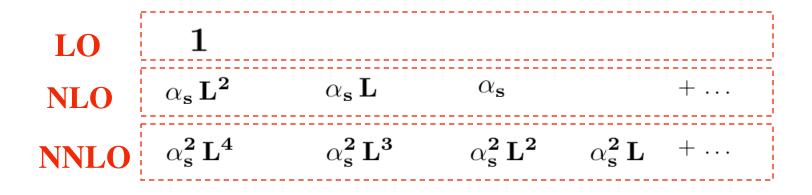


$\alpha_s L \simeq 1$



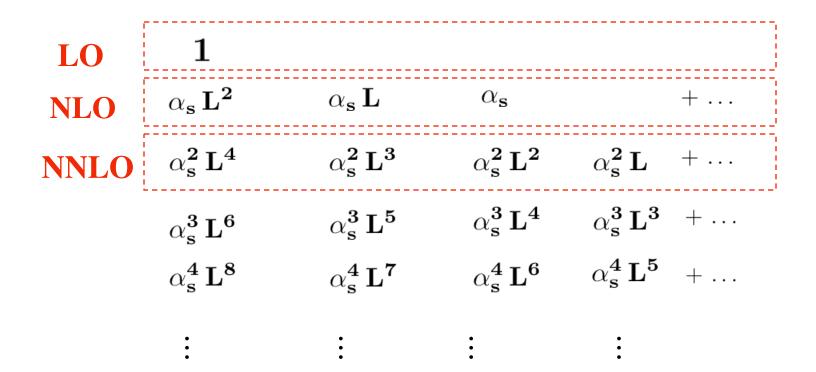
$\alpha_s L \simeq 1$

Fixed order



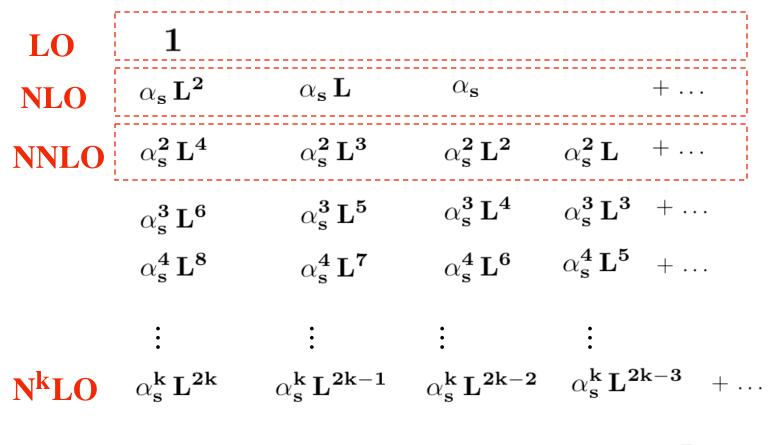
 $\alpha_s L \simeq 1$

Fixed order



 $\alpha_s L \simeq 1$

Fixed order

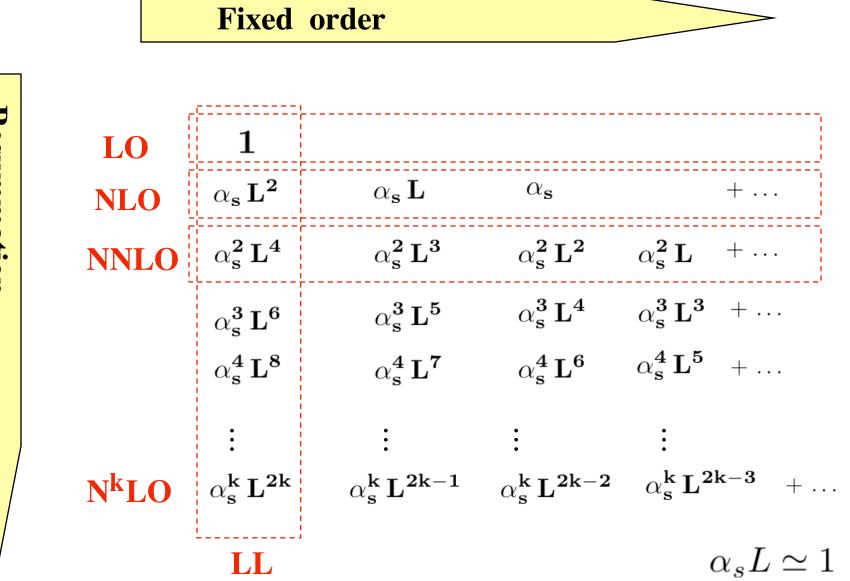


 $\alpha_s L \simeq 1$

Resummation

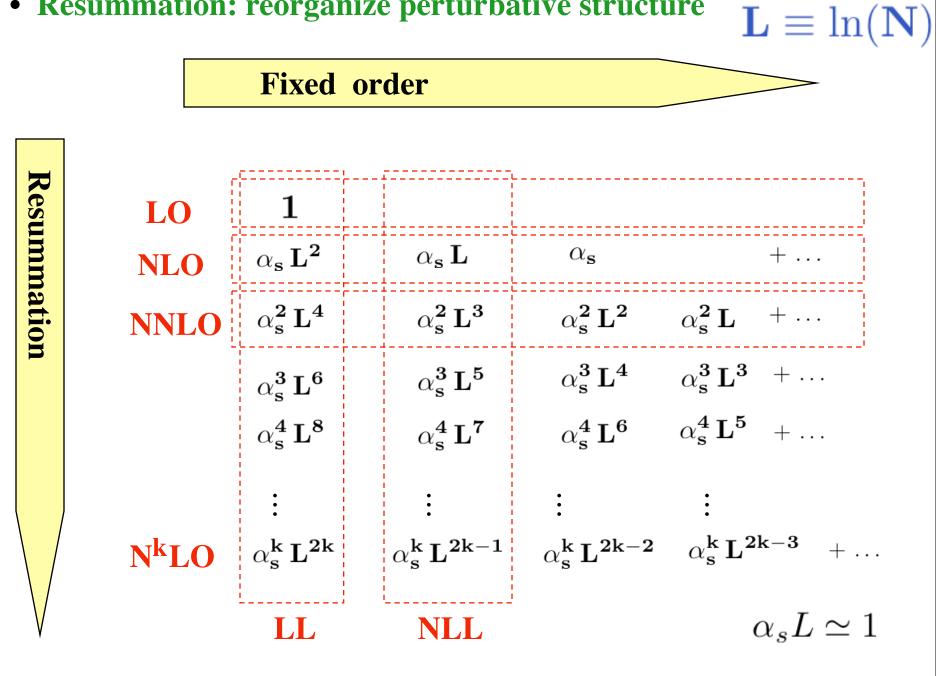
Fixed order $\mathbf{1}$ LO $\alpha_{\mathbf{s}} \mathbf{L}^{\mathbf{2}} \qquad \alpha_{\mathbf{s}} \mathbf{L}$ $\alpha_{\mathbf{s}}$ $+ \dots$ NLO **NNLO** $\alpha_s^2 \mathbf{L}^4$ $\alpha_s^2 \mathbf{L}^3$ $\alpha_s^2 \mathbf{L}^2$ $\alpha_s^2 \mathbf{L} + \dots$ $\alpha_{\mathbf{s}}^{\mathbf{3}} \mathbf{L}^{\mathbf{5}} \qquad \alpha_{\mathbf{s}}^{\mathbf{3}} \mathbf{L}^{\mathbf{4}} \qquad \alpha_{\mathbf{s}}^{\mathbf{3}} \mathbf{L}^{\mathbf{3}} + \dots$ $\alpha^{\mathbf{3}}_{\mathbf{s}} \mathbf{L}^{\mathbf{6}}$ $\alpha_{\mathbf{s}}^{\mathbf{4}} \mathbf{L}^{\mathbf{7}} \qquad \alpha_{\mathbf{s}}^{\mathbf{4}} \mathbf{L}^{\mathbf{6}} \qquad \alpha_{\mathbf{s}}^{\mathbf{4}} \mathbf{L}^{\mathbf{5}} + \dots$ $\alpha_s^4 L^8$ • • $\alpha_{\mathbf{s}}^{\mathbf{k}} \mathbf{L}^{\mathbf{2k-1}} = \alpha_{\mathbf{s}}^{\mathbf{k}} \mathbf{L}^{\mathbf{2k-2}} = \alpha_{\mathbf{s}}^{\mathbf{k}} \mathbf{L}^{\mathbf{2k-3}} + \dots$ $N^{k}LO = \alpha_{s}^{k}L^{2k}$

