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GFPAE Outline

® Physics at small-x;

® Quark-Quark Scattering in LLA;

® The BFKL Equation;

® Solution to Zero Momentum Transfer;

® Application: gqq — qq;

® BFKL Equation in NLLA;

® BFKL Equation in DIS;

® Application: Truncated BFKL Series;

® Application: LO versus NLO BFKL Equation;

® Conclusions.
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erpae RESUMMation in pQCD

® The experimental data is well described by DGLAP Equation when ¢n Q? > /n %;

® When Q? is large, the leading terms need to be resummed:

— Resum over the leading terms to subtract the divergences.

© LLA Limit:
At each perturbative order only the highest power in ¢n Q2 is retained

S ol tn(™ Q2 (enwl Fenn0L ) @
" 95 95
© NLLA Limit:
It is retained subdominant powers in ¢n Q2
Sl tn(n D) Q2 (enwi L ) @
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erpae RESUMMAtion at small-x

® When the Small-xz Limit is reached, other resummations should be applied:

© DLLA Limit:
In the LLA limit we retain only dominant terms in ¢n (1/x)

1

Hb

Z ay ¢n(m) Q? ¢n(m) (3)

Ll DGLAP resums the terms o £n(™) Q2 and a? £n(™) Q2 ¢n (") Z.

< But it does not resum the leading terms a? ¢n (™) %

© LL ALimit: z<1,Q%notlarge = Q%< ni

" Resummation of >, anen(™ L (n(m Q2 4D Q2 4+ )

— In this limit the BFKL Equation operates!
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erpak Structure Function f5

® From the HERA data:

O Steep rise of Fy at low-x: (Fy < o < g)
1 Increase of the gluon density!

© DGLAP Equation = still OK!

— In the kinematic range of HERA.
If it Is reached much lower values of & . ..

© Does DGLAP still describe the data?

a1l

(Marage, hep-ph/9911426, 1999)
H1 97 preliminary

- ® HI197 prel. 3 F — FZQCD prel.
[~ NMC [
amd 12 ausl PRTTTT BRI B EETTT BRIt | PERTTT BRI B EET T EEERT

Q*= 15 GeV? Q'= 20 GeV*®
" " " " " "

Q' = 45 GeV®
ol ul.

Q%= 120 GeV?

(1

b

NLO DGLAP fit for HERA data.
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erpag INformation from HERA

® Parametrize F5 for x < 0.1 in the form

Fa(z,Q%) = A(Q*) z ™" (4)
© For small Q? (< 1Gev?): A~ 0.1
© For large Q? (~ 10 — 100 GeV?): A~ 0.25 — 0.35

® Forxz — O

© In the perturbative regime (Q% = 1Gev?) = DGLAP Equation;

© The region which Q7 is small (< 1 Gev?) = Regge Theory.

Ll BFKL Equation resums the leading terms Kn% for Q% < 1GeV?
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crpae R€gge Theory

® Low values of x correspond to large values of s — Here the Regge Theory takes place!

® In the hadronic process, particles are exchanged as

©  Nuclear Physics: mesons (p, w, ...);

© High-Energy Phenomenology: 'trajectories’ or Reggeons IR.

® What says Regge Theory to us? What means 'trajectories’?

©  Extending the angular momentum to complex values one found singularities;

© These singularities give rise to resonances that can be exchanged in the t-channel;

© When a family of resonances is exchanged it is called Regge trajectory exchange;

: . . Reggeized particle
® A Regge trajectory exchanged is said a exchange of a

Reggeon R
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crrar Reggeized Gluon

® Reggeized Particle:

S The amplitude for the exchange of a particle in the t-channel is written as A ~ s*(®);

" The exponent «(t) is related to the particle trajectory;

H_H_}% [‘fﬁ]« lag] -

a(t) 8
5| 2 ()
4| g fo
3 -1+W3}O3
2t wha
1L hw
0

1] (GeV?)

® BFKL Equation inLO — resummationof > a?in(™ 2 with s> Q2 ¢

© In this order, the leading process is the exchange of gluons;
© 1t will be studied the reggeized gluons exchange in all orders of perturbation theory; |
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GFPAE The Pomeron

® |n Regge Theory this exchange is the Pomeron Exchange: Ap ~ gor(t)

® Experimentally the cross section has the form

o~s* —  A~0.08—0.10 (5)

® The Regge Theory predicts a cross section of the form

o~ g@p(0)—1

—  ap(0) ~1 (6)

® Interesting feature: Pomeron has the vaccum quantum numbers:

P=+41, C=+41, I=0 @)

and the Pomeron is the dominant trajectory in the elastic and diffractive processes!
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crpae 1he Pomeron in QCD

® To incorporate the Pomeron in QCD — consider an exchange of the
vaccum guantum numbers!

® Using the QCD degrees of freedom (quarks and gluons): two-gluon exchange!

|

® In high-energy processes (x < 1) the Pomeron contribution is essential;

YYY

YvyYyYy

® In this sense, the DGLAP Equation does not take into account the Pomeron contribution!
® Itis needed to sum the contributions of the leading terms in ¢n s!
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errar ONe-Gluon Exchange

® First contribution to the Pomeron: 2-gluons exchange!

— We start calculating the one-gluon exchange amplitude and then work to higher orders!

® Quark-quark scattering in the Regge limit (s > —t)

. / -
P1,J ‘ ) p177’

q,a

] ] /
anl p2, k

® Computing the amplitude of the process with the Feynman Rules in the Feynman gauge:

: o Wabgur \ _ o
Agg‘)l)m = u(p1 — q) (—zgw“tij) u(p1) (— ;’29“ ) u(p2 + q) (—zgS'y t?m) u(p2) (8)
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errpae Kinematic Regime

® In the center-of-mass reference frame one takes p; and po along the z axis

S S
p1 = g (1,0,1) , p2= g (1,0, —1) ©)
® Using the Sudakov Parametrization:
S S
¢ =opl + 69 +a = (Slac+ Bl 0, Ll g]) a0

where the constants o« and 5 are the momentum fraction of the quarks carried by the gluon and
pi =p5 =0 2(p1-p2) =s
® The momentum transfer squared has the form

t=¢q° =2af(p1-p2) —q> = afs — q°
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erpae Final State Condition

® Taking the mass-shell conditions for the outgoing quarks

(1 —q)?=-Ps+aBs—q’=t—Fs=0 B=t/s ”
(p2+¢q)?° =as+afs—q’ =t+as =0 a=—t/s
SO
- ; K i~ M 7
¢ =—-(py —pr)+9" =q (12)
® The momentum transfer squared now is
t = q2 ~ —q2 (13)

® In the large-s limit one can state that:

©  All components of the exchanged momentum g are much smaller than p; and ps!
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erpag Scattering Amplitude

® Writing the scattering amplitude

. a a I~ 1 —
iAg?z)m(& t) =gz (t3ti,) @(p1 — @)y u(p1) (q—2> u(py + q)ypu(p2) (14)

® The amplitude squared, averaged and summed over colors is

— N2 —1 s2 +u?\ s—oo /8 s2
|AO)|? = 243 ( - ) ( ) B (—) g5 (—) (15)
4N? t2 s~—u \ 9 t2

where the color factor for N, = 3 is

1 b ,b 1 b ,b
m(t?jt?m)(tz‘jtzm)* = ﬁt?jt?mtjitml
@€ C
1 N2—-1 2
= —Tt*")m*t’) = —— = =.
N2 AN2 9
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erpar EIkONal Approximation

® The general form of the qqg vertex is a, U
VH = —igsu(p1 + ¢)v"u(p1)

® Due to the smallness of ¢ one can approximate 1 ]
VH# ~ —igsu(pr1)yHu(pr) = —2z'gsp’1’“ (16)
which is the called quark-gluon eikonal vertex that represents a soft particle exchange!

