High energy diffractive $\gamma\gamma$ scattering

Werner K. Sauter

sauter@if.ufrgs.br

Grupo de Fenomenologia de Altas Energias *(GFPAE),* Instituto de Física, UFRGS - RS - Brazil

Č

Summary

- Introduction
- Formalism: BFKL Pomeron
- Results: $\gamma\gamma$
- Applications:
 - ultra-peripheral heavy ion collisions
 - e^+e^- collisions
- Forthcoming studies
 - Higher conformal spins
 - Virtual photons
 - NLO BFKL
 - Polarization, helicity and non-colinear quarks
- Conclusions

Introduction

- Understanding of high energy hadron processes from a fundamental perspective within Quantum Chromodynamics (QCD)
- Regge limit ($s \gg |t|$) in QCD \Rightarrow Lipatov *et al.* \Rightarrow QCD Pomeron , described by BFKL equation

Introduction

- Understanding of high energy hadron processes from a fundamental perspective within Quantum Chromodynamics (QCD)
- Regge limit ($s \gg |t|$) in QCD \Rightarrow Lipatov *et al.* \Rightarrow QCD Pomeron , described by BFKL equation
- ▶ off-shell photon scattering at high energy in e⁺ e⁻ colliders ⇒ advantage: not involve a non-perturbative target
- Vector meson pairs production in $\gamma\gamma$ collisions (Ginzburg *et al.*) as a test of BFKL Pomeron.
- Perturbative calculation for heavy mesons. Light meson production only in the case of large momentum transfer.

Introduction

- Understanding of high energy hadron processes from a fundamental perspective within Quantum Chromodynamics (QCD)
- Regge limit ($s \gg |t|$) in QCD \Rightarrow Lipatov *et al.* \Rightarrow QCD Pomeron , described by BFKL equation
- ▶ off-shell photon scattering at high energy in e⁺ e⁻ colliders ⇒ advantage: not involve a non-perturbative target
- Vector meson pairs production in $\gamma\gamma$ collisions (Ginzburg *et al.*) as a test of BFKL Pomeron.
- Perturbative calculation for heavy mesons. Light meson production only in the case of large momentum transfer.
- $\gamma\gamma \rightarrow V_1V_2$ in BFKL framework (V.G. & W.S., *Eur. Phys. J.* **C44**(2005) 515) with $V_i = \rho, \omega, \phi, J/\Psi, \Upsilon$ vector mesons in the large t exchange \Rightarrow large rapidity gap in the final state.
- Successful description of meson photo-production in HERA with the BFKL formalism (Enberg, Motyka, Poludniowsky), even in the case of light mesons.

Applicability on another processes with photon scattering: ultra peripheral heavy ion collisions, e^+e^- collisions.

Scattering amplitude, differential cross section and total cross section:

$$\operatorname{Im} \mathcal{A}(s,t) = \frac{16\pi}{9t^2} \mathcal{F}(z,\tau), \quad \frac{d\sigma}{dt} = \frac{1}{16\pi} |\mathcal{A}(s,t)|^2, \quad \sigma(\gamma\gamma \to V_1 V_2) = \int_{|t|_{min}}^{\infty} d|t| \quad \frac{d\sigma(\gamma\gamma \to V_1 V_2)}{d|t|}$$
(1)

with
$$z = \frac{3\alpha_s}{2\pi} \ln\left(\frac{s}{\Lambda^2}\right), \ \tau = \frac{|t|}{M_V^2 + Q_\gamma^2}$$

where M_V is the mass of the vector meson, Q_γ^2 is the photon virtuality and Λ^2 is a characteristic scale related to M_V^2 and |t|