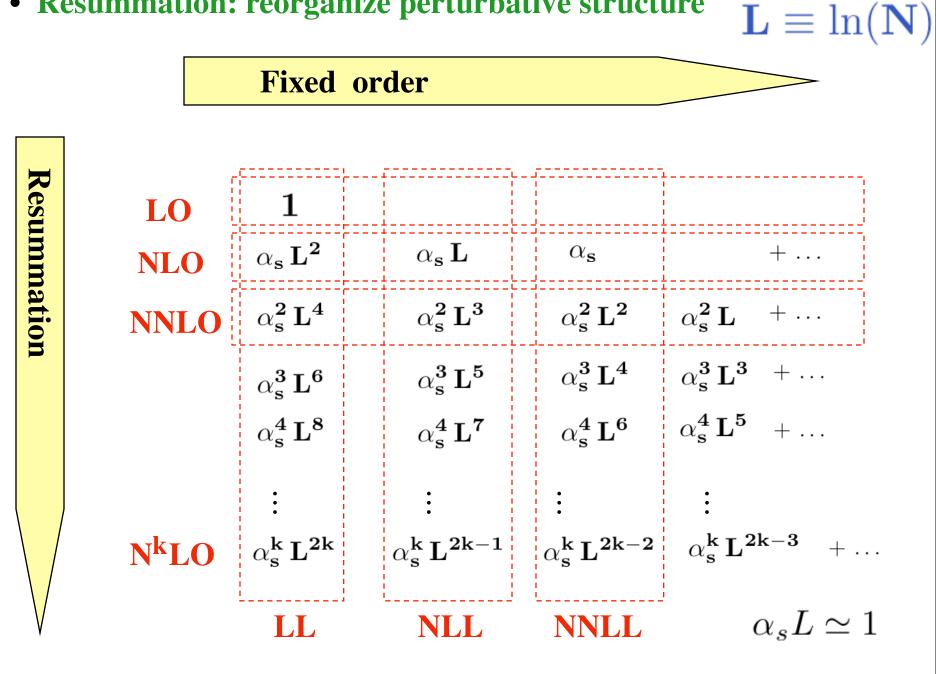
 $\alpha_s L \simeq 1$



 $\mathbf{L} \equiv \ln(\mathbf{N})$

Resummation





Resummation achieved by exponentiation of logarithmic terms: Sudakov form factor not trivial in QCD: color correlations

$$\sigma_{ij\to kl}^{\rm res} \sim \sum_{c} e^{S_c} \sigma_{ij\to kl}^c$$

Catani, Trentadue Sterman Bonciani, Catani, Mangano, Nason

After rapidity integration $\int d\eta \ \sigma(\eta) \sim \sigma(\eta = 0) + \mathcal{O}(1/N) \qquad \sigma_{ij \to kl}^c \rightarrow G^c \ \sigma_{ij \to kl}^{\text{Born}}$

• How does resummed formula look ? usually,

$$\exp\left[\begin{array}{ccc} \mathbf{L}\mathbf{h}_{1}(\alpha_{s}\mathbf{L}) + \mathbf{h}_{2}(\alpha_{s}\mathbf{L}) + \frac{1}{\mathbf{L}}\mathbf{h}_{3}(\alpha_{s}\mathbf{L}) + \dots \right]$$

$$\alpha_{s}^{k}\mathbf{L}^{k+1} \qquad \alpha_{s}^{k}\mathbf{L}^{k}$$

$$\mathbf{L} \qquad \mathbf{L} \qquad \mathbf{NLL}$$

Initial state (pdf): soft gluon radiation collinear to parton

$$\Delta_N^a = \exp\left\{\int_0^1 \frac{z^{N-1} - 1}{1 - z} \int_{\mu_{FI}^2}^{(1 - z)^2 Q^2} \frac{dq^2}{q^2} A_a(\alpha_s(q^2))\right\} \xrightarrow{\underline{\mathbf{P}}}_{\underline{\mathbf{Q}}} \underbrace{\frac{\mathbf{p}}_{\underline{\mathbf{Q}}}}_{\underline{\mathbf{P}}} \underbrace{\frac{\mathbf{p}}_{\underline{\mathbf{Q}}}}_{\underline{\mathbf{P}}} \underbrace{\frac{\mathbf{p}}_{\underline{\mathbf{Q}}}}_{\underline{\mathbf{Q}}} \underbrace{\frac{\mathbf{p}}_{\underline{\mathbf{Q}}}} \underbrace{\frac{\mathbf{p}}_{\underline{\mathbf$$

h

Final state identified parton: same as initial state pdf ↔ ff

Final state not-identified parton (jet): collinear (soft or hard)

$$J_N^a = \exp\left\{\int_0^1 \frac{z^{N-1} - 1}{1 - z} \left[\int_{(1-z)^2 Q^2}^{(1-z)Q^2} \frac{dq^2}{q^2} A_a(\alpha_s(q^2)) + \frac{1}{2} B_a(\alpha_s((1-z)Q^2))\right]\right\}$$

$$\Delta_{IN}^{int\ ab \to cd} \equiv \exp\left\{\int_0^1 \frac{z^{N-1}-1}{1-z} D_{I\ ab \to cd}(\alpha_s((1-z)Q^2))\right\}$$

Initial state (pdf): soft gluon radiation collinear to parton

$$\Delta_N^a = \exp\left\{\int_0^1 \frac{z^{N-1} - 1}{1 - z} \int_{\mu_{FI}^2}^{(1 - z)^2 Q^2} \frac{dq^2}{q^2} A_a(\alpha_s(q^2))\right\} \quad \stackrel{\underline{\mathbf{p}}_{\mathbf{0}}}{= \mathbf{0}}$$