®  From this one rewrites the amplitude as
0 2 1 5
Az('jl)m = 295 (t§;tim) (q—2> (2p1 - p2) = 8mas (t35t1,) (E) (17)

® This approximation does not change the squared amplitude, having the same form as before

8g4 82
A0))2 = == (—) 18
|ALD)| o \ 72 (18)

| |
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erpar 1WO-Gluon Exchange

® Corrections of the order O(a?): ONE-LOOP DIAGRAM

pl B> B> B> pll pl B> pll
k| Tk —q
P2 ' o p2 Db

im A (s, 1) = / ATy A© (s, k2) AOT (s, [k — g]2) (19)

which amplitudes are the one-gluon exchange amplitudes computed previously.
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crpar Subleading Diagrams

® |t has been taken the leading terms of the type ¢n s;

® Some diagrams will yield subleading terms, like

Vertex Correction diagrams;

P1 P1

Self-energy diagrams.

. ? v
D2 P
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GFPAE Phase Space

® One takes the two-body phase space

/dH2 = @) (2n)3 (k) O0(KS) (2m)* 6\ (p1 + p2 — K1 — K2)

d*k

= | Gz 8o = 1D 3z + K1)

® As before, one introduces the Sudakov variables

k=ap1+Bp2+ ki (20)
4, _ (S 2
dk_(2) do df d2k (21)

® The Two-body phase space with the Sudakov variables is written as

/dm = 812 dadB d?k 6(—B[1 — a]s + k?) 6(a[l + B]s — k?) (22)
T
| |
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errpae High Energy Limit

® When one works in the large-s limit, the Sudakov variables can be approximate to

k2
Ot:|ﬁ|2?<<1 (23)
k2~ —k?  (k—q)* ~ —(k—q)? (24)
k? ~ (k —q)? ~ q° (25)

where one rewrites the two-body phase space like

1 k2 k2 1
/dn2= /dadﬁd2k5<ﬁ+—>5(a——> = /d2k
825 S S 825

that is

o= = () o+ (1) ph + ke
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erpar SQuare Diagram

. / .
plv]‘ "?17m | ’%bm ‘plal
Ll Ll | Ll Ll
|
|
k,a | k—q,b
|
£ £ | £ £ ;
P2, | Ko, | KR, Py, k
® Amplitudes from one-gluon exchange:
a a S
AO(5 k2) = —8mas(te, t%) [E]
(0)t 12 L b b ¥ .
AN o, (k= a) = —8mas(thutte)” | s

that is

a a 1

| |
BFKL Evolution Equation, G.G. Silveira, GFPAE — p. 20



% i

erpar Dispersion Relations

® In the leading /n % approximation one can express the amplitude as

S

A=ReA+imA = Cen (—)+...:cen‘f‘—mc (26)
t t
which yields

ReA =C/¥/n | §| ImA = —nC (27)

® The C coefficient expresses the relation between the real and imaginary parts of the amplitude

1
ReA = —— ImAdn | §| (28)

T

which, for the full scattering amplitude, all these can be expressed as

A:—%ImA (én‘ﬂ —iw) :—%En (;) ImA (29)
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erpar FUll Amplitude

® Using the dispersion relations one can find the full amplitude for the square diagram

A(Dl)(s,t) = —%a?s(t%b)ij(t“tb)m fn (;) /d2k {k2(k1— q)2]
= 1§ (7;\0[?) (t24) 45 (%) g (%) n (%) e(t)

where the dimensionless function ¢(¢) incorporates the transverse-momentum integration

Ncas _q2
t) = d?k
0= | L@(k - q>2} =

® This function is very important to express the Pomeron exchange in perturbative QCD.

© 1t will result from here the trajectory of the pQCD Pomeron!

| |
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erpae Cross Diagram

P1,J K, T | K1, T - P1,?
|
|
k.,a | k—q,b
|
; < < | < <
P5, K Ko, | KR2,MN P2, !

® One can compute this amplitude using the fact that in the Regge Limit
mAY =1mAD (s — u, ) (31)

® Thus the imaginary part of the amplitude can be expressed as

ImAY (s, 1) = —16 (@3) (£42)5 (1) (%) /n (%) (t) (32)

|
| |
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erpar FUll Amplitude in the High Energy Limit

® In the high energy limit the channels are related through s >~ —u;

) @ (5) n () < @

(&

ImA(Xl)(s,t) = 16 (

® One can compute the full amplitude through dispersion relations getting

AGu(st) = AR (D) + AP (s, =
— _16 (T\?‘) (£°4%);; (;)
X {[t“ %751 fn (‘ ‘) —iw(t“tb)kl} e(t)

® Itis clear that there is a different contribution from the imaginary part;

© This term is important because it will receive contribution only from the color-singlet term.

) The color-singlet term is crucial due to its contribution to the Pomeron exchange!

| |
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errae Color Projectors

® The quark-quark scattering amplitude can be decomposed in the SU(3) representation:

Aijki(s,t) szjkl JAR(s, 1) (34)

® The color-singlet (1) and color-octet (8) amplitudes are expressed as

AR (5,1) = Pijre(1)Ax(s, 1) (35)

Pijri(1) = (L) ;5 Ok }

Pzgk:l( ) —Qta ta )
A (8:t) = Pijri(8)As(s, t) (36)

® For these projectors there is the normalization:  P; ;5 (R)P'*™"(R') = P (R)d g g

® From this one gets

Ai(s,t) = Py (1)AY (s,1) Ag(s,t) = ( )7? (8)AY (s,t) (37)

N2 —1

c
| |
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errar Color-Octet Exchange

® Applying the color-octet projector one can extract the amplitude

(1) o T (1) (S s
.A§ (s,t) = —16 <—Nc ) Cg (t> n <|t|> e(t) (38)
where
1 K a a N¢
Cél) = (NCQ — 1) Pl (8) (%) i; [t P = T (39)

® From the decomposition one can obtain the quark-quark amplitude via color-octet exchange

S

AP (s, 1) = 8mas (t3t3) (;) n (-) (1) (40)

2]

