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Introduction

Main breakthroughs leading to nonlinear equations:

• Gribov-Levin-Ryskin (GLR) equation. First nonlinear equation proposing the
parton saturation (1981-83).

• Mueller and Qiu. Consider GLR for double logarithm approximation in perturbative
QCD (1986).

• Ayala, Gay Ducati, Levin. Nonlinear equation in DLA QCD. The main degree of
freedom is the gluon distribution and there are two DLA contributions
(αs(ln 1/x) ln(Q2/Λ))n, (αs(ln 1/x) ln(Q2

s(x)/Q2))n (1997).

• Balitsky. Generalized BFKL Operator Product Expansion. High Energy scattering
in QCD, infinite hierarchy of coupled equations for n-point Wilson line operators
decouple for large Nc (1996).

• Kovchekov. Generalized BFKL Operator Product Expansion. High Energy
scattering in QCD, infinite hierarchy of coupled equations for n-point Wilson line
operators decouple for large Nc (1996).
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Froissart bound

• The Froissart bound is a limit for the cross section for the scattering of two
hadrons.

• It is derived using Mandelstam representation and is based on two hypothesis:

• First Froissart hypothesis: the strong interaction has finite range.

• In the days of Froissart, this range is determined by the pion mass mπ

R ∼ 1

mπ
. (1)

• This scale is nonperturbative.
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Froissart bound

• Second Froissart hypothesis: S-matrix is unitary

SS† = S†S = 1 . (2)

• A complete set of particle states |m〉 satisfies completeness relation

X

m

|m〉〈m| = 1 . (3)

• If the initial state is |i〉, the probability to find the final state |f〉 is given by:

Pfi = |〈f |S|i〉|2 . (4)

• The probability that an initial state evolves into any final state is 1: then:

X

f

Pfi =
X

f

〈i|S|f〉〈f |S|i〉 = 〈i|S†S|i〉 = 1 , (5)

therefore, it is understood that the S-matrix is unitary.
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Froissart bound

• The Froissart bound limits the total cross section for scattering of two hadrons:

σTOT ≤ π

R2
(ln s)2 . (6)

• If the pion mass is used, σTOT ≤ (62mb)(ln s)2.

• COMPETE experimental data says that σTOT ≤ (0.3152mb)(ln s)2.

• It was derived for all regions of QCD (including pQCD and npQCD).

• However, the available data show no sign that Froissart bound is valid (or invalid).

• At high photon virtualities, the DIS structure function appears to increase very fast
for a logarithm dependence.

• One hopes that with more exclusive processes (maybe diffraction) saturation can
be observed.
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Froissart bound

F2 structure function data from HERA collider and fixed target experiments.
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Unitarity

• High parton density in Deep Inelastic Scattering is going to be studied.

• Small x region (high energy) is an interface between non-perturbative QCD
(npQCD) and perturbative QCD. In this pQCD frontier the coupling constant αs is
still small.

• It is observed that F2 increases for small values of x, suggesting violation of
unitarity.

• The unitarity limit is the Froissart bound, which shows that the cross section
cannot be larger than σ ≤ B ln2 s, where s is the squared center of mass energy.

• This unitarity shall be restored in the theory, not implied in both DGLAP and BFKL
evolution equations.
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Emphasizing: H.E. Behavior of QCD Amplitudes

Problem:

• Analytically separate.

• Small and large distances.

• Contributions to high energy

• Amplitudes in a properly gauge invariant formalism.

Questions:

• Unitarity corrections.

• Signature of UC in the observables.

• Predictions from different models.

• Common limit among different formalisms.

• Analytic solutions ⇒ g(x, Q2) all range.
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Gluon importance in small-x physics

http://zebu.uoregon.edu/˜parton/partongraph.html
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DGLAP evolution equation

• The DGLAP evolution equation:

dqi(x, Q2)

d ln Q2
=

Z 1

x

dy

y

»

qi(y, Q2)Pqq

„

x

y
, αs(Q

2)

«

+ G(y, Q2)PqG

„

x

y
, αs(Q

2)

«–

(7)

dG(x, Q2)

d ln Q2
=

Z 1

x

dy

y

X

i

»

qi(y, Q2)PGq

„

x

y
, αs(Q

2)

«

+ G(y, Q2)PGG

„

x

y
, αs(Q

2)

«–

(8)

summs all diagrams whithin LL(Q2)A:

αs ln Q2/Q2
0 ≈ 1 αs ln 1/x ≪ 1 αs ≪ 1.