6

Final state identified parton: same as initial state pdf ↔ ff

Final state not-identified parton (jet): collinear (soft or hard)

$$J_N^a = \exp\left\{\int_0^1 \frac{z^{N-1} - 1}{1 - z} \left[\int_{(1-z)^2 Q^2}^{(1-z)Q^2} \frac{dq^2}{q^2} A_a(\alpha_s(q^2)) + \frac{1}{2} B_a(\alpha_s((1-z)Q^2))\right]\right\}$$

$$\Delta_{IN}^{int\ ab\to cd} \equiv \exp\left\{\int_0^1 \frac{z^{N-1}-1}{1-z} D_{I\ ab\to cd}(\alpha_s((1-z)Q^2))\right\}$$

Initial state (pdf): soft gluon radiation collinear to parton

$$\Delta_N^a = \exp\left\{\int_0^1 \frac{z^{N-1} - 1}{1 - z} \int_{\mu_{FI}^2}^{(1-z)^2 Q^2} \frac{dq^2}{q^2} A_a(\alpha_s(q^2))\right\}$$

Final state identified parton: same as initial state pdf ↔ ff

Final state not-identified parton (jet): collinear (soft or hard)

$$J_N^a = \exp\left\{\int_0^1 \frac{z^{N-1} - 1}{1 - z} \left[\int_{(1-z)^2 Q^2}^{(1-z)Q^2} \frac{dq^2}{q^2} A_a(\alpha_s(q^2)) + \frac{1}{2} B_a(\alpha_s((1-z)Q^2))\right]\right\}$$

$$\Delta_{IN}^{int\ ab \to cd} \equiv \exp\left\{\int_0^1 \frac{z^{N-1}-1}{1-z} D_{I\ ab \to cd}(\alpha_s((1-z)Q^2))\right\}$$

Initial state (pdf): soft gluon radiation collinear to parton

$$\Delta_N^a = \exp\left\{\int_0^1 \frac{z^{N-1} - 1}{1 - z} \int_{\mu_{FI}^2}^{(1-z)^2 Q^2} \frac{dq^2}{q^2} A_a(\alpha_s(q^2))\right\}$$

Final state identified parton: same as initial state pdf ↔ ff

Final state not-identified parton (jet): collinear (soft or hard)

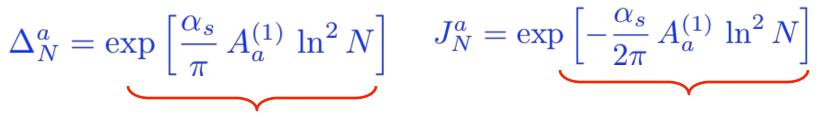
$$J_N^a = \exp\left\{\int_0^1 \frac{z^{N-1} - 1}{1 - z} \left[\int_{(1-z)^2 Q^2}^{(1-z)Q^2} \frac{dq^2}{q^2} A_a(\alpha_s(q^2)) + \frac{1}{2} B_a(\alpha_s((1-z)Q^2))\right]\right\}$$

$$\Delta_{IN}^{int\ ab \to cd} \equiv \exp\left\{\int_0^1 \frac{z^{N-1}-1}{1-z} D_{I\ ab \to cd}(\alpha_s((1-z)Q^2))\right\}$$

Coefficients have a perturbative expansion (free of logs)

$$\mathbf{A} (\alpha_{\mathbf{s}}) = \frac{\alpha_{\mathbf{s}}}{\pi} \mathbf{A}^{(1)} + \left(\frac{\alpha_{\mathbf{s}}}{\pi}\right)^2 \mathbf{A}^{(2)} + \dots$$
$$A_q^{(1)} = C_F \quad A_g^{(1)} = C_A \quad B_q^{(1)} = -\frac{3}{2}C_F \quad B_g^{(1)} = -\beta_0$$

At leading log, exponents behave like (color interf. NLL)



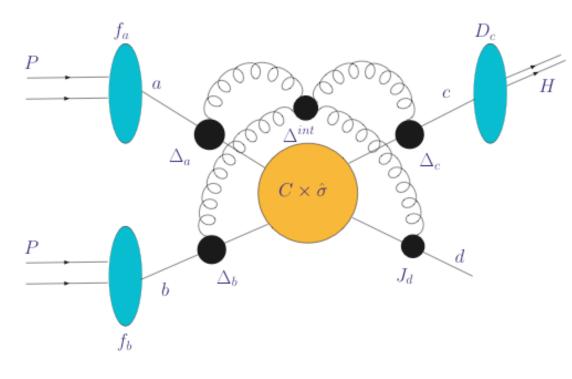
Sudakov enhancementSudakov supression(PDF or FF already much supression in factorization)(final state not ID)

Important: the effect is amplified if hard gluons present $\frac{C_A}{C_E} = 2.25$

Pion production in pp collisions

 $\log(1-x_T)$

$$x_T = \frac{2p_T}{\sqrt{S}}$$



After integration over rapidity

$$\sigma(N) = \sum_{a,b,c} f_{a/H_1}(N+1,\mu_{FI}^2) f_{b/H_2}(N+1,\mu_{FI}^2) D_{h/c}(2N+3,\mu_{FF}^2) \hat{\sigma}_{ab\to cd}(N)$$

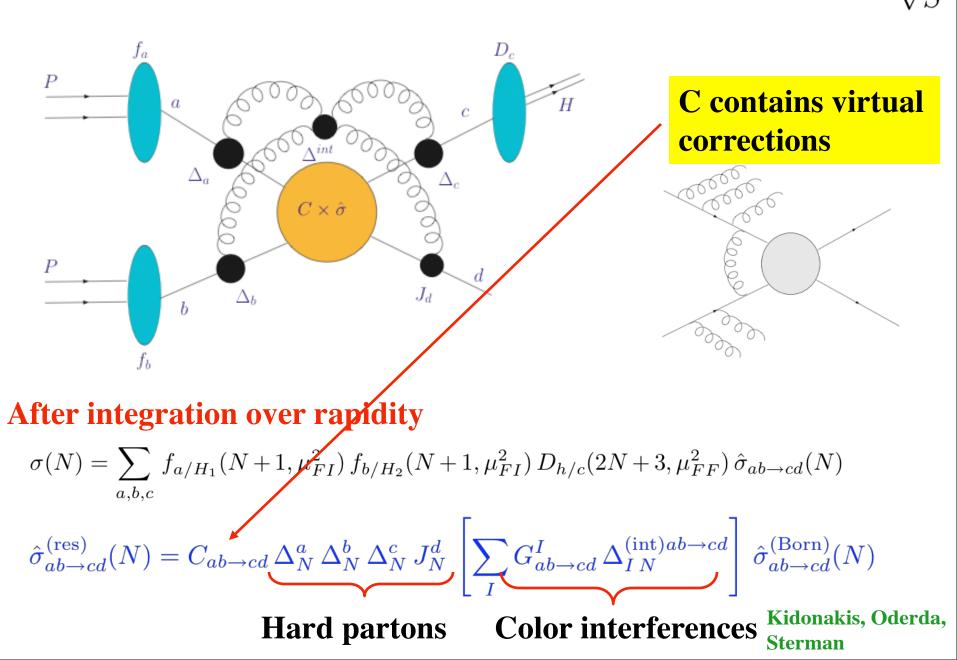
$$\hat{\sigma}_{ab\to cd}^{(\text{res})}(N) = C_{ab\to cd} \Delta_N^a \Delta_N^b \Delta_N^c J_N^d \left[\sum_{I} G_{ab\to cd}^{I} \Delta_{IN}^{(\text{int})ab\to cd} \right] \hat{\sigma}_{ab\to cd}^{(\text{Born})}(N)$$

