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Motivation

e The properties of neutron stars (very isospin asymmetric matter in
8- equilibrium) are obtained from appropriate EoS whose symmetry
energy depends on the density;

e T he symmetry energy also controls the size of the neutron skin thick-
ness in heavy and asymmetric nuclei, as 298 Pb;:

e Neutron skin thickness = difference between the neutron and the
proton radii; depends on a precise measurement of both the charge
and the neutron radius. The charge radius is already known within
a precision of 1% for most stable nuclei; for the neutron radius, our
present knowledge has an uncertainty of about 0.2 fm;

e The Parity Radius Experiment (PREX) at the Jefferson Laboratory
is currently running to measure the 208Pb neutron radius with an
accuracy of less than 0.05 fm, using polarized electron scattering.



e Accurate experimental measurement of the neutron skin thickness can
provide constraints to the EoS that describe neutron star matter.

e \We use relativistic models with density dependent and constant cou-
plings to calculate both the energy symmetry and the neutron skin
thickness.



Formalism

The asymmetry for polarized electron scattering of a hadronic target is
doy /d2 — do_ /dS2 (1)
doy /dQ2 + do—/dS2

A =

where do+ /dS2 is the differential cross section for initially polarized elec-
trons with positive(4+) and negative (—) helicities.

T he electromagnetic interaction is not sensitive to the above difference.
The asymmetry depends only on the weak interaction between the elec-
tron and the target. Accordind to the Standard Model the neutral Z-boson
couples more strongly to the neutron than to the proton. For elastic scat-
tering on an even-even target nucleus, the asymmetry can be written in
the form:
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G, a, a and @) = Standard Model coupling constants



g = transferred momentum by the electron to the nucleus

In the PREX experiment, the asymmetry is expected to be measured at
g~ 0.4 fm1.
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T he neutron skin thickness is



Symmetry energy
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, With 6 = —p3/p being the assymetry of the system
_ §=0
with p3 = pp — pn and p = pp + pn.

The symmetry energy can be expanded around the nuclear saturation
density and reads
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The DDH model (TW)
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¢ =scalar-isoscalar meson field
VIt =vector-isoscalar meson field
b* =vector-isovector meson field

Al= photon field
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i (p) = Ti(psat)hi(x), == P/ Psats (9)

with
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hi(xr) = a = s,V (10)

and

hp(x) = exp[—ap(x — 1)], (11)



T he Thomas-Fermi Approximation

mesonic equations of motion:
V29 =mZp—sps, VVo=m3Vy— up, (12)

-
Vb = m35bg — Epp& VZAg = —epp, (13)

ps =< Y1y > = scalar density

Q = E — ppBp — unBn — E0S(e(p), P(p)) (14)
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NLwp model
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Ns = 0, NL3 parametrization of the NLWM



Revisiting the symmetry energy

TW model:
k2 |—2
E — P , 18
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NLwp model:
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For both:

kpp =kp(1 4+ 03, kp,=kr(1 -3, §=—p3/p=1-2y,

kp = (1.572p)1/3, ep = \/k% 4+ M*2, M* = effective mass.



Surface energy

The surface energy per unit area, excluding the electromagnetic field,
reads

A (6= I 0 o R



Results
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Difference between neutron and proton densities obtained with the Thomas-
Fermi approach.



Asymmetry versus transfered momentum.
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208 pp properties

model Rn  Rp 0 B/A o Esym. L
fm  fm fm MeV Mev/fm?2 MeV MeV
NL3 5.79 b.b7 0.22 -7.79 0.96 37.4 118
NLwp,\y = 0.01 5.77 5.57 0.20 -7.73 0.98 34.9 383
NLwp,\y = 0.02 5.75 5b.57 0.17 -7.65 0.99 33.1 68
NLwp,\y = 0.025 5.74 5.58 0.16 -7.63 1.00 32.3 55
TW 5.68 b.b2 0.16 -7.46 1.10 32.0 55
exp. 5.44
exp. -7.87
exp. 0.12 4+ 0.07

exp. 0.20 = 0.04




Conclusions 1

LLarger values of L correspond to larger values of the neutron skin; a
correlation between the slope of the symmetry energy and the neutron
skin thickness was found as in Skyrme-type models.

Although the neutron skin thickness is model dependent, the asym-
metry at low momentum transfers (below 0.5 fm—l) IS very similar
for all models.

AsS g increases, the asymmetry also becomes model dependent.