Scattering amplitude, differential cross section and total cross section:

$$\operatorname{Im} \mathcal{A}(s,t) = \frac{16\pi}{9t^2} \mathcal{F}(z,\tau), \quad \frac{d\sigma}{dt} = \frac{1}{16\pi} |\mathcal{A}(s,t)|^2, \quad \sigma(\gamma\gamma \to V_1 V_2) = \int_{|t|_{min}}^{\infty} d|t| \quad \frac{d\sigma(\gamma\gamma \to V_1 V_2)}{d|t|}$$
(1)

with
$$z = \frac{3\alpha_s}{2\pi} \ln\left(\frac{s}{\Lambda^2}\right), \ \tau = \frac{|t|}{M_V^2 + Q_\gamma^2}$$

where M_V is the mass of the vector meson, Q_γ^2 is the photon virtuality and Λ^2 is a characteristic scale related to M_V^2 and |t|

▶ In this work $Q_{\gamma} = 0$ and in LLA Λ is arbitrary (see below) and α_s is constant.

) BFKL amplitude in LLA approximation and lowest conformal spin (n = 0)

(2)
$$\mathcal{F}_{\rm BFKL}(z,\tau) = \frac{t^2}{(2\pi)^3} \int d\nu \frac{\nu^2}{(\nu^2 + 1/4)^2} e^{\chi(\nu)z} I_{\nu}^{\gamma V_1}(Q_{\perp}) I_{\nu}^{\gamma V_2}(Q_{\perp})^*$$

where

$$t = -Q_{\perp}^2, \quad \chi(\nu) = 4\mathcal{R}e\left(\psi(1) - \psi\left(\frac{1}{2} + i\nu\right)\right)$$

and

$$I_{\nu}^{\gamma V_{i}}(Q_{\perp}) = \int \frac{d^{2}k_{\perp}}{(2\pi)^{2}} \,\mathcal{I}_{\gamma V_{i}}(k_{\perp}, Q_{\perp}) \int d^{2}\rho_{1} d^{2}\rho_{2} \left(\frac{(\rho_{1} - \rho_{2})^{2}}{\rho_{1}^{2}\rho_{2}^{2}}\right)^{1/2 + i\nu} e^{ik_{\perp} \cdot \rho_{1} + i(Q_{\perp} - k_{\perp}) \cdot \rho_{2}}$$

> BFKL amplitude in LLA approximation and lowest conformal spin (n = 0)

(3)
$$\mathcal{F}_{\rm BFKL}(z,\tau) = \frac{t^2}{(2\pi)^3} \int d\nu \frac{\nu^2}{(\nu^2 + 1/4)^2} e^{\chi(\nu)z} I_{\nu}^{\gamma V_1}(Q_{\perp}) I_{\nu}^{\gamma V_2}(Q_{\perp})^*$$

where

$$t = -Q_{\perp}^2, \quad \chi(\nu) = 4\mathcal{R}e\left(\psi(1) - \psi\left(\frac{1}{2} + i\nu\right)\right)$$

and

$$I_{\nu}^{\gamma V_{i}}(Q_{\perp}) = \int \frac{d^{2}k_{\perp}}{(2\pi)^{2}} \,\mathcal{I}_{\gamma V_{i}}(k_{\perp}, Q_{\perp}) \int d^{2}\rho_{1} d^{2}\rho_{2} \left(\frac{(\rho_{1} - \rho_{2})^{2}}{\rho_{1}^{2}\rho_{2}^{2}}\right)^{1/2 + i\nu} e^{ik_{\perp} \cdot \rho_{1} + i(Q_{\perp} - k_{\perp}) \cdot \rho_{2}}$$

 \blacktriangleright The impact factors $\mathcal{I}_{\gamma V_i}$ in pQCD (leading terms) are