• Also, only longitudinal momenta in the parton cascade are (strongly) ordered:

x < xi < · · · < x1 < 1 (9)

Q ≈ k⊥i ≫ · · · ≫ k⊥1 ≈ Q0 (10)
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BFKL evolution equation

• The BFKL evolution equation:

∂φ(x, k2)

∂ ln(1/x)
=

3αs

π

Z ∞

0

dk′2

k′2

(

φ(x, k′2) + φ(x, k2)

|k′2 − k2|
+

φ(x, k2)√
4k′4 + k4

)

(11)

with

xG(x, Q2) =

Z Q2

dk2

k2
φ(x, k2) (12)

summs all diagrams whithin LL(1/x)A:

αs ln 1/x ≈ 1 αs ln Q2/Q2
0 ≪ 1 αs ≪ 1.

• Also, only longitudinal momenta in the parton cascade are ordered:

x ≪ xi ≪ · · · ≪ x1 ≪ 1 (13)

Q ≈ k⊥i ≈ · · · ≈ k⊥1 ≈ Q0 (14)

• That is why BFKL is an equation in the unintegrated gluon distribution.
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BFKL evolution equation

BFKL Pomeron problems in pQCD:

• Lack of unitarity;

• Diffusion into infrared region of gluon virtualities. (Perturbative theory goes to
nonpertubartive region.)

The cross section at high energy center of momentum in pQCD:

• LLA αa ≪ 1 and αs log s ∼ 1. Leading singularity in complex angular momentum
plane (which corresponds to the vacuum quantum number exchange):

j = 1 + 4Ncαs ln
2

π
(15)

• For QCD the BFKL Pomeron provides that

s → ∞ , σTOT ∼ sj−1 = s0.5 (16)

for αs ≈ 0.2.
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Double logarithm approximation

• We consider the double logarithm approximation (DLA) of pQCD. (For example,
DGLAP at low x.) The kinematic region of interest is:

αs ln 1/x ln Q2/Q2
0 ∼ 1

αs ln 1/x ≪ 1

αs ln Q2/Q2
0 ≪ 1

αs ≪ 1

• This is the same as to state that αs ≪ γ ≪ 1, where the anomalous dimension is
γ = Ncαs

π
.

• Also, a strong ordering in both transverse and longitudinal gluon momenta occurs:

x ≪ xi ≪ · · · ≪ x1 ≪ 1 (17)

Q ≫ k⊥i ≫ · · · ≫ k⊥1 ≫ Q0 (18)
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DGLAP at small x

• In DGLAP, for the evolution of gluon distribution, the vertices considered are quark
splitting into quark and gluon and gluon splitting into two gluons.

• In other words, only gluon emission diagrams are considered.

• In the limit of small x (DLA), DGLAP can be written as:

∂2xg(x, Q2)

∂ ln(1/x)∂ ln Q2
=

αsNc

π
xg(x, Q2). (19)

• At some point, with a large gluon distribution, the emitted gluons can start to
interact.

• Then, the vertex gg → g cannot be neglected.

• Both DGLAP and BFKL do not consider gluon recombination.

• Therefore, a modified DGLAP equation must be considered.
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gg → g vertex

• This vertex allows gluon cascade merging (also called fan diagrams):

γ

N

*
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GLR evolution equation

• The GLR evolution equation is a formalism in DLA derived by Gribov, Levin and
Ryskin.

• It considers gluon recombination (gg → g vertex).

• The GLR equation can be written,

∂2xg(x, Q2)

∂ ln 1
x

∂ ln Q2
=

αsNc

π
xg(x, Q2) (20)

− 4π3N2
c

(N2
c − 1)

1

Q2

α2
s(Q2)

π2
x2g(2)(x, Q2), (21)

where g(2)(x, Q2) is the two-gluon correlation function.