Hard partons Color interferences Kidonakis, Oderda, Sterman

Pion production in pp collisions

 $\log(1-x_T)$

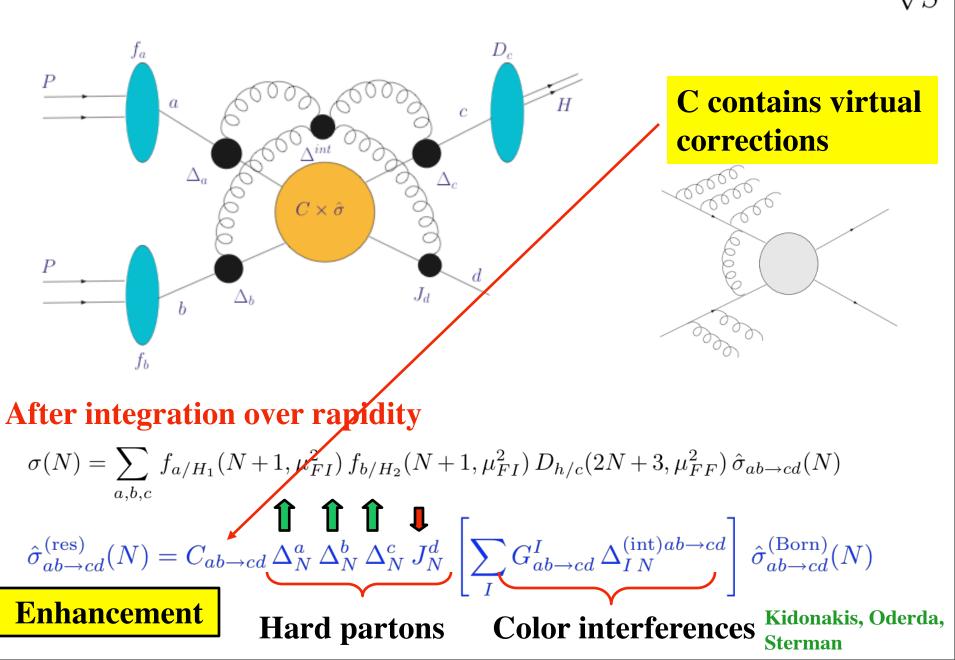
 $x_T =$



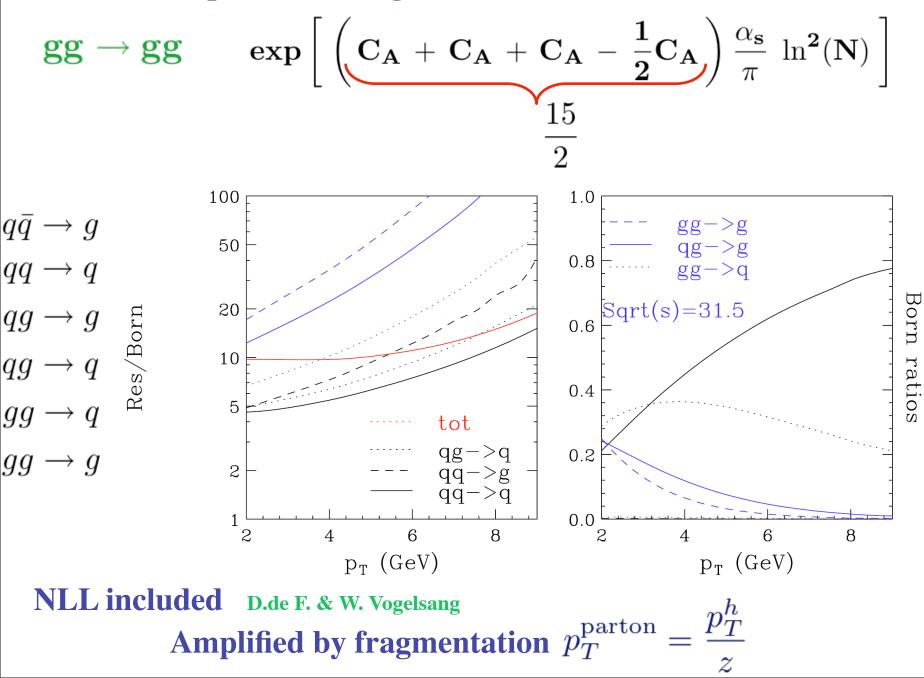
Pion production in pp collisions

$$\log(1-x_T)$$

 $x_T = \frac{2p_T}{\sqrt{\sigma}}$



Several subprocesses, largest enhancement from



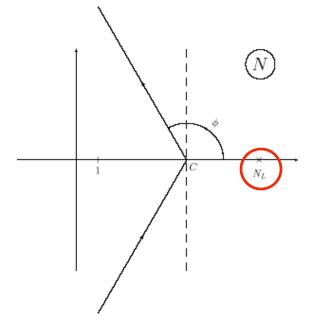
- always want to keep benefits of full fixed-order calculation:
 - → "matching":

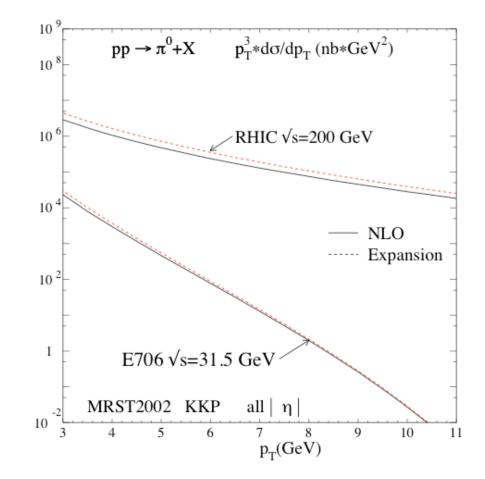
$$\sigma^{\text{matched}} = \sigma^{\text{res.}} - \sigma^{\text{res.}} \Big|_{\mathcal{O}(\alpha_{s}^{n})} + \sigma^{\text{f.o.}} \Big|_{\mathcal{O}(\alpha_{s}^{n})}$$