(3)
$$\mathcal{I}_{\gamma V_i} = \frac{\mathcal{C}_i \alpha_s}{2} \left(\frac{1}{\bar{q}^2} - \frac{1}{q_{\parallel}^2 + k_{\perp}^2} \right)$$

where

$$I_{\nu}^{\gamma V_{i}}(Q_{\perp}) = -\mathcal{C}_{i} \alpha_{s} \frac{16\pi}{Q_{\perp}^{3}} \frac{\Gamma(1/2 - i\nu)}{\Gamma(1/2 + i\nu)} \left(\frac{Q_{\perp}^{2}}{4}\right)^{i\nu} \int_{1/2 - i\infty}^{1/2 + i\infty} \frac{du}{2\pi i} \left(\frac{Q_{\perp}^{2}}{4M_{V_{i}}^{2}}\right)^{1/2 + u} \Gamma^{2}(1/2 + u)$$

$$\times \frac{\Gamma(1/2 - u/2 - i\nu/2)\Gamma(1/2 - u/2 + i\nu/2)}{\Gamma(1/2 + u/2 - i\nu/2)\Gamma(1/2 + u/2 + i\nu/2)}$$

Comparison with Born level (two gluon exchange):

$$\mathcal{F}_{\rm Born}(s,t) = 2\pi t^2 \int \frac{d^2k}{(2\pi)^2} \, \frac{\mathcal{I}_{\gamma V_1} \, \mathcal{I}_{\gamma V_2}}{k_{\perp}^2 (k_{\perp} - Q_{\perp})^2}$$

Note: Non-perturbative gluon propagators contributions in MBG,WS (*Phys. Lett.* **B521** (2001) 259).

$$I_{\nu}^{\gamma V_{i}}(Q_{\perp}) = -\mathcal{C}_{i} \alpha_{s} \frac{16\pi}{Q_{\perp}^{3}} \frac{\Gamma(1/2 - i\nu)}{\Gamma(1/2 + i\nu)} \left(\frac{Q_{\perp}^{2}}{4}\right)^{i\nu} \int_{1/2 - i\infty}^{1/2 + i\infty} \frac{du}{2\pi i} \left(\frac{Q_{\perp}^{2}}{4M_{V_{i}}^{2}}\right)^{1/2 + u} \Gamma^{2}(1/2 + u)$$

$$(4) \qquad \times \frac{\Gamma(1/2 - u/2 - i\nu/2)\Gamma(1/2 - u/2 + i\nu/2)}{\Gamma(1/2 - u/2 + i\nu/2)}$$

×
$$\frac{1}{\Gamma(1/2 + u/2 - i\nu/2)\Gamma(1/2 + u/2 + i\nu/2)}$$

Comparison with Born level (two gluon exchange):

$$\mathcal{F}_{\rm Born}(s,t) = 2\pi t^2 \int \frac{d^2k}{(2\pi)^2} \frac{\mathcal{I}_{\gamma V_1} \,\mathcal{I}_{\gamma V_2}}{k_{\perp}^2 (k_{\perp} - Q_{\perp})^2}$$

Note: Non-perturbative gluon propagators contributions in MBG,WS (*Phys. Lett.* **B521** (2001) 259).

• Choice of the parameters: $\alpha_s=0.2$, $\Lambda^2=\beta_1M_{V_1}^2+\beta_2M_{V_2}^2+\gamma|t|$, with $\beta_1=\beta_2=1/2$

• Combinations with light mesons have a total cross section cut in $|t|_{min} = 1$ GeV². With heavy mesons, $|t|_{min} = 0$ GeV²

• Differential cross section (Solid line: W = 100 GeV; dashed line: W = 500 GeV; dot-dashed line: W = 1000 GeV; dot-dot-dashed: Born level)

• Differential cross section (Solid line: W = 100 GeV; dashed line: W = 500 GeV; dot-dashed line: W = 1000 GeV; dot-dot-dashed: Born level)

- $d\sigma/dt$ behavior: decrease when the masses increase; become flatter
- The inclusion of BFKL machinery result: growth of the cross section and a different t-behavior; steeper t-dependence in comparison with the Born calculation.

Total cross sections. Left: Solid line: BFKL ($|t|_{min} = 0 \text{ GeV}^2$); dashed line: BFKL ($|t|_{min} = 1 \text{ GeV}^2$); dot-dashed line: FELIX ($|t|_{min} = 0 \text{ GeV}^2$); dot-dot-dashed line: FELIX ($|t|_{min} = 1 \text{ GeV}^2$); dot-dashed-dashed line BFKL-fit from FELIX. Right: solid line: BFKL ($|t|_{min} = 0 \text{ GeV}^2$); dashed line: BFKL ($|t|_{min} = 1 \text{ GeV}^2$).