• The coeficient of the two-gluon correlation function was calculated by Mueller and
Qiu in 1986.
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Model for the two-gluon correlation function

• Mueller and Qiu also proposed a model for the two-gluon correlation function.

• They considered gluons homogeneously distributed in the target (in this case, a
nucleon):

x2g(2)(x, Q2) =
9

8

1

πR2
[xg(x, Q2)]2, (22)

in which R2 is not necessarily the nucleon radius, but a distance related with the
region where gluons are spread and dependent on the model used.

• Then, it is seen clear that GLR is a nonlinear equation (using Nc = 3):

∂2xg(x, Q2)

∂ ln 1
x

∂ ln Q2
=

αsNc

π
xg(x, Q2) − 81

16

α2
s(Q2)

Q2
[xg(x, Q2)]2. (23)
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QCD Glauber-Mueller Approach

• For simplicity, DIS is considered in the
target rest frame.

• Q2 is the photon (or gluon) virtuality.
• m is the proton mass.
• x = xBj ≡ Q2

s
, where

√
s = W is the

center of mass energy of the incoming
particle plus the target.

• ~kt is the quark (or gluon) transverse
momentum.

• ~rt is the quark-antiquark (or
gluon-gluon) transverse separation.

• ~bt is the impact parameter of the
reaction (conjugated to ~qt).

• ~lt is the transverse momentum of the
gluon attached to the pair qq̄ (gg).

• z and 1 − z are the energy fractions
carried by the quark-antiquark (or gluon-
gluon) pair.

G∗(Q2, x)

~k

~l ~l − ~q

x′g(x′, l2t )

~p

~rt
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QCD Glauber-Mueller Approach

• The variation of transverse distance rt is

∆r⊥ ∝ R
k⊥

E
(24)

where R is the target size, kt is the parton transverse momentum and E is the pair
energy in the target rest frame.

• Considering that kt ∝ r⊥ It can be showed that

x ≪ 1

2mR
⇒ ∆r⊥

r⊥
≪ 1, (25)

therefore, the parton pair transverse separation holds during the soft radiation and
rt is a good degree of freedom.
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QCD Glauber-Mueller Approach

σN(r2
t )

N

G*(Q2)
r
→

⊥

A A
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QCD Glauber-Mueller Approach

• The cross section between the virtual particle and the nucleon is given by:

σ(G∗) =

Z 1

0
dz

Z

d2r⊥

π
|ΨG∗

⊥ (Q2, r⊥, x, z)|2σGG+nucleon
tot (x, r2

⊥). (26)

• ΨG∗

⊥ is the transversely polarized gluon wave function.

• σGG+nucleon
tot is the cross section between the gluon pair and the nucleon.

• Changes in z during the interaction are neglected.
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QCD Glauber-Mueller Approach

• The cross section can be written as:

σtot(s) = 2

Z

d2b Im a(s, b). (27)

where a(s, b) is the elastic amplitude.

• The unitarity constraint is then:

2 Im a(s, b) = |a(s, b)|2 + Gin(s, b) (28)

where the term Gin represents the sum of all inelastic processes and the elastic
amplitude is given by σel =

R

d2b|a|2.

• In the limit of high energy (x → 0), the real part of a can be neglected and the
solution to the above equation is:

a(s, b) = ı(1 − e−
1
2
Ω) (29)

Gin = 1 − e−Ω (30)
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Opacity function

• The opacity function Ω = Ω(x, r⊥, b) is an arbitrary real function, determined by
the model used for the interaction.

• e−Ω represents the probability of the gluon pair not being inelastically scattered by
the target.

• For large Q2, Ω ≪ 1.

• It will be also considered that Ω(x, r⊥, b) = Ω̃(x, r⊥)S(b).

• Therefore, it can be showed from last equations that (for Ω ≪ 1):

Ω̃ = σGG+nucleon
tot . (31)

• Remembering that the cross section is dominated by gluon distributions, one can
obtain an expression for Ω̃:

σGG+nucleon
tot =

3π2αs

4
r2
⊥xG

 

x,
4

r2
⊥

!