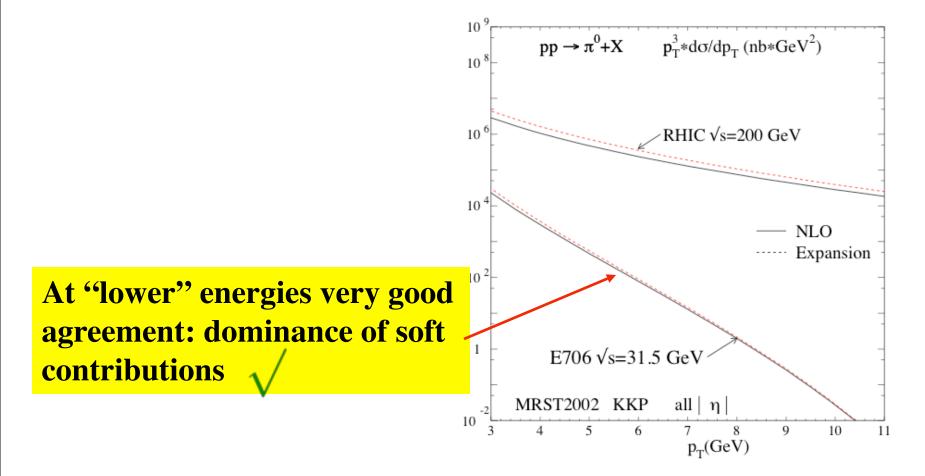
in phenomenological applications

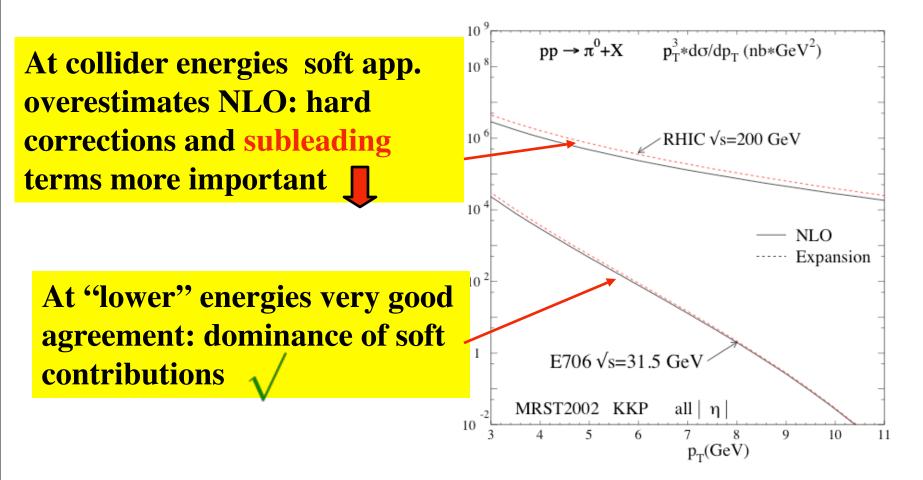
• Avoid Landau Pole: Mellin contour as

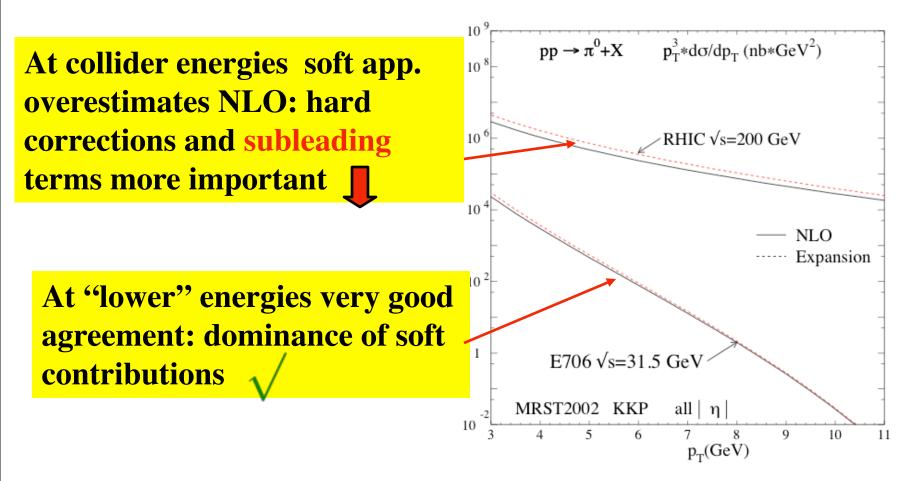
Minimal prescription (Catani, Mangano, Nason, Trentadue)









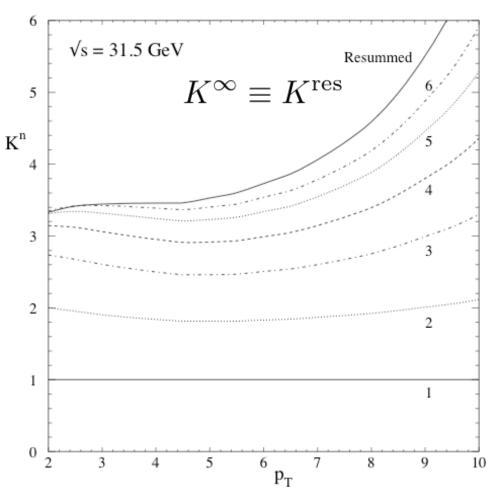


Faliure at RHIC not a surprise: x_T much smaller at colliders •Far away from threshold

•K-factors and convergence of resummed expression

$$K^{n} = \frac{d\sigma^{(\text{match})}/dp_{T}\big|_{\mathcal{O}(\alpha_{s}^{2+n})}}{d\sigma^{(NLO)}/dp_{T}}$$

Very slow convergence even for fixed target and low transverse momentum: all orders needed!



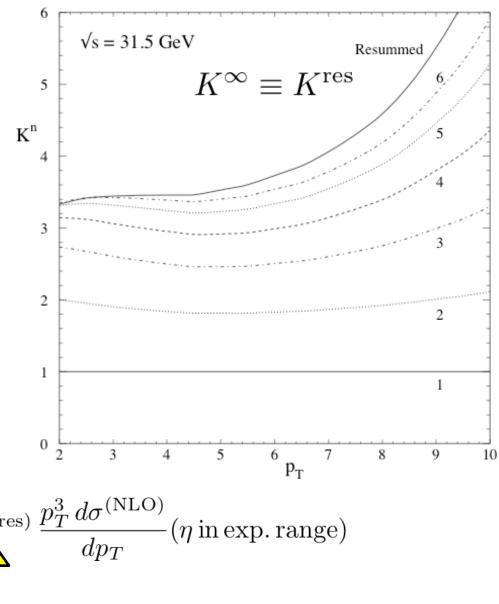
•K-factors and convergence of resummed expression

$$K^{n} = \frac{d\sigma^{(\text{match})}/dp_{T}\big|_{\mathcal{O}(\alpha_{s}^{2+n})}}{d\sigma^{(NLO)}/dp_{T}}$$

Very slow convergence even for fixed target and low transverse momentum: all orders needed!