Total cross sections. Left: Solid line: BFKL ($|t|_{min} = 0 \text{ GeV}^2$); dashed line: BFKL ($|t|_{min} = 1 \text{ GeV}^2$); dot-dashed line: FELIX ($|t|_{min} = 0 \text{ GeV}^2$); dot-dot-dashed line: FELIX ($|t|_{min} = 1 \text{ GeV}^2$); dot-dashed-dashed line BFKL-fit from FELIX. Right: solid line: BFKL ($|t|_{min} = 0 \text{ GeV}^2$); dashed line: BFKL ($|t|_{min} = 1 \text{ GeV}^2$).

- σ_{tot} : decrease when mass increase; small difference when mass increase between $|t|_{min} = 0$ and 1.
- GFPAE
- ▶ BFKL effects: strongly increases with the energy $\Rightarrow \sigma_{tot} \approx W^{\lambda}$, $|t_{min}| = 0 \rightarrow \lambda \approx 1.6$, $|t_{min}| = 1 \rightarrow \lambda \approx 1.4$

- Comparison with another attempts:
 - Ginzburg *et al.*: Born level \Rightarrow present results agree for light and heavy mesons.
 - Gonçalves & Machado: small-t approx., ansatz for the slope and approx. solution of BFKL eq. \Rightarrow similar W dep., \neq normalization. NLO correction gives a softer W dep.
 - ▶ FELIX Coll.: Pomeron exchange factorization $\Rightarrow \neq$ normalization & energy dep. \Rightarrow violation of this factorization, to be tested in future colliders.
 - ▶ Dosch *et al.*: Stochastic Vacuum model needs energy dependence *by hand* ⇒ BFKL have steeper dependence. Heavy mesons: agree in low energy, but not in high W due the parametrization.
 - Motyka & Ziaja, Gonçalves & Machado: probe of the gluon distribution on mesons ⇒ similar results (but depends on the parameters used in calculation).

- Comparison with another attempts:
 - Ginzburg *et al.*: Born level \Rightarrow present results agree for light and heavy mesons.
 - Gonçalves & Machado: small-t approx., ansatz for the slope and approx. solution of BFKL eq. \Rightarrow similar W dep., \neq normalization. NLO correction gives a softer W dep.
 - FELIX Coll.: Pomeron exchange factorization $\Rightarrow \neq$ normalization & energy dep. \Rightarrow violation of this factorization, to be tested in future colliders.
 - Dosch *et al.*: Stochastic Vacuum model needs energy dependence *by hand* ⇒ BFKL have steeper dependence. Heavy mesons: agree in low energy, but not in
 high W due the parametrization.
 - Motyka & Ziaja, Gonçalves & Machado: probe of the gluon distribution on mesons ⇒ similar results (but depends on the parameters used in calculation).

	TESLA	CLIC	ILC
ho ho	8.0	2.0	28.0
$ ho J/\Psi$	28.0	5.0	100.0
$J/\Psi J/\Psi$	2.0	0.4	8.0
$\Upsilon\Upsilon$	0.0002	0.00004	0.0007

> Estimations of number of events in new linear colliders (number of events per second)

The number may be consider a lower bound in number of events ⇒ The process could be used to constraint the QCD dynamics.