. (32)
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QCD Glauber-Mueller Approach

Putting it all together:

xG(x, Q2) =
2

π2

Z 1

0
dz

Z

d2rt

π

Z

d2bt

π
|ΨG∗

⊥ |2
Z 1

x

dx′

x′

2
n

1 − e−
1
2

σGG+nucleon
tot (x′,r2

t )S(b2t )
o

(33)

Using the approximation

|ΨG∗

⊥ |2 =
2

z(1 − z)r4
⊥

, (34)

xG(x, Q2) =
4

π2

Z 1

x

dx′

x′

Z 1

0
dz

Z ∞

4

Q2

d2rt

πr4
⊥

Z ∞

0

d2b

π

2



1 − e−
1
2

σGG+nucleon
tot (x′,

r2
t
4

)S(b)

ff

(35)
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QCD Glauber-Mueller Approach

The function S(b2) will be parametrized as a Gaussian function:

S(b2) =
1

πR2
e
− b2

R2 . (36)

Hence, integrating over b

xG(x, Q2) =
2R2

π

Z 1

x

dx′

x′

Z 1/Q2
0

1/Q2

dr2
t

r4
t

{C + ln κG + E1(κG)} (37)

where C = 0.577215665 is the Euler constant, E1(x) =
R∞

x
e−udu

u
is the exponential

integral and κG is given by

κG(x, r2
t ) =

3αsπr2
t

2R2
A

xG(x, 1/r2
t ) (38)

The probability interpretation of κG is related to the density of gluons.
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QCD Glauber-Mueller Approach

Partons from different parton cascades

G*
2

1

A

a)

G*
2

1

A

b)

a) Not in Mueller Formalism (MF)
b) MF and GLR
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Gluon structure function for a nucleon

Testing the model:

RN
1 =

xGA=1(x, Q2)

xGGRV (x, Q2)
(39)

Screening correction → sizable contribution at very low x.
The average anomalous dimension

< γ >=
∂ ln(xGN (x, Q2))

∂ ln(Q2/Q2
0)

→ Q2 dependence (40)

the average effective power

< ω >=
∂ ln(xGN (x, Q2))

∂ ln(1/x)
→ x dependence (41)

In semiclassical approach

xGN (x, Q2) ∝ {Q2}<γ>

„

1

x

«<ω>

. (42)
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QCD Glauber-Mueller Approach
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• Screening correction sizable at small x values (no data avaliable).

• For small Q2, the model is not applicable.
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QCD Glauber-Mueller Approach
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• Roughly, GRV and MF gluon distributions present the same behavior for < ω >,
only that it is slightly suppressed for small x values by the corrections.
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QCD Glauber-Mueller Approach
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QCD Glauber-Mueller Approach
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• For nucleus, < ω > is more suppresed.

• However, it is never smaller than 0.08, the soft pomeron value.
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QCD Glauber-Mueller Approach
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• For nucleus, < γ > does not change very much for ln(1/x) < 5.

• However, at smaller values of x, the anomalous dimension presents a sizeable
reduction, which increases with A.

• For Q2 = 1.0GeV 2, the anomalous dimension is close to 1/2, and for
Q2 > 5.0GeV 2 it is always smaller than 1/2.

• For ln(1/x) > 15, < γ > tends to zero, unlike DGLAP solutions.
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QCD Glauber-Mueller Approach

• The gluon structure
function for nucleus: R1

as a function of the
variables ln(1/x), lnQ2

and A1/3;

R1 =
xGA(x, Q2)

AxGN (x, Q2)
.

• For large nucleus R1

behaves as a straight
line.

• The suppression
increases with ln(1/x)

and A and decreases
with Q2.

• The gluon structure func-
tion is far away from the
asymptotic (R1 → 1)
one.
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κ parameter

• κ is the strength of the screening corrections, given by:

κ =
3αsπA

2Q2R2
A

xgDGLAP (x, Q2) (43)

κ ≫ 1 ⇒ Large Screening corrections

κ ≪ 1 ⇒ DGLAP holds
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2
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QCD Glauber-Mueller Approach

• Beyond the Glauber formula

• Second interaction of MF

• corrections to Glauber approach

• towards a complete theory for DIS off a nucleus

• SIMF ⇒ takes into account the rescattering of the next fastest gluon

• Ordering in the parton cascade in leading ln(1/x)

xB < xn < ... < x1 < 1 ⇒ fastest parton in the cascade (44)

In MF

8

<

:

1st interaction ⇒ GN (x, Q2) = GGRV
N (x, Q2)

2nd interaction ⇒ GN (x, Q2) =
xGA(x,Q2)

A
− GN (x, Q2)

• The first term of R.H.S. in the second equation is the result of the first interaction.
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QCD Glauber-Mueller Approach

G* 2

1
 2’

1’

2
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QCD Glauber-Mueller Approach
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AGL Evolution Equation

• It was show how to use the Mueller formula to sum the
screening corrections.