® Note that color-octet amplitude is real and O(¢n s) at one-loop level.

| |
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erpae Color-Singlet Exchange

® Proceeding in the same way one can extract the amplitude in the color-singlet case

)
1 1T g 1 S
A(l)(s,t) = 16( N ) Ci) (2) e(t) (41)
T eV = PR )i () = S

® As before one can obtain the quark-quark amplitude via color-singlet exchange

2 _
AV (s,1) = 4inas (8i56m) (NZNC 1) fe(t) (42)

® One can see that the contribution ¢n (s/|t|) from the two diagrams cancel each other;

® This amplitude starts at order O(«?) and is suppressed by a factor #n s with respect to the
color-octet case.
& =+1

© Color-singlet and color-octet amplitudes have opposite signatures { € = —1
A
8 |
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crpag 1WO-LOOp Diagrams

= O ..

| |
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erpag EMission Diagrams

P1,] R1, M

p27l7
plaj j/ /j'flam (%m
ki — ko, c ko, b k1 — ko, c
k27b ~ ~
p27l : :/{37n pQ’Z 3, T

® In the same way one can introduce the Sudakov parametrization:

k1 = ai1p1 + Bip2 + ki1

ko = asp1 + Bap2 + ko

| |
| |
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erpar Kinematic Regime

® The leading 1 s contribution comes from the Kinematic regime of strong ordering of the
longitudinal momenta

1> 01 > a2 (43)
1> |B2] > |61] (44)
® Taking the gluons on mass-shell
(k1 —k2)? = k2+k5—2(ki -k2)=0

= —k?-—ki-—a1f825s—a2B15s+k) ka=0
~ —(kl — k2)2 — alﬁgs =0

which results in a non-ordering in the transverse momenta

a1B2s = —(ki —k2)? (45)
ki ~ ki~qg? (46)

| |
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crpag Central Emission .
\ P1,] /jlam

® Computing the scattering amplitude one can find

kl — kQ,C

AP ) S 7 k27b
ZA2—>3,a = (—2ngp1 )tmj <_?> l: >
1 P2, K3, T

X gsfabe [(k1 + k2)PgH” + (k1 — 2k2)Fg"P + (k2 — 2k1)" gP"]

® Taking into account the kinematics expressed before one can obtain the amplitude

A o = —2ig® Funelt® 5) ( ) onp? + o — (K + kE)

1
k7k3
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BFKL Evolution Equation, G.G. Silveira, GFPAE — p. 31



% i

erpae Gluon Emission from Upper Quarks

® In the same way one can write the amplitude for the first diagram of gluon emission

()

(p1 — k1 + k2)?

AL s, = (—Zigspf)tg/j{

p1,J ] K1, M
X (—2igs)(pY — K + kb))t

® Using the information from the Kinematic regime, the amplitude takes the form

1
AP — —4g5(t°t°),,, . t0, | ——— | p”
23.b gs( )mj nl {5281{%} P

| |
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GFPAE Gluon Emission from Upp

er Quarks

® Again taking the amplitude but for the second diagram one has

jl

1,7 K1, m AP
P1,] 1 2A2_)37C

/fg,b /ﬁ — kQ,C

> >

KR3, T

p27l

. b 1
(_ngsplu)tj/j <_ k_%
7

{(pl — k2)?

® From the Kinematic regime one can see that

) (—2igsph)t,

} (~2ig0) (88 — KEYEE, .

1
A5 3 . = 4925 fabctintn, ( ) (47)
3,c §2Jabcmjyn 6231{%]9?
® Finally, for the full scattering amplitude one can obtain, using [tb, tc] = ifapet?
1
P _ - 3 a b p
A2—>3,b—|—c = —4 9s S fabC (tmjtnl) (6231{%) P1 (48)
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GFPAE Gluon Emission from Lower Quarks

plaj K1, T plajt tlilam
k1 — ko, c ki,b zk1—Fka,c
pZ:l j/ K3, T P2, lt ;/ ";37 i

® Following the same procedure one finds the amplitude of gluon emission from the lower quarks

| ) 1
A[2)—>3,d—|—e = —4 gg) fabc( m]t?zl) (—> pg (49)

oy sk
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erpak LIpatov Vertex

® Summing the amplitudes obtained before one can find the full amplitude in O(g32)

3 pﬁpg b
Ag—>3 — _47’98 ( ) (t%’bjtnl) fabc Ffby (50)

where the quantity I'},,, is called the Lipatov effective vertex and has the form

2D2.,P1v 2k2) ( 2k2>
Fp k ,k — %’ 1 P 2 P kp kp
Fo(k1, k2) — Kal + s py+ ( B2+ s ph — (k§ +kb)

©  Physically this effective vertex incorporates the propagators of the emitted gluons.

® This vertex has the important property of being gauge-invariant, that is
(klp — k2p) FZV (kl, kg) =0 (51)

| |
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erpar Effective Diagram

plaj

>

|

L k1 — ko, c,p

> >

p27l K3, TV

® All graphs with one gluon in the final state are summed up by the effective diagram

1

ZA2—>3 _ (_27’ gsp'LlL) t'Canj < k2> fabc gs (kly k2) ( k2) ( 2295p2)t (52)

which, obviously, coincides with the amplitude obtained before.

| |
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erpag Effective Diagram

® It's interesting to introduce the quantity below for convenience

2k? 2k3
CP(k1,k2) = (oq + —) (ﬁQ + —) ph — (ki + k%) (53)

B2s a1s

so that
2
Ffw — (;) P2u P1v Cr (54)
P 2\ pove

CF = S ) P1P2 I (55)

® Through this new quantity the full amplitude is rewritten as

e [0 ?
Ap_>3 = 21951, <k2> fabe gs C* (K1, ko) (Q) s t%z
2

| |
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GFPAE Real Gluon Contribution

pl)j | R1 P1,?
> | > >
klaa’ | K9, C kl — (q, aJ,
|
|
kZ’b | k? — (g, v
> | > >
P2, g K Py, k

® Following the procedure applied before one can use the Cutkosky Rules

Irn14r(e2a)l (37 t) — _g% /dH3 Ag—>3(k17 k2> gi3(k1 — (g, k2 — Q) (56)

where is needed the sum over gluon helicities: ", e (p) eX*(p) = —g"¥

| |
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GFPAE Phase Space

® A little bit more difficulty and one can compute the three-body phase space

4/‘6 4/‘6 4/{
Jas = [ (d%)g (d%; éﬂ;’;, 5(2) 8(k2) 8(3) (2m)4 8 (p1 + p2 — k1 — 2 — ria)
= (271r)5 /d4m1 d4m3 5(/@%) 5(/{%) O([p1 +p2 — K1 — K3]2)
= e [ A R 8(lpr — ) a(lp2 + k) (ks — o]

® Again using the Sudakov parametrization one finds for the phase space

S2
dlls = doy dB1 d?k /d dBs d?k
/ 3 4(27T)5/ a1 dfB 1 ag dfB2 2

x  8(=Pi[l — ai]s — k7) 6(az[l + Ba]s — k3)