Once accurate results for the neutron skin are obtained, some of the
models can be ruled out and work as a constraint to neutron star
EoS.

A recalculation with Dirac solutions is necessary.



Dirac solution of DDHM (TW and DDME1)

[0y —Zpu) — (M —X5)]W =0 (21)
where
Se=Tsp, Tu=x0 4358 (22)
with
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The ansatz for the nucleon spinor is
Y(r,t) = ¢(r) exp(—iEt), (24)

Only spherically symmetric nuclei are considered and the usual notation
for the expected values of the meson fields are used:
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Y4 = spinorial spherical harmonics; ¢ = isospin wavefunctions
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M*(r) = M — T s(r)é(r),
and

rp(r)7'3bo(r) 4+ e(l + 73)

> S Ao(r) + =g (r).

Vi(r) =Tu(r)Vo(r) +

fx(r) and gx(r) are expanded in the harmonic oscillator basis of dimensions
N and M respectively as in Y.K. Gambhir, P. Ring and A. Thimet, Ann.
Phys. 198, 132 (1990)



More results
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The lines represent the limits for the fitting from A. Trzcinska, J. Jas-
trzebbski, P. Lubinski, F.J. Hartmann, R. Schmidt, T. von Eqgidy and B.
Klos, Phys. Rev. Lett. 87, 082501 (2001):

6 = (—0.04 + —0.03) + (1.01 £ 0.15)6
5= (N—-2)/A

Squares = DDHM ; full circles = NL3; From lower to higher asymmetries:
40Ca, 907y, 66Ni, 48Ca and 298pp.
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Asymmetry obtained for 298Pb and 43Ca in the NL3 (dashed line) and
TW (full line). The doted line is the PWBA result and the dash-doted
one is the three parameter Fermi result (Fermi3p). The incident electron

energy was chosen as £ = 800MeV'.



208 pp properties

model Rn Ry R 0 B/A o
(fm) (fm) (fm) (fm) MeV Mev/fm?
NL3-TF 5.79 b.57 0.22 -7.79 0.96
NL3-Dirac 5.74 5.46 5.51 0.28 -7.91 1.13
TW-TF 5.68 5b.52 0.16 -7.46 1.10
TW-Dirac 5.61 5.42 5.48 0.20 -7.78 1.30
DDME1-Dirac 5.66 5.46 5.51 0.20 -7.91 1.18
exp. 5.50
exp. -7.87
exp. 0.12 £ 0.07
exp. 0.20 £0.04

exp.

0.16 - 0.02 = 0.04




Finite nuclei properties

model nuclei Ry Ry R. 0 B/A o
(fm) (fm) (fm) (fm) MeV Mev/fm?

NL3 “0Ca 3.32 3.37 3.43 -0.05 -8.62 1.48
TW 40Cca 3.28 3.33 3.39 -0.05 -8.36 1.60
DDME1 49Ca 3.32 3.37 3.43 -0.05 -8.62 1.45
exp. 40Ca 3.48 -8.55

NL3 48Ca 3.60 3.37 3.44 0.23 -8.72 1.54

TW 48Ca 3.54 3.35 3.42 0.19 -8.49 1.70
DDME1 “8Ca 3.58 3.39 3.46 0.19 -8.66 1.53

exp. 48C3 -8.67

exp. 48Ca 3.48

NL3 HVzr 430 4.19 425 0.11 -8.86 1.37
TW NVzr 424 4.15 4.22 0.08 -8.55 1.52
DDME1 99zr 428 4.19 4.25 0.08 -8.73 1.38
exp. Nz -8.71

NL3 0Ni 3.96 3.76 3.82 0.20 -8.74 1.47
TW 66Ni 3.89 3.74 3.81 0.15 -8.56 1.63

DDME1 ©®°Ni 3.93 3.77 3.84 0.16 -8.72 1.49
exp. SEINT -8.74




Conclusions 11

e \We have improved previous calculations by considered the full solution
of the Dirac equation and used an exact calculation for the scattered
electron wavefunction.

e T he model dependence of the electron scattering asymmetry is con-
firmed by the more exact calculation, although it is still very hard to
be extracted from small momentum transfer data.

e If a linear relation between the neutron skin thickness and the proton-
neutron asymmetry of the considered nuclei is really to be satisfied,
the DDHM model parametrizations provide results within the appropri-
ate range while the NL3 results for very asymmetric nuclei are outside
the upper limit imposed by present data.
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