• Then, why an evolution equation is needed?

• It is not sure that the iteration of Mueller equation
converges. (The solution can be unstable.)

• The iteration itself is a cumbersome process.

• Then, when the answer is given by a large number of
or even all iterations, another mathematical framework
is needed.
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AGL Evolution Equation

• The Mueller formula is taken:

xG(x, Q2) =
2R2

π2

Z 1

x

dx′

x′

Z 1

Q2
0

1

Q2

dr2
⊥

r4
⊥

h

C + ln κDGLAP + E1(κDGLAP)
i

(45)

with

κDGLAP(x, Q2) =
Ncαsπ

2Q2R2
xGDGLAP(x, Q2). (46)

• The Mueller equation is derived with relation to ln(Q2/Q2
0) (it is useful to

recognize that ∂ln(Q2/Q2
0
) = Q2∂Q2 = −Q−2∂Q−2 :

∂xG(x, Q2)

∂ ln(Q2/Q2
0)

=
2R2

π2

Z 1

x

dx′

x′
Q2
h

C + ln κDGLAP(x, Q2) + E1(κDGLAP(x, Q2))
i

.

(47)

• Then, the above equation is derived with relation to ln(1/x) (again,
∂ln(1/x) = −x∂x:

∂2xG(x, Q2)

∂ ln(1/x)∂ ln(Q2/Q2
0)

=
2R2Q2

π2

h

C + ln κDGLAP(x, Q2) + E1(κDGLAP(x, Q2))
i

.

(48)
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AGL Evolution Equation

• Finaly, the crutial step: instead of using κDGLAP, simply κ is going to be used:

∂2xG(x, Q2)

∂ ln(1/x)∂ ln(Q2/Q2
0)

=
2R2Q2

π2

ˆ

C + ln κ(x, Q2) + E1(κ(x, Q2))
˜

. (49)

• Then, the equation can be rewritten for κ(x, Q2) (now that

xG(x, Q2) = 2Q2R2

Ncαsπ
κ(x, Q2):

2R2

Ncαsπ

„

∂2Q2κ(x, Q2)

∂ ln(1/x)∂ ln(Q2/Q2
0)

«

=
2R2Q2

π2

ˆ

C + ln κ(x, Q2) + E1(κ(x, Q2))
˜

(50)

∂2κ

∂ ln(1/x)∂ ln(Q2/Q2
0)

+
∂κ(x, Q2)

∂ ln(1/x)
=

Ncαs

π

ˆ

C + ln κ(x, Q2) + E1(κ(x, Q2))
˜

.

(51)

• These equations are the double-differential AGL
evolution equation for the gluon density 49 and for the
κ(x,Q2) parameter 51.
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AGL Evolution Equation

• A generalized evolution equation was derived.

• The purpose of this equation is to sum all screening corrections (all iterations of
Mueller formula).

∂2xG(x, Q2)

∂ ln(1/x)∂ ln(Q2/Q2
0)

=
2R2Q2

π2

ˆ

C + ln κ(x, Q2) + E1(κ(x, Q2))
˜

. (52)

• All functions depend on the same Q2. With a convenient choice of Q2 (for small
distances), only perturbative effects (theoretical known) can be present.

• In spite of that, nonperturbative effects (large distances) cannot be discarded.
They enter in boundary and initial conditions.

• Good equation to separate known (pQCD) and unknown (npQCD).
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GLR from AGL Evolution Equation

• The evolution equation derived must be consistent with previous GLR evolution
equation.