X 6(lar — a2][B1 — B2]s — [k1 — ka]?)
| |
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GFPAE Approximation

® As done previously the Kinematic regime implies that

1>a1 > a2 1> |B2] > |B1] (57)
(58)

and finally the phase space is

82
dlls = da dBy d?k /d dBs d?k
/ 3 4(27T)5/ a1 dfB 1 ag dfB32 2

X 5(—ﬁ18—k%)5(0&28—k%)5(—a1ﬁ28— [kl —k2]2)

— 4( / dal/ da2/d2k1/d2k2 5(&2—1{2)
a

1 L d
_ / gl / d2k; / d2k (59)
4(2m)%s Jq2/s 01

| |
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errpa FUll Amplitude

® In order to use the Cutkosky rules one needs to compute the amplitude of the right hand side
diagram

1

i /
ABT s = —2igste, {—m

| (~farne9) O (—lhs =l ~lba = ) (~ 13 ) 9« 0
2

® Making the product of the both sides of the effective diagram one gets

Avor = Ab_g(k1,k2) AY_ g (k1 —q, k2 —q) =
CP(k1,ko) Cp(—k —k
— 49582 greal ( 1, 2) P( 1 +Q7 2+q)

kik3 (k1 — q)?(k1 — q)?
where the color factor is

/ /
L — _(ta ta)ij (tb tb)kl fabc fa’b’c (61)
| |

| |
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errae IMaginary Part for the Real Radiative Correction

® Performing the product of the vectors

o ki(k3 —a)® ki(ki —1)
(k1 — ko)? (k1 — ko)?

Cp(kl,kg) Cp(—kl +q,—ko + q) = —2 |:q (62)

® Join the phase space integral and the total amplitude one obtain the amplitude in O(a?2)

D) 3
ImAr(eil)(S,t) = <&> greals‘e'n (i> /d2k%/d2k%
us 2]

2
q 1
{k%ké(kl —q)?(k2 —q)?2  k3(ki —q)?(k; — k2)?

N 1 }
k? (ke —q)2(k1 — ko)?

| |
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erpag Virtual Contribution

pla.L . F‘él)m : '%17773’ NLEX
|
|
k1 k1 — ko | ko —q
|
> > > | »> —
P2, 1 Ko, | K2,N Do, K
I /
p17j= ’Elam | K’lvlng‘ =p177’
|
Bk
| ks —q
|
»> > »> | < :/
p27l Ra, 1t K2, M p27k

® Considering gluon exchanges in the t-channel one computes this amplitude by

1
ImASi?taal(sa t) — 5 /dH2 A(l) (87 k%) A(O)T(sa [kQ - Q]2)

1
+ 5 [ il A9 ) AV (s, ks - g1?)

| |
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GFPAE Sqguare Diagram

® For the first case, the tree amplitude for both sides of the square diagram is

S
AW (s,k3) = 8m ais (2,,2)) (k2) In (k2> e(t) (63)
AT (s, [ko — q]?) = 87 s (t2 ;2% )* {;] (64)
which by using the relations In(s/k2) ~ tn(s/|t]) Guiral = (£%t°) 45 (%) 1y
one gets
AG) t) = Neoy L
I virtual D(S ) o - T2 Guiral § €10 m

X /d2k1/d2k2 {kQ oy — ) (1 — k)2 ]

| |
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erpae Cross Diagram and Full Amplitude

® The same procedure can be done to obtain the contribution from the crossed diagram

Nea? S
ImA(2) ) t - B ( s ) virtua ¢ <_>
virtual, X (S ) 7r2 g tual § €70 |t|

. /d2k1/d2k2 {kg(kl _Q)i(kl —k2)2]

® Finally, the full contribution from the virtual gluon exchange in the ¢t-channel is
(2) Nc&g = 2 2
ImAvirtuaI(87 t) — - —2 gvirtua| S En m d k]_ d k2
7T

1 1
{k%(lﬁ —q)? (k1 — k2)? i ki(k1 —q)?(k1 — k2)2]

| |
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errar Color-Octet Exchange

® For color-octet exchange, one can account the contribution from the u-channel by symmetry

©  Remembering, in high energy the relation s >~ —u is valid;

® The w-channel contribution can be obtained from that of s-channel by the interchange:

2 ¥ (£ — (%) (65)

® With this, the u-channel terms are accounted by the replacements

/ /
greal — gr/eal — _(ta ta)ij [tb >tb]kl fabc fa’b’c (66)

gvirtual — g\iirtueﬂ — _(tatb)ij [ta, tb]k:l (67)

| |
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errae Real and Virtual Contributions

® Once made the replacement one accounts for the real-gluon contribution

ImA£§2re)al(S7t) - (27?2 ) Cé?e)al (ta tZl s fn <‘ ‘> /d2k2/d2k2

q’
{k%kg(kl —q)2(k2 —q)2  k3(ki — OI) (k1 — ka2)?

1
ki (k2 — q)2(ky — k2)2}
and for the virtual gluon emission contribution one has

Ncag S
ImAé?/l)rtual(&t) — o (7) Cé?/l)rtual (t?j Zl) s fn (m) /d2k1 /d2k2

1
{k%(k2 —q)? (k1 — k2)? i ki(ki —q)?(ki — k2)2}

8,real ~

2 N?2 2
Wlth C( ) — (N2 ) (8) r,eal - Tc and Céw?tual — (NQ ) (8) \iirtual — _%'

| |
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erpag FUll Contribution

® Computing the full contribution for Color-Octet exchange

ImAgY (s,8) = IMAF, (s,8) + IMAFD o (5,1)

- <N2 3>“ )“”(\\)/ d ki ka {k%k%(kl—f)?(kQ—q)?(}&

which can be rewritten as

IMAL (s,1) = 8r2as (1% (%) n (%) €2(t) (69)

where €?(t) = (%) J &’k [m]

® Via dispersion relations one gets the leading £nv s contribution

S S 1 S
Ag)(s,t) = 4m as (t5tk;) (;) In’ (m) e’ (t) = (5> e*(t) en” (m) Ag) (70)

which is real.
| |
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erpae Amplitude in order O(a?)

® Joining the three contributions one finds the Full Amplitude in the LLA limit

S a ja S 1 2 2 S
which corresponds to the first three terms in the expansion of
a 4a S S E(t) a 41a S ag(t)
where the quantity
ag(t) =1+ €(?) (73)

is the constructed reggeized gluon trajectory in the t-channel. — Not the Pomeron yet!
| |

| |
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erpae Contribution of the Color-singlet Exchange

® For completeness and following what was done in the color-octet case one accounts the
leading n s contribution in the color-singlet exchange

A2 (s,t) = z<2a ) ) 55 5kls€n<| |> /d2k1/d2k2
7T

q
{k%ké(kl —aq)2(k2 —q)2  k2(ky — Q) (k1 — ko)2

- 1 }
k? (k2 —q)?(ki — ka)?