Comparison to data only approximation: rapidity

$$\frac{p_T^3 \, d\sigma^{(\text{match})}}{dp_T} (\eta \text{ in exp. range}) = K^{(\text{res})} \, \frac{p_T^3 \, d\sigma^{(\text{NLO})}}{dp_T} (\eta \text{ in exp. range})$$
$$\eta \text{ integrated}$$

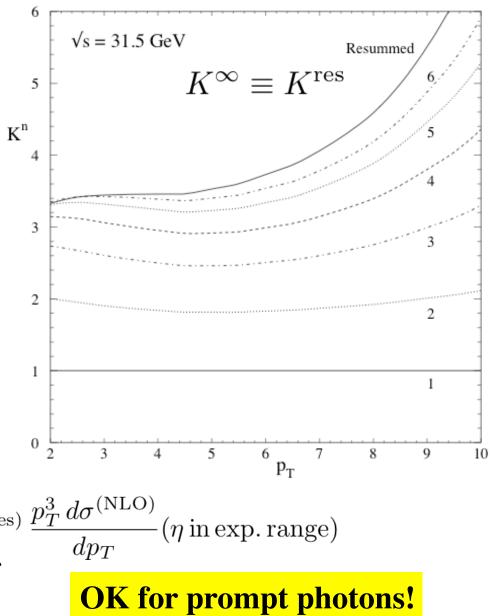


•K-factors and convergence of resummed expression

$$K^{n} = \frac{d\sigma^{(\text{match})}/dp_{T}\big|_{\mathcal{O}(\alpha_{s}^{2+n})}}{d\sigma^{(NLO)}/dp_{T}}$$

Very slow convergence even for fixed target and low transverse momentum: all orders needed!

Comparison to data only approximation: rapidity

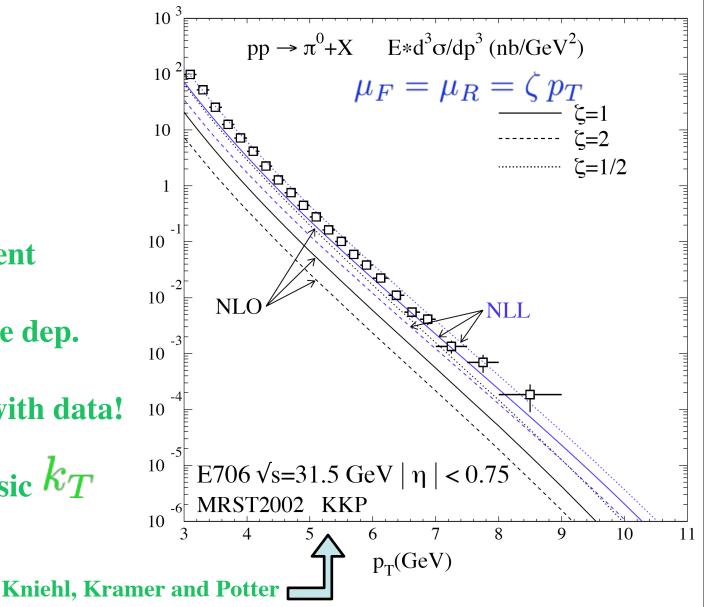


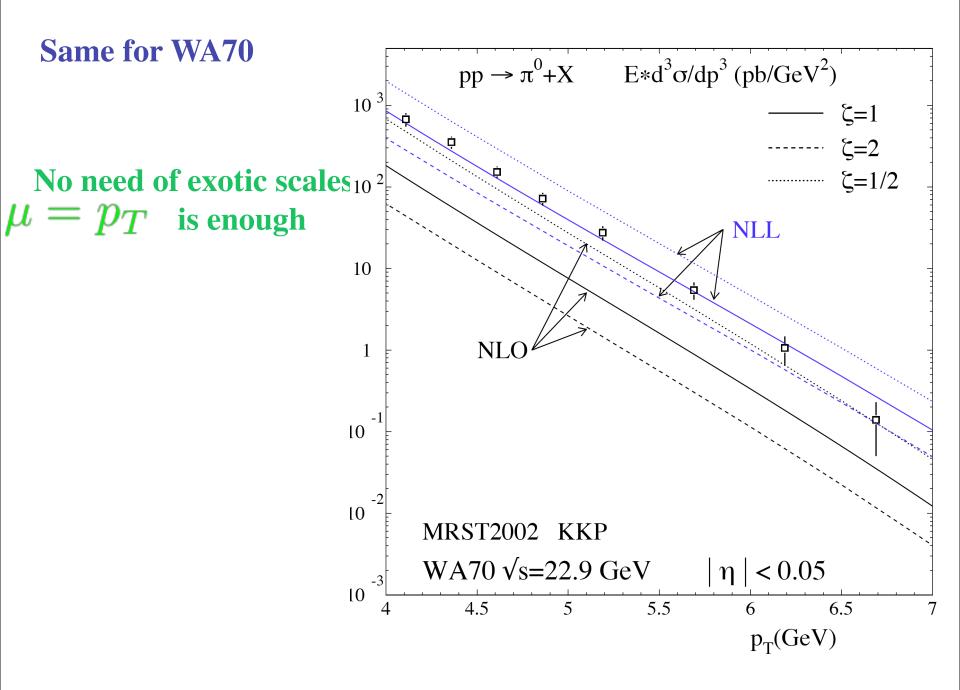
•Large enhancement

•Reduction of scale dep.

•Nice agreement with data!

•No need of intrinsic k_T

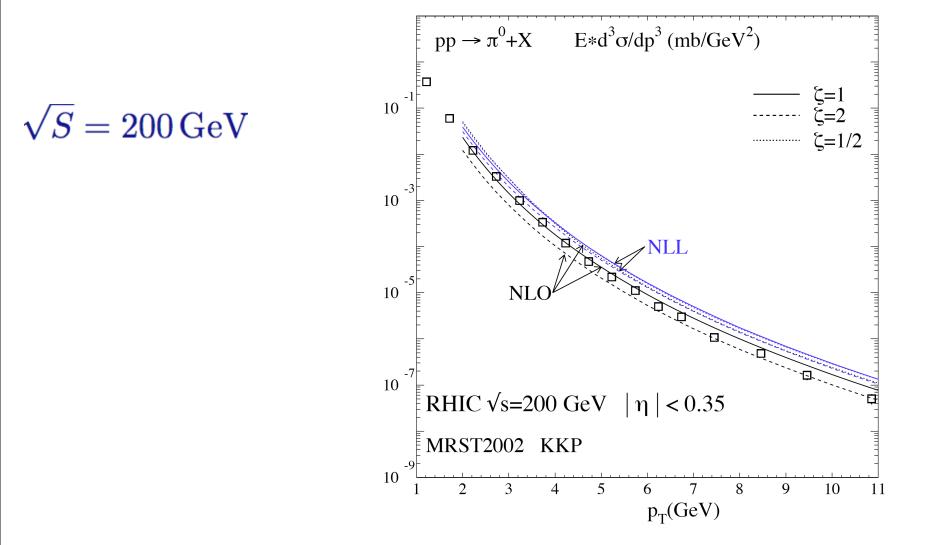




At RHIC energies resummed cross section overestimates data

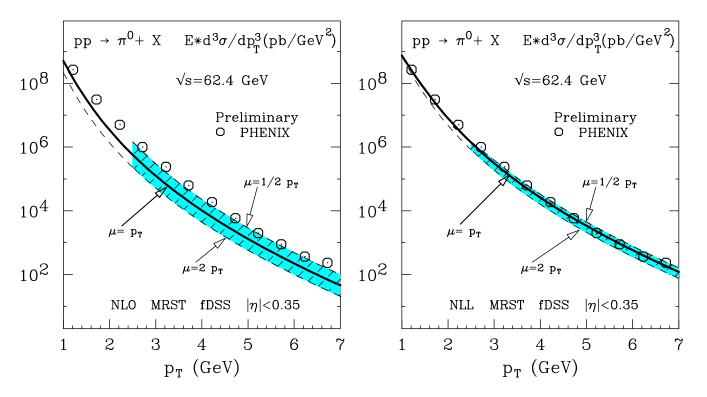
 $x_T \ll 1$

Hard effects dominate over soft, not expected to work



But at lower energies the situation is much better even at RHIC $\sqrt{S} = 62.4 \,\mathrm{GeV}$