• The GLR dynamics occurs when κ is small. Then;

E1(κ) ≈ −C − ln κ + κ − κ2/4 (53)

and the equation is:

∂2xG(x, Q2)

∂ ln(1/x)∂ ln(Q2/Q2
0)

=
2R2Q2

π2

»

κ(x, Q2) − κ(x, Q2)2

4

–

(54)

∂2xG(x, Q2)

∂ ln(1/x)∂ ln(Q2/Q2
0)

=
2R2Q2

π2

Ncαsπ

2Q2R2

»

xG(x, Q2) − Ncαsπ

2Q2R2

[xG(x, Q2)]2

4

–

(55)

∂2xG(x, Q2)

∂ ln(1/x)∂ ln(Q2/Q2
0)

=
Ncαs

π
xG(x, Q2) − N2

c α2
s

8Q2R2
[xG(x, Q2)]2. (56)

• Since GLR equation is itself a generalization of DGLAP equation in he DLLA, AGL
equation also reproduces DGLAP evolution (smaller κ) in this region.
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AGL Evolution Equation Properties

• The AGL evolution equation summs all diagrams of order
(
ˆ

α ln(1/x) ln(Q2/Q2
0)
˜n) into the gluon function.

• Takes into account the interaction of all partons in a parton cascade with the target.

• All corrections κn are taken in account.

• In the limit Nc → ∞, the equation completely describes the screening corrections.

• For α ln(1/x) ln(Q2/Q2
0) ≈ 1, this equation is equivalent to the Mueller equation

(DGLAP and GLR eq. are not).

• For nuclear gluon distribution, all it has to be done is to redefine κ:

κA(x, Q2) =
Ncαsπ

2Q2R2
A

xGA(x, Q2), (57)

in which the factor A is included in GA(x, Q2).
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bt-dependent AGL Evolution Equation

• AGL equation can be written with a bt dependence. The starting point is the
bt(impact parameter)-dependent Mueller formula:

xG(x, Q2) =
4

π2

Z 1

x

dx′

x′

Z 1

Q2
0

1

Q2

dr2
⊥

r4
⊥

Z ∞

0
2 [1 − exp(−κ)] (58)

∂2κ(y, ξ, bt)

∂y∂ξ
+

∂κ

∂y
=

Ncαs

π

n

1 − e−κ(x,Q2,bt)
o

≡ Fbt
(κ) (59)

•
P

Feynman diagrams at

αsyξ = 1

αsy < 1 , αsξ < 1 , αs ≪ 1

αsκ ≤ 1

9

>

>

=

>

>

;

DLA pQCD (60)

κ considers the parton-parton interaction in the perturbative cascade
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Solutions of AGL Equation

• AGL equation is a second order hiperbolic partial differential equation.

• Therefore, two initial conditions are required.

• At fixed x and Q2 → ∞, the gluon distribution must be te same as the one given
by DGLAP equation:

κ(x, Q2) =
Ncαsπ

2Q2R2
xGDGLAP(x, Q2). (61)

• At small x = x0 (y = y0, αsyξ ≤ 1):

κ → κin =
Ncαsπ

2Q2R2
xG(x, Q2) (62)

where the xG is given by the modified Mueller formula.

• For x0 = 10−2 and Q2 ≥ 1 GeV2 the pQCD calculations are valid.

• For simplicity, the variables y = ln(1/x) (rapidity) and ξ = ln(Q2/Q2
0) are going to

be used.
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Asymptotic solution of AGL Equation

• For small x, one can suppose that the solution does not depend on ξ:

lim
y→∞

κ(y, ξ) = κa(y). (63)

• The AGL equation for the asymptotic solution is then:

dκa

dy
= F (κa). (64)

• The equation above can be solved analitically:

y − y0 =

Z κa(y)

κa(y−y0)

dκ′

F (κ′)
(65)

• If ᾱsy > 1, then κa → ᾱsy ln ᾱsy.

• If ᾱs(y − y0) < 1, then κa → κ(y0)eᾱs(y−y0).
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Solutions of AGL Equation

• To see if the asymptotic solution exists, one has to show that the correction goes to
zero for large y.

• Look for solution in the form

κ(y, ξ) = κa(y) + ∆κ(y, ξ − ξ0) (66)

where ∆κ ≪ κa.