N «
Ag.)nual(sat) = — (7> Cl(aztual dijokl stn (%) /d2k1 /d2k2
y { ! N }
ki(ki —q)?(k1 —k2)2  k?(ks —q)?(ki — ko)?
.. 2 Iy 2
where Cl(?e)al — 73lrLch (l) greal — _% and Cl(sl)rtual — ijl (l) gvirtual = — ]\Zﬁvcl-
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erpae BFKL Ladder

® Previously we introduced the Eikonal Approximation which has an important property:

© Independence on the spin of the particle which emits the soft gluon!

® Extending the process for 1 gluon exchanges in the s-channel:

©  Can be constructed a diagram like a ladder with 12 rungs’ or 12 gluon exchanges;

© 1t is considered an exchange of n reggeized gluons in ¢-channel.

® The algebra will be done in the Multi-Regge Kinematics

© It will yield the leading #n s contributions.

® The procedure will be to account with the mathematical tools calculated previously.

© Tree amplitudes, Sudakov variables, phase space, . ..

| |
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erpae BFKL Ladder

p]"] » > >
k1
ko
kz’—l Aj—1, Hi—1
bi—1, pi-1
ki
bi, pi
ki1 Ai+1y Hit1
Ko,
by P
kn_|_1 An41, Hn41
P2l "ok ] ]
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GFPAE 'Multi-Regge’ Kinematics

® Like before it can be introduced the Sudakov parametrization
ki = a;p1 + Bip2 + k; | (i=1,2,...,n+1) (74)
® The Multi-Regge regime corresponds to
©  All transverse momenta being of the same order

s>>k2:k2:...:k%2k2+1:q2 (75)

n

© Strong ordering of the longitudinal momenta

2

2
q
1> |Bnat] > 1Bnl > ... > 62> |61 > e

® These two properties will be important in featuring the ladder further on.
| |
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GFPAE
® From the gluon exchange one can obtain the amplitude for n gluons emitted
- A2—5n+2 . L
AT = (2igo)p t] <_E)
)
X gs falagblrfbllu2(k17 k2) (_%>

)

&
ol =

X gs fagagbgrﬁ§p2 (kQ? k3) <_

(/
X gs fanan+1bnrﬁnf_? (kn7 kn‘l_l) 7.2
" kn—l—l

X  (—2iga)ph™ T e !

® Note that we are treating the process through 1 effective diagrams attached to each other
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GFPAE (' Vector

® Using the relation between the Lipatov vertices

Pit TRy (ke k2) Th2P2 (ko k3) .o Thnlrn(kn, kpga)py ™™ =

(g) CP1 (kl, k2)(3’92(k2, kg) ... CPm (kn, kn-|—1)

_ ( ):[I(?m(kuk%+1)

=1

where it was defined the C vector as

2k? 2k?
CP ki, kiv1) = (o + == Bir1 + —L ) pf — (K? + K7, ) (76)
Bis ;S +

and it is related to the Lipatov vertex through the relation T, = (2) pa, p1, CP

| |
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" ‘ Scattering Amplitude

GFPAE
® So that, the amplitude can be rewritten as
o . i
Agl_mi2 — 2i5¢s t,?jl (F)
1
)
X gSfalagblcpl (k17 k2) <_2)
k2
i
X gsfa,2a3b20p2 (k27 k3) (F)
3

1
X gsfanan+1bncpn(kn’ kn—{—l) <k2 )
n—+1

a 1
X gsty "

® However this is only the tree amplitude!

It does not take into account virtual radiative corrections in the t-channel.
|
1

o
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crrae Radiative Corrections

® It was proposed an ansatz by Lipatov, Kuraev and Fadin

© A modification in the gluon propagator in the ¢-channel to account for these corrections in
all orders in a4

©  Modification proposed inspired in Regge Theory

i i s\ B fa— 1))
BT (_k_> 2%2( o ) 7o

where s; = (ki_1 — kja11)? ~ (O‘fl_l) (ki —kit1)?

(2

is the center-of-mass energy in the 2-th section of the ladder, and

2 Neas / 2 [ _kzz }
2} — h
e(ky) o d h2(h_ k)2 (78)

Is the dimensionless function already seen before with an auxiliary vector h. |

| |
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GFPAE Reggeized Gluon

® Then, in the Feynman Gauge, the modified gluon propagator is

P Guy [ S\ €M)
Do k) = =25 (55) 79

= Radiative Corrections are directly included in the propagator.

® Exemplifying for the elastic qq scattering one obtains
e(t)
A(s,t) = 8mas(t7;t7) (%) (ﬁ)

which coincides with the result obtained in the LLA amplitude expansion.

| |
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GFPAE

'Reggeized’ BFKL Ladder

® Rewriting the tree amplitude with the modified propagator one gets

Apl . ta,l ( i ) ( 1 )e(kl%)
o — 153gst. — —
2 n+2 S % k% o1

2 a1 e(k3)
X gSfalagblcpl (k17 k2) (F) (Oé_2>
2

X gSfanan+1anp kna kn—i—l
n—l—l

e(k?)
— QngS(talt n ( )(

X H {gs fa a;41b; CPe (k’w k’b—i—l) <k2

an+1

1+1

e(k2 1)
An
) sty

- >e(k§+1)
Qi+1
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GFPAE Gluon Ladder

p17j . . : . . p/hZ
kl aq I CL/l ]{1 —q
I
I
I
I
I
: ki-1—q
I
| ki —q
I
I
| kit1—q
I
I
I
I
I kn —q
I
| kn—I—l —(q
| -
I péak
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Imaginary Ladder Amplitude

® Carrying out the contraction of the C"s vectors one gets the imaginary part of the scattering

amplitude of the Gluon Ladder

1 o
Im Ag(s,t) 5 > 4s%gs Gr /dHn+2
n=0

1

k? (k1 — q)?

1N (kD) +e([b1—q)?)
|(2)

- s . -
X 2:1_[1 { [k2 (ki—|—1 B (])2] ( 277R) K(k’L7 kz—|—1)

1+1

Qg
X
Q41

@ — NC
G1 = AN, Og = T8
where
m= 5 ng = Ne

) (ki )+e([kir1—al®) }

Y

(81)

(80)
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erpae Mellin Transform

® The full Amplitude can be obtained using the Dispersion Relation as made before;

® We’'ll adopt a new proposal that suggests work in the complex angular momentum plane!

® Instead of working directly with A g, it will be convenient to calculate its Mellin transform

Y s s\ ¥ ImARg(s,t)
= J (i) () ; )

in the Froissart-Gribov representation of the partial-wave amplitude.