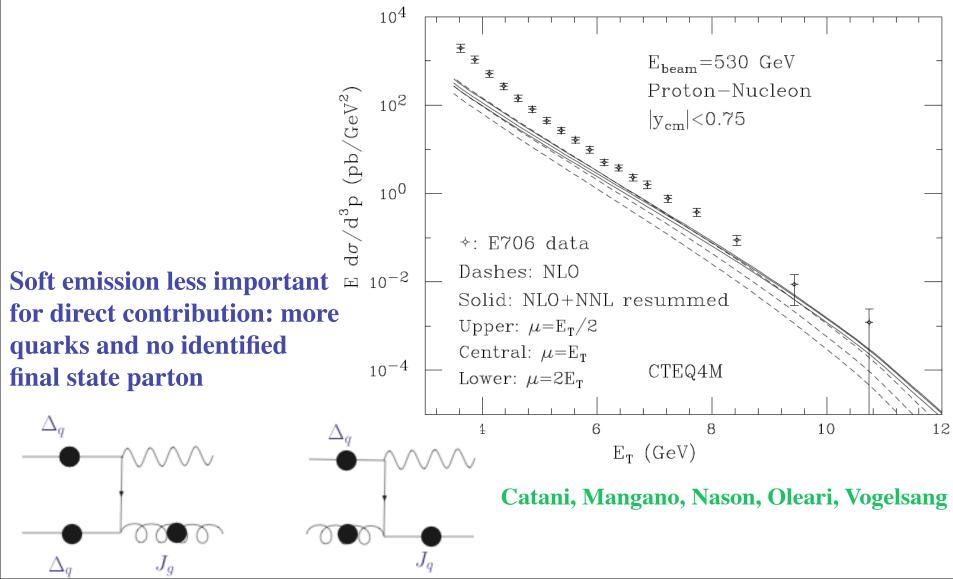
NLO



At 62.4 GeV (half way between fixed target and "colliders") soft logs still dominate

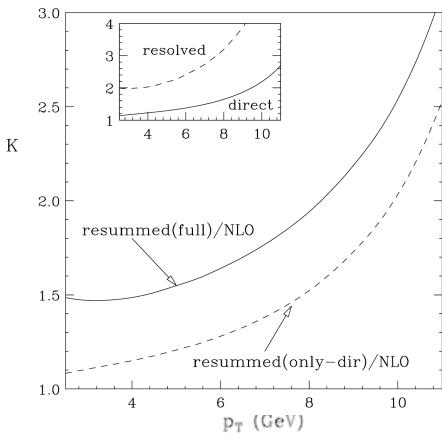
<u>Prompt Photons</u>: direct contribution resummed some time ago

Some enhancement, not enough for E706 resolved contribution only at fixed order



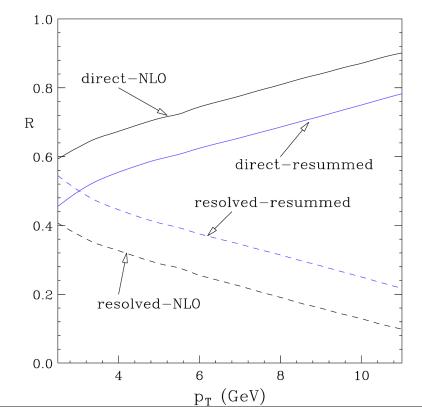
Resolved component similar to pion production: just use photon fragmentation functions (GRV)

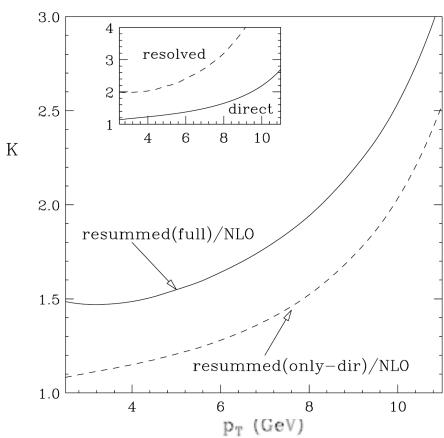
~40% increase at low p_T K-Resolved not as big as for pions Less gluon to photon fragmentation



Resolved component similar to pion production: just use photon fragmentation functions (GRV)

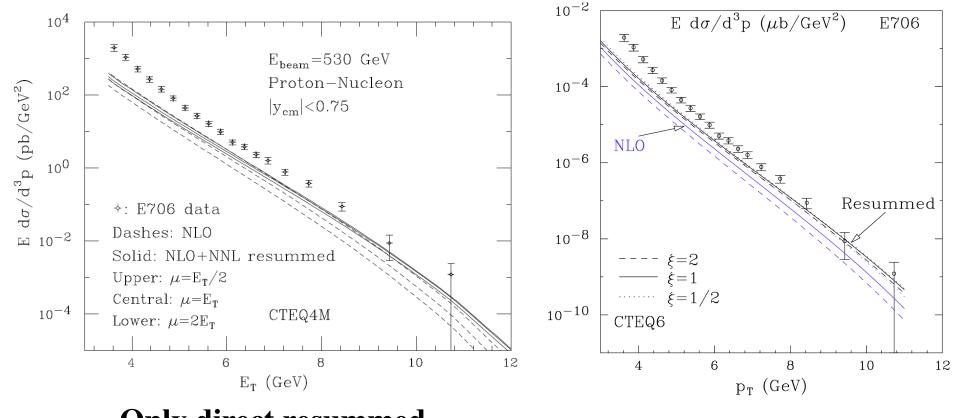
~40% increase at low p_T K-Resolved not as big as for pions Less gluon to photon fragmentation





Resolved contribution becomes more important (see ratios)