∂2∆κ(y, ξ)

∂y∂ξ
+

∂∆κ(y, ξ)

∂y
=

dF (κ)

dκ

˛

˛

˛

˛

κ=κa

∆κ(y, ξ) (67)

dF (κ)

dκ
→ 0, at large y,

∆κ

κ
→ 0. (68)
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Solutions of AGL Equation

∂2κ(y, ξ, bt)

∂y∂ξ
+

∂κ

∂y
=

Ncαs

π

n

1 − e−κ(x,Q2,bt)
o

≡ Fbt
(κ) (69)

• The bt-dependent equation also has an asymptotic solution

κ = κa(y, bt) ⇒
dκa

dy
= Fbt

(κa) (70)

Z κa(y,bt)

κa(y0,bt)

dκ′

Fbt
(κ′)

= y − y0 (71)

then

κa(y, bt) = ln
n

1 +
“

eκa(y0,bt) − 1
”

eᾱs(y−y0)
o

(72)

• If ᾱsy ≫ 1, then κa(y, bt) → αsy

• If ᾱs(y − y0) < 1, then κa(y, bt) → κa(y, bt)eᾱs(y−y0).
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Solutions of AGL Equation

• Semiclassical approach: κ = eS (with ∂S
∂y

= ω and ∂S
∂ξ

= γ).

• Suppose that ∂2S
∂y∂ξ

≪ ωγ and then:

∂S

∂y

∂S

∂ξ
+

∂S

∂y
= e−SF (eS) = φ(S) (73)

ω(γ + 1) = φ(S) (74)

and for bt one would have F (κ) → Fbt
(κ).

• Introducing a set of characteristics ξ(t), y(t), S(t), ω(t), γ(t) for
F (ξ, y, S, ω, γ) = ω(γ + 1) − φ(S) = 0, one is left with the following equations:

dξ

dt
= Fγ ,

dy

dt
= Fω ,

dS

dt
= γFγ + ωFω , (75)

dγ

dt
= −(Fξ + γFS),

dω

dt
= −(Fy + ωFS) (76)
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Solutions of AGL Equation

dξ

dt
= ω,

dy

dt
= γ + 1,

dS

dt
= ω(2γ + 1), (77)

dγ

dt
= φ′(S)γ,

dω

dt
= φ′(S)ω. (78)

• Eliminating the dependence in t by the second equation above and the
dependence in ω by ω(γ + 1) = φ(S):

dξ

dy
=

φ(S)

(γ + 1)2
,

dS

dy
=

2γ + 1

(γ + 1)2
φ ,

dγ

dy
= φ

γ

γ + 1
(79)

• Initial conditions

S0 = ln κin(y0, ξ0), γ0 =
∂ ln κin(y0, ξ)

∂ξ

˛

˛

˛

˛

ξ=ξ0

(80)

• y0 is fixed but ξ0 is not.

• Numerical solution?
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Solutions of AGL Equation

• The trajectories of nonlinear equation approach DGLAP for γ0 < −1/2

• For γ0 > −1/2, dS
dy

> 0 and dγ
dy

> 0

-5.0 0.0 5.0 10.0 15.0 20.0 25.0 30.0 35.0 40.0
0.0

10.0

20.0

30.0

Contour plot  for Nonlinear eq.
I.C. from Q

2
=0.6 to 2.5 Gev

2 
(A=1)

y=ln(1/x)

ξ=ln(Q
2
)

R=.95, .9, .8, .6, .4, .2
from below.
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Solutions of AGL Equation

0.0 10.0 20.0 30.0
-0.80

-0.60

-0.40

-0.20

0.00

γ

y=ln(1/x)

• γ evolution: when γ goes to zero as y grows, the nonlinear effects play an
important role. The respective trajectory tends to a vertical line, and the AGL
solution tends to the asymptotic one.

• When γ goes to a constant, the AGL solution tends to the DGLAP one.
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Solutions of AGL Equation
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• Left plot: Ca. Right plot: Au.

• R lines show that the screening corrections are big.

• Trajectories and contour plot for the solutions of the generalized equation.
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Solutions of AGL Equation
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AGL with running αs

αs(Q
2) =

4π

β0ε
, β0 = 11 − 2

3
nf , ε = ln

 

Q2

Λ2
QCD

!