® The inverse Mellin transform is

c+100 w
ImAg(s,t) 1 / o (i) Fr(w. 1) _—

S 270 J e—ioo

| |
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erpar Watson-Sommerfeld Transform

® One can take the u-channel contribution using the property
IMAR(s,t) = —&r IMAR (u,t) (84)
® The quantities £ are the signatures defined as
§1=+1 & =-1 (85)

® Since u >~ —s, the u-channel term is taken into account by the replacement

fr(w,t) = (L +€ére™ ™) fr(W, 1) (86)

® The partial-wave amplitude fr(w,t) is related to the amplitude A by the relation

c+1i00 w+1 o —iTw
Ar(s,t) = —— [T au (2) [ e &)

475 J o— oo |¢] sin Tw

which is called the Watson-Sommerfeld Transform .
| |
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GFPAE Phase Space

® Starting the calculation of the BFKL Equation, one takes the (n + 2)—body phase space

sn—|—1 n+1

. 121
S / T[] dos dg; dk,
1=1

dHn—|—2
x  8(—P1[l — a1]s — k7) 8(ant1[l + Bnt1]s — koyq)

X §(loj — aj11]lB; — Bj+1ls — [kj — kj+1]?) (88)

1

mn
j:

which in the Multi-Regge kinematics is simplified to

dIT = ! T/ e [
n+2 = 2n—|—1(2ﬂ-)3n—|—2H a; Jo On+1

=1 Y ¢i+1

n—+1
x |1 /d2kj S(any1s —k?) (89)
j=1

| |
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errpag Partial-Wave Amplitude

® Computing the amplitude using the Mellin transform one can find

oo n+1 ko
fra®) = (ra?dr 3 1 5
n=0 =1

1 1

ki(ki —q)? w—e(ki) — e([k1 — q]?)
X (—2asnr) K(ki1,k2)

1 1
k3 (k2 — q)? w — e(k3) — e([k2 — q]?)

X > (90)
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erpae 1he BFKL Equation

®  Writting the amplitude in the recursive form

I’k Fr(w,k, q)
(2m)* k*(k — q)?

fr(w,q®) = (4ras)? Gr / (91)

that is

o — (1) = el = al*)] Fr(wko) =1 = 2523 [ah |00 | Fo(wba) 02

® This is the general form of the BFKL Equation:

This equation describes the evolution of
the gluon ladder in the LL,A limit.

| |
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GFPAE

Color-Octet from BFKL Equation

® Using explicitly the expressions for the reggeized gluon trajectories as seen before

N.o

—k2 _ _ tVelrs
e(—k”) 12
Neog

(-k—q?) = -=5

4

[

h2(h — k)2

(k — q)?

] (93a)

[

_ )2(1{ _ h)2

} (93b)

this terms will cancel with those of the expression K (k, h) related to the virtual corrections (€'s

terms) and yielding

N
wfg%hqy:u-;ai/fh{

2
which admits the k-independent solution

1

h? (h — q)

Fs =

w — e(—q?)

2} Fs(w,h,q) (94)

(95)
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erpar Octet Partial-Wave Amplitude

® From the recursive relation we get

2
f§(w, q2) -2 - [6( 012l )} w — et—qz) )

® |n terms of the complex angular momentum £ = w + 1, the octet partial-wave amplitude
behaves as

fa(£,t) ~ m (97)
g

where the a4 (1) = 1 + €(t).
® We can see that fg(, t) has a pole singularity as £ = a,(1).

® Computing the inverse Mellin transform one gets the imaginary part of the amplitude

. 14-€(t)
ImAg(s,t) = 272 as €e(t) <m> (98)

| |
|
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errae Color-Octet Amplitude

® Taking the total amplitude from dispersion relations and adding the u-channel contribution we
obtain the full amplitude for the color-octet exchange

ag(t)
. S g9
Ag(s,t) = —4m as (t75ty;) [1 - e_“m‘g(t)] (H) (99)

which is the Regge-type amplitude for the gq elastic scattering.

® In the Multi-Regge regime one can approximate Qg (t) ~ 1
S ag(t)
Ag(s,t) = —8mas (t7;ty;) (m) (100)

which coincides with the result obtained from one-loop exchange and justifies the ansatz
proposed previously.
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erpae Color-Singlet from BFKL Equation

® The Gluon ladder in color-singlet configuration contributes directly to the QCD Pomeron!

® For this configuration we can rewrite the BFKL equation as

w—e(-k*) - e(~=[k—q*)] F(w kK, q)=

® We can introduce the function F'(w, k, k’, q) related to F; (w, k, q) by

d’k’

T k? F(w,k, k', q) (101)

Fi(w, k,q) = /

| |
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errae 1he Color-Singlet BFKL Equation

® With some algebra we get

wF(wk k' q) = 6(k-k)
Oéch _q2 /
i 272 /d2h{<(h—Q)2k2> Flw, b1, q)
1 I , k?2F(w,h, Kk, q)
i (h — k)2 _F(w’h’k’q)_ h2 + (k — h)2 }
N 1 '(k—q)2h2F(w,h,k’,q)_(k—q)QF(w,h,k’,q)}}
(h—k)2 | (h — q)2k? (h —a)? + (k — h)?

® This is the standard form of the color-singlet BFKL equation.

® From this solution one can find the inverse Mellin transform as

, 1 c+r100 s \¥ )
F(s,k,k',q) = — dw | — ) F(w,k, k', q) (102)

271 — 100 |t|

| |
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erpag SOMe Properties

® Analyzing the BFKL equation for the color-singlet case we see:
O Ultraviolet finite in the limits h? — oo and k? — oo;
© Infrared divergences:

[ Regular infrared behavior for h — 0 and k = h;

. The singularities that arise from 1/(h — k) are cancelled by the other terms!

L Problem in the infrared case:

Singularities from the virtual-gluon terms when k? — 0;

L) Answer to this problem (thanks to Lipatov)

L) A Colorless particle has quarks and gluons confined and it regulates the divergences!

- The confinement limits the quarks and gluons to be on-mass shell!

| |
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erpar 1he Integro-Differential Equation

® We can write the BFKL Equation for zero momentum transfer, so
wF(w,k kK, q) =06k -k)+ /d2h K(k,h) F(w,h, k) (103)

where the function K is called "BFKL kernel“ and has the form

K(ka h) — Kvirtual(k, h) + Krea|(k, h)
Nca 1
= 2¢(—k*)6°(k—h i 104
(1) e~ ) + (52 ) s @09
® Expressing the BFKL Equation with the inverse Mellin transform we get
OF (s, k,k’) 1 cFioo S \w ,
= o dw | — F(w,k, k
0 tn(s/k?) 278 J e—ioo w (k2) w F(w )
N¢ o d’h k2
- — F ) h7 k') — F , k, k' 105
2 /(k—h)2 { & , (h2+(k—h)2) (s )]( )

| which describes the evolution of the BFKL amplitude F'(s, k, k'). |

| |
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® In order to solve the BFKL equation for zero momentum transfer, it can be done rewriting
wF=1+4KQF (106)
® Solving this equation, one founds the eigenfunctions ¢, of
K® o = wo Ga- (107)