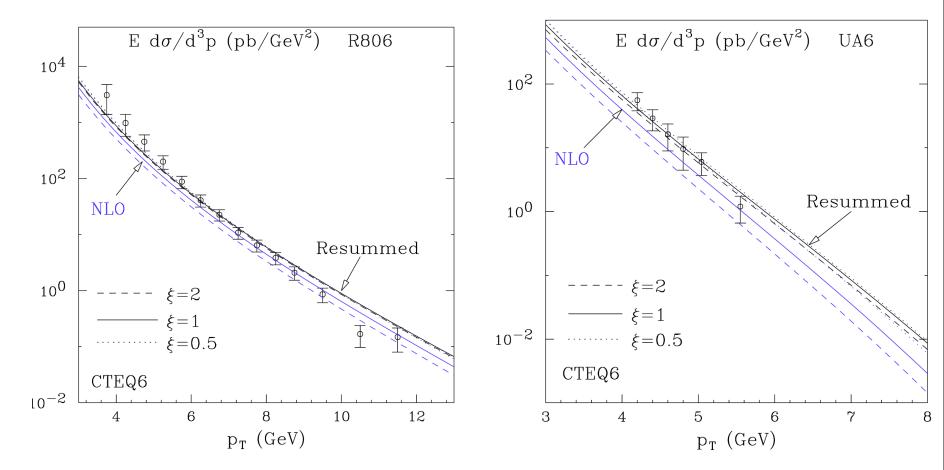
Increase not enough, but helps at large transverse momentum



Only direct resummed

Direct+resolved resummed

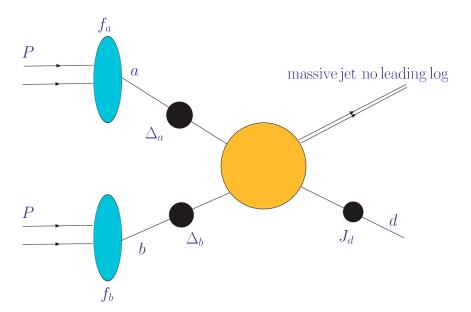
Nice improvements for R806 and UA6



Threshold resummation can not "solve" prompt photons but certainly helps to improve agreement, besides providing more reliable predictions

•Jet production

Same partonic subprocesses but different logarithmic structure: final state is an observed jet, not an "isolated" hadron f.s. singularities regularized by jet mass/cone size



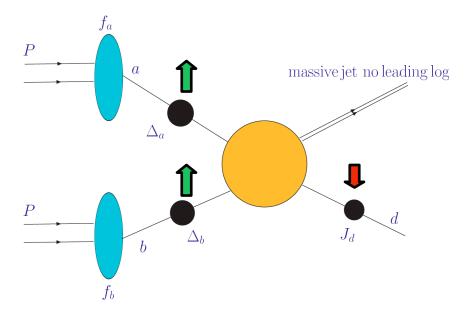
Some issues about jet definition might even be

Only slight enhancement expected

Calculation within the small cone approximation **D. de F & W.Vogelsang** Full NLL with matching to NLO

•Jet production

Same partonic subprocesses but different logarithmic structure: final state is an observed jet, not an "isolated" hadron f.s. singularities regularized by jet mass/cone size

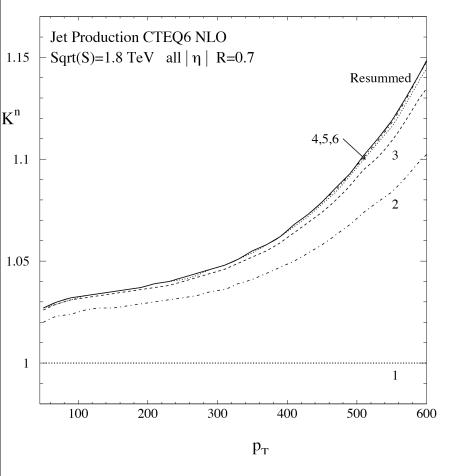


Some issues about jet definition might even be

Only slight enhancement expected

Calculation within the small cone approximation **D. de F & W.Vogelsang** Full NLL with matching to NLO

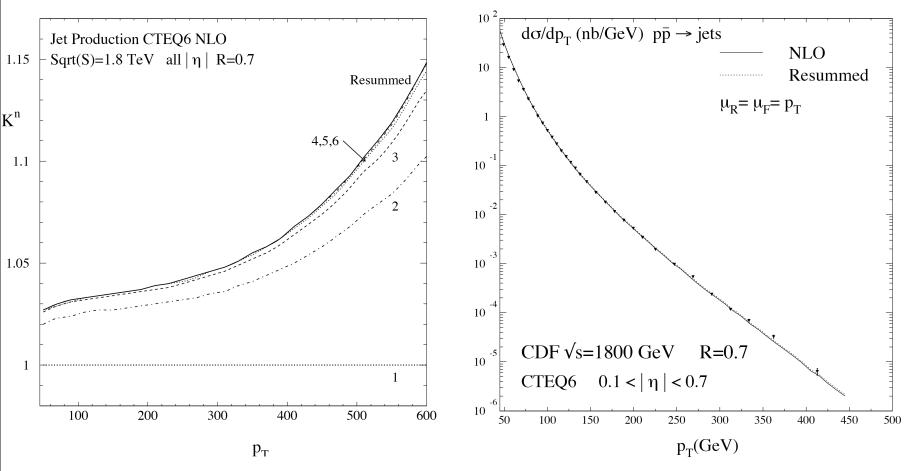
Effect rather small, <10% at largest transverse momentum CDF 1.8 TeV



Very good convergence already at 3rd order

Effect rather small, <10% at largest transverse momentum CDF

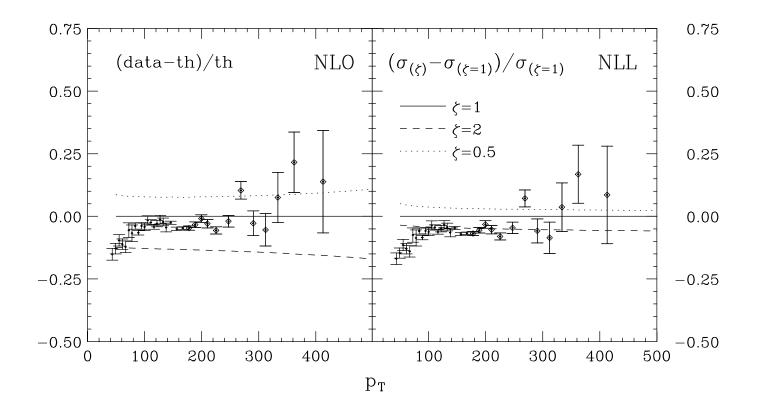
1.8 TeV



Very good convergence already at 3rd order

Hardly noticeable in Log plot

(data-th)/th



Small improvement at large transverse momentum

Conclusions

Conclusions

•Hadron production: corrections are large enough to bring agreement with fixed target data

• Photon production: resolved contribution increased. Not enough to solve all problems but reduction of theoretical deficit at small transverse momentum

•Jet production: 10% increase at very large transverse momentum

Conclusions

•Hadron production: corrections are large enough to bring agreement with fixed target data

• Photon production: resolved contribution increased. Not enough to solve all problems but reduction of theoretical deficit at small transverse momentum

•Jet production: 10% increase at very large transverse momentum

Some phenomena usually explained by non-perturbative arguments (intrinsic k_T for hadrons and photons, gluon distribution for jets) can actually be (at least partially) understood in terms of (all orders) pQCD: take care!

RHIC E706 Tevatron WA70 CERN UA6 R806 NA 24