(81)

G ↔ κG

xG(x, Q2) =
2Q2R2

Ncπ

β0

4π
εκG(x, Q2) (82)

from that

∂2κG(y, ε)

∂y∂ξ
+

„

1

ε
+ 1

«

∂κG(y, ε)

∂y
=

Ncαs(Q2)

π
{C + ln κG + E1(κG)} (83)

limit large ε ⇒ AGL (fixed αs)
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AGL with running αs

Solution asymptotic case,

∂κasymp
G (y, ε)

∂y
=

ε

1 + ε
H(κG) (84)

Z κ
asymp
G

(y)

κ
asymp
G

(y−y0)

dκ′
G

H(κ′
G)

=
ε

1 + ε
(y − y0) (85)

Same steps as before,

xG(x, Q2) =
ε

1 + ε

2NcQ2R2

3π2
ln(1/x) ⇒ αs ln s (86)

Large ε(Q2) ⇒ solution fixed αs, partial saturation is not modified ⇒ unitarity correction
before NLO.
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Evolution equations

HIGH DENSITY
DYNAMICS

McLerran et al.
(JIMWLK)

Ayala, Gay Ducati and Levin
DLLA

Balitsky and Kovchegov
LLA (x)

perturbative QCD

- Multiple IP exchange.

- Glauber-Mueller approach.

- Parton dynamics

(DGLAP, GLR).

- Multiple IP exchange.

- Dipole picture.

- Parton dynamics

(DGLAP, GLR).

- Effective Lagrangian.

- Wilson Renormalization Group.

- Gluonic field.

(BFKL, BK)
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Evolutions equations

ln(1/x)

Q2

DLAB
F
K
L

B
K

AGL

JIMWLK

DGLAP
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Evolution equations

• Linear evolution

◦ DGLAP (∼1977) evolves quark and gluon distributions in Q2.
dg(x,Q2)

d ln Q2 =
αs(Q2)

2π

R 1
x

dy
y

h

Pgq

“

x
y

”

qS
i (y, Q2) + Pgg

“

x
y

”

g(y, Q2)
i

,

(Dokshitzer, Gribov, Lipatov, Altarelli, Parisi)
◦ BFKL (∼1977) evolves non-integrated gluon distribution in x.

∂φ(x,k2
⊥

)

∂ ln(1/x)
= 3αs

π
k2
⊥

R∞
0

dk′2
⊥

k′2
⊥

(

φ(x,k′2
⊥

)+φ(x,k2
⊥

)

|k′2
⊥

−k2
⊥
|

+
φ(x,k2

⊥
)

q

4k′4
⊥

+k4

)

,

(Balitsky, Fadin, Kuraev, Lipatov)• Non-linear evolution

◦ GLR (1983) evolves xg(x, Q2) in x and Q2.
∂2xg(x,Q2)

∂ ln Q2∂ ln 1/x
= αsNc

π
xg(x, Q2) − α2

sγ

Q2R2 [xg(x, Q2)]2
(Gribov-Levin-Ryskin)

◦ AGL (1997) evolves κG(x, Q2) = Ncαsπ
2Q2R2 xg(x, Q2) in x and Q2.

∂2κG(x,Q2)

∂(ln 1/x)∂(ln Q2)
+

∂κG(x,Q2)
∂(ln 1/x)

= Ncαs
π

[C + ln(κG) + E1(κG)]
(Ayala-MBGD-Levin)

◦ BK (1996-1999) evolves the the dipole density (N ) in Y = ln(1/x).
∂2N(~x01,~b0,Y )

∂Y ∂ ln(1/x2
01

Λ2
QCD

)
= αsCF

π
[2 − N(~x01,~b0, Y )]N(~x01,~b0, Y )

(Balitsky-1996; Kovchegov-1999)

◦ JIMWLK (∼1997-01) evolves the color charge sources correlation in

Y = ln(1/x). ∂WY [ρ]
∂Y

= 1
2

R

δ
δρa

Y
(x⊥)

χab(x⊥, y⊥)[ρ] δ
δρb

Y
(y⊥)

WY [ρ],

(Jalilian-Marian, Kovner, Leonidov, Weigert, Iancu, McLerran)
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