® Some algebra leads to an expression for the eigenfunctions of KC

1
7r\/§

and the eigenvalues can be obtained from this expression as

bnv (K|, 0) = (k2)~ 2 Five—n? (108)

n|+1
2 SNC 1 - - 1 2 SNC 1
wn (V) = - Re/0 dz | T2 . Re {w (\n\;— + iV) — w(l)} (109)

T 1 —=x T

where the function ) is the Digamma function such that /(1) = —vg = —0.577215. ...
| |
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® The solution of the BFKL equation for zero momentum transfer reads

. K2 ]
. % En(TQ>
1 : / e e k
F(w,k, k') = - Z et (V=0 )/ dv (110)

27T2(k2k’2)§ "0 — 00 W — wn(l/)

® The leading £n s behavior of F(s,k, k’, q) retain only the contribution from n = 0
1 /.2
wo (V) ~ A — 5)\ v (111)

® This result lead us to the LLA pomeron solution of the BFKL Equation

N 1 1 S \ A /n? (k2 /k'?)
F(s,k, k') = NP G < ln(s/k2)> (k2> exp {”\, En(s/k%} (112)
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Applications: qqg — qq

® Applying the result to the quark-quark scattering it gives us

N2 1 &k [ 2K F(s,k K, q)
000 = et [ Y] 00 [ K[ K Flshei
45, 1) = (87%as) [ . } e e

® The total cross section is obtained as

s, k, k'
old = - Im Ay (s,t = 0) = 4a? ( N2 )/dzk/dzk’ k2k,2 )

P1
g with rapidity defined as y = ¢n(s/k2 . ) it results
k
599 — (N = 1) ( o ) 2
]{/ total Nc2 k72nm 7T>\/y/8
23

(113)

(114)

(115)
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GFPAE

Unitarity Violation

The unitarity of the S-matrix
SST =815 =1
which implies that

) = S|iy = SST|£)

From this feature arises the Froissart-Martin Theorem:

© When s — 00
Ttotal = Ctn?s

In the case of quark-quark scattering we have

qq
Utotal ~

In s

(116)

(117)

(118)

(119)

that violates asymptotically the Froissart-Martin bound, since A = N.as4/n 2/t > 1.
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GFPAE Diffusion

® Features of BFKL Equation in the case of LLA Pomeron:

© BFKL amplitude F'(s, k, k’):
! Gaussian distribution in ¢n (k2 /k’2);

Ll width growing with y = ¢n (s/k2).

©  As the energy increases, the non-perturbative region can be probed;

® Setting the LLA BFKL solution as (N — iteration step)

k2

F™ wka) ~ 0" H o (0 |2 ]) = 0 uw (e (120)

0

® Some algebra leads to a typical diffusion equation

N OP(N, &) N 9%P(N,¢)
ON 2 9¢2?

(121)

| |
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erpar Perturbative Region

® Taking "time" as N = 0 the wave function as a solution of the Diffusion Equation is

2
¥ (0,8) = ! exp (— : ) (122)

(7ra2)i 202

and neglecting the initial width we obtain

A\ 2 AE2
w(N,£)~(2/\,N) exp(—%,N) (123)

® With the correspondence N/\ — y = ¢n (s/k?) we see that

© A diffusion spreading equivalent to the behavior of LLA Pomeron solution.

® Important:

©  As the energy grows the infrared region of transverse momenta becomes more relevant:

) The perturbative treatment fails!
| |

| |
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GFPAE Running Coupling

® The Diffusion Phenomenon suggests the use of running coupling

© From LLA the self-energy and vertex correction diagrams were neglected!

1 Which Implies that the coupling constant s had been taken as a constant!

© Strategy: Solution for the LLA BFKL equation with a.s — as(k?).

") One finds a discrete spectrum to the BFKL kernel;
L A pole series being the Pomeron amplitude the leading one.
©  Another important feature:
L Upper and lower limits to the intersection of the Pomeron’s trajectory:

Neog (k%)

T

(124)
™

2Ncas(k(2))} |

1+1.2{ } < ap(0) < 1—|—4€n{

| |
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erpae NLO BFKL Equation |

® Going to NLLA limit, the structure of the BFKL kernel has the form
K(k,h) = 2¢(—k?)6%(k — h) + Krea(k, h) (125)
© Reggeized gluon calculated in two-loop precision;
©  Real part receives contribution from the tree level and production of gg and qq.

® The eigenvalues of the BEKL kernel K in NLO are

oly) = T2l [0 4 (Rl )y azo

T T

where

© xO(y) =29(1) — () — (1 — ) is the LLA contribution;

© x) represents the NLO correction.

| |
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erpae NLO BFKL Equation |

® The correction from x(1)(v) has the form

15 G- 28 [(x@m) -wm+va-)]

B T2cosTy nf 2+3y(1—9)
6@+ it [+ (1 5) G,

Py = -

7T2 n
- (F-F-FR) O -vm-va-

+ 4¢(v)} : (127)

® The running coupling constant has a correction of the form

2 2 2
) ) |1 - ) (LN 210 (1] s

| |
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erpae NLO BFKL Equation ||

® In this approach the eigenvalues have two types of corrections

© From the derivative of the strong running coupling;

©  Energy-scale independence of the due to x(1) ().

® Thus, the eigenvalues can be expressed under these corrections as

11 n k2
o) = [as(®x00) + @A) + @) (35 - o) (5 ) x| a2
< 9 _ 12 6N, 0
energy-scale independence ~ ~ /
running coupling

® Leading eigenvalue is that with v = 1/2:  wo = asxo (3) = 2.77as.
® At NLO this eigenvalue is

as X(Mly=1 = @ xo(v) + az x1(7)|7:% = wo(l — 6.61a,) = 2.77as — 18.34a2%,  (130)

© HERA regime: Correction x(1)(v) so large that dominates over x(?) (v)!
| |

| |
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errae BFKL Equation in DIS

® Using the integro-differential equation we obtain for f(z, k?)

Of (x,k?) _ 3ask’ /OO d’h {f(x,h% —f@ k) f(@ k) .
on(l/z) 7w Jo h?2 |h2 — k2| (4h4 4 k4)1/2
we obtain the BFKL equation for DIS in the leading ¢n(1/x) approximation with a fixed
coupling constant.
® The solution for this equation gives an unintegrated gluon distribution
— 2 1.2\ 711/2 2 1.2 /122
k< /k In®(k=/k
flz, K?) ~ <£> {u} eap |- — (/) (132)
X In(x/x0) 2N n(xo/x)
with the leading behavior at low-2 ’
fz, k?) ~ ™2 (133)

| |
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errpar Unintegrated Gluon Distribution

® ltis clearly visible:

© The diffusion in k2: and

O Growth of the type z—*.

fFix.k2)/ (k2% (Gev™)

(Askew et al, Phys. Rev. D49, 4402, 1994)

URRALL LN | LB LRLLY | T T T

T 10 02 107 10
k?(GeV?)
BFKL evolution of f(x,k?)/(k?)'/2 .
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crpar Predictions for

(Bojak and Ernst, Phys. Rev. D53, 80, 1996)

BFKL -
F B . K (GeV?)

- " BFKL
10 E . w Dy Cat

..\ 0%=15 GeV?
b hY

a Jeus

sl sl T Ll Ll R
KZ (GeV?) ke oy (GEV?)
-=10°
----5.10°
—10*
-=- 510"
Ce 105

10 E

1 saaul il Ll gl ol R ERTT

L Agep MeV) [ X,
10 Boy —= 150 ' -—--5107%
2 < —173.2 — 107
---- 200 - = 510"
107

— — 225

10 10 10 10° 104 10 10

BFKL prescription for £ compared with HERA data.
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errae Applications: Truncated BFKL Series

® Considering only the first two orders in LO perturbative theory we have for the partial-wave

amplitudes
I 5
fl(w,kl,kQ,Q) — ;5 (kl_k2)
Noas 1 q? 1 1 k3 (k1 —q)?
fQ(CU,kl,kQ,q) — - — = {1—|—
212 w? |ki(ke —q)?2 2 (k1 — k2)? k7 (k2 — q)?

which corresponds to taking the two-gluon exchange and the one-rung ladder into account
only.

® Truncating the BFKL series at two orders, a parametrization is proposed to proton-proton and

proton-anti-proton the total cross section goes like
p —l
PP = CR(s/50)* D71 + Caom + Cno £11(s/50) {139

where k? = sg = 1 GeV?.

| |
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erpae PP @and pp Total Cross Section

(Gay Ducati, Machado. Phys. Rev. D63, 094018, 2003)

100.0 T UL AL | T T T T T TTIr] T T T T T T T

80.0

60.0

O, (Mb)

40.0

20.0 L——

0" 10" 10° 10° 10*
E., (GeV)

Fits for pp (lower line) and pp (upper line) total cross section from PDG data.
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crpae Application: LO versus NLO BFKL Equation

® Using an effective kernel and a saddle point approximation to compute F2 in NLO-BFKL
— problem: deviations at Q% < 10 GeV?

(Schoeffel, hep-ph/0505114, 2005)

TRt ¥ Q=5 GeV* =65 GeV? P=8.5 GeV?
]
5 O'm 12 GeV? 7m15 GeV? Pm20 GeV?

I

T f Tﬁ {Ti Q'm45 GeV*
1 F \\\
0.5 -—
.0
“r =60 Gev’ '=80 Gev’ =120 Gev’
B .
[ — LO EFKL
P e HLC BFKL
o D ) 1 sl MEFEPICTTET B M B R PR T B R T TrTT |
g 15 102 1~ g g2 4g 15 1072
X

Fits at LO (solid line) and NLO (dashed line) BFKL for £’ from H1 data.
| |
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erpar Application: Meson Production (1)

® |t can be studied the meson production via pomeron exchange in eTe~ colliders;

® A possible process is illustrate

| |
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erpar Application: Vector Meson Production (I1)

® The cross section is expressed in the form

Ao~ A
Oete— —ete—V4 Vs (VSee) = /da:a dzy fry/e(Ta) fry/e(Th) fwdtVlVQ (8) (135)

® The cross section of the subprocess depends on the BFKL amplitude F

do(vyy — V1V2) 167

- = 34 |Frir(z,7)|? (136)

® These functions represent the incoming photons and are related to the BFKL Amplitude

t2 2
Fprrr(z,7) = (2r)? /dV(V2:1/4)2 X2 Vi(Q ) I)V2(Q L) (137)

where the quantities 1)V are called impact factors and the quantity x(v) depends of the BFKL
Kernel eigenvalues

x(v) = 4Re (w(l) — (% + w)) (138)

| |
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Application: Vector Meson Production (l1l)

® Finally, the results for the production of several mesons are described in the next table

/See = 200 GeV /See = 500 GeV /See = 1000 GeV /See = 3000 GeV
pJ/T | 0.90 (0.015) 5.80 (0.049) 21.87  (0.097) 178.19 (0.22)
¢J/T | 0.11 (0.0023) 0.69 (0.0073) 2.58  (0.014) 20.77 (0.033)
wJ/T | 0.075 (0.0013) 0.48 (0.0041) 1.85  (0.0081) 15.03  (0.019)
J/WJ/T | 0.045 (0.0021) 0.27 (0.0066) 0.98  (0.012) 7.56  (0.031)
pY | 0.0013  (0.000055) | 0.0093 (0.00017) 0.036 (0.00034) 0.31 (0.00080)
wY | 0.00011 (0.0000055) | 0.00078 (0.000017) | 0.0030 (0.000034) 0.026 (0.000080)
Y | 0.0002  (0.000011) | 0.0013 (0.000034) | 0.0050 (0.000068) 0.040 (0.00016)
J/UY | 0.00025 (0.000027) | 0.0015 (0.000086) | 0.0052 (0.00017) 0.038 (0.00040)
YY | 0.0000072 (0.0000014) | 0.000038 (0.0000045) | 0.00012 (0.0000088) |  0.0008 (0.000020)

The double vector meson production cross sections in e e~ processes at different energies,
1t|min = 0 @and 0,4 = 30 mrad, assuming the BFKL Pomeron (Two-gluon) exchange. Cross

sections are given in pb.
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erpar Application: Higgs Boson Production (1)

® A way to study the production of the Higgs boson is the double-pomeron exchange;

® In order to find the Higgs boson, two processes are accounted (Royon, C. hep-ph/0601226)

® Exclusive Process:

2e
s M?2
d exrc — C 5 S _h’
o, (s) h <—M}QL> (5152 : )
d . a/v-2
X H {d2fvi Si §Z2 ’ exp(—2)\hvi2)} o(gg — h) (139)
i=1,2 1 =&
® Inclusive Process:
el x?a:gs 2 M%I
d mc — C 5 _
o H M2, £1&2 27295
% G g d 9d2 ) d&, ,20/1)-2 0,2 .
p(zf, p) daf d=v; ; &9 Vi exp (=20 Ag) ¢; (140)
i=1,2 S

| |
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erpar Application: Higgs Boson Production (I1)

SB

10 Mass window 200 MeV
g S Mass window 600 MeV
; : Mass window 1 GeV
5 B Mass window 2 GeV
4 L Mass window 4 GeV

0 1 2 3 4 5
Mass resolution

Higgs boson signal-to-background ratio as a function of the resolution on the missing-mass, in GeV.
(myg = 120 GeV)
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errae 1he QCD Evolution Landscape

Saturation

BFKL

Regge Theory

DGLAP

—

5 g

The BFKL evolution and its limitations.
| |
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GFPAE Conclusions

® Clarifies the knowledge about the High-Energy particle phenomenology;

© Goal for Regge Theory.

® Good agreement with Low-x data beyond the DGLAP Equation;

® Require some analysis in non-perturbative region.

| |
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