Applications: ultra-peripheral heavy ion collisions

- Long range electromagnetic interaction $\Rightarrow \sigma \approx Z^4 \alpha^4$.
- Total cross-section in factorized form,

$$\sigma_{AA \to AA V_1 V_2}(s) = \int d\tau \, \frac{d\mathcal{L}_{\gamma\gamma}}{d\tau} \, \hat{\sigma}_{\gamma\gamma \to V_1 V_2}(\hat{s})$$

where $d\mathcal{L}_{\gamma\gamma}/d au$ is the $\gamma\gamma$ luminosity (Cahn/Jackson)

Applications: ultra-peripheral heavy ion collisions

Results:

Cross section in nb (events/mouth)

$$t_{\mathrm min} = 1 \, \mathrm{GeV}^2$$

$V_1 V_2$	RHIC		LHC	
	Si	Au	Ca	Pb
ho ho	10^{-2} (0.42)	1.2 (0.2)	$4.3 (2 \times 10^3)$	432 (181)
$\omega\omega$	$6 \times 10^{-5} (3 \times 10^{-3})$	$8 \times 10^{-3} (10^{-3})$	0.03 (15)	3 (1.2)
$\phi\phi$	2×10^{-3} (0.01)	$0.02 (4 \times 10^{-3})$	0.14 (74)	14 (6)
$ ho\omega$	$7 imes 10^{-4}$ (0.03)	0.1 (0.02)	0.3 (174)	34 (14)
$ ho \phi$	10^{-3} (0.06)	0.16 (0.03)	0.7 (378)	73 (31)
$\omega\phi$	6×10^{-4} (0.03)	$0.013(3 imes 10^{-3})$	0.06 (32)	6 (3)

$t_{\min} = \overline{0 \, \mathrm{G} e V^2}$

$V_1 V_2$	RHIC		LHC	
	Si	Au	Ca	Pb
ρρ	3.2 (140)	340 (68)	2821 (10 ⁶)	2×10^5 (10 ⁵)
$\omega\omega$	0.02 (1)	2 (0.5)	20 (10 ⁵)	$1.6 imes 10^3$ (690)
$\phi\phi$	0.02 (0.9)	1.6 (0.3)	20 (10 ⁵)	$1.6 imes 10^3$ (704)
$ ho\omega$	0.5 (23)	55 (11)	500 (2.10 ⁵)	4×10^5 (1.6 $\times 10^5$)
$ ho \phi$	0.2 (10)	22 (4.5)	230 (10 ⁵)	2×10^5 (1.6 $\times 10^5$)
$\omega\phi$	0.02 (0.9)	2 (0.4)	19 (10 ⁵)	$1.6 imes 10^3$ (667)

Applications: ultra-peripheral heavy ion collisions

- $\blacktriangleright \text{ large difference} \Rightarrow \text{contributions of small } t$
- huge light meson production at LHC energies

$V_1 V_2$	RHIC		LHC	
	Si	Au	Ca	Pb
$ ho J/\Psi$	8×10^{-3} (0.34)	0.25 (0.05)	$15(7 \times 10^3)$	1200 (504)
$\omega J/\Psi$	6×10^{-4} (0.03)	$0.02(4 \times 10^{-3})$	1.3 (657)	101 (42)
$\phi J/\Psi$	4×10^{-3} (0.18)	0.08 (0.01)	$2 \times 10^4 (10^7)$	8×10^4 (3 $\times 10^4$)
$ ho\Upsilon$	$10^{-6} (5 \times 10^{-5})$	$3 \times 10^{-6} (6 \times 10^{-7})$	0.02 (10)	1.3 (0.5)
$\omega \Upsilon$	$10^{-7} (4 \times 10^{-6})$	$2 \times 10^{-7} (5 \times 10^{-8})$	10^{-3} (0.85)	0.1 (0.04)
$\phi \Upsilon$	$2 \times 10^{-7} (8 \times 10^{-6})$	$4 \times 10^{-7} (10^{-7})$	2×10^{-3} (1.5)	0.2 (0.08)

Light-heavy mesons

Heavy-heavy mesons

	HEAVY ION	$J/\PsiJ/\Psi$	$J/\Psi\Upsilon$	ΥΥ
RHIC	SiSi	$2 \times 10^{-3} (10^{-2})$	$1.6 \times 10^{-7} (7 \times 10^{-6})$	$8 \times 10^{-10} (4 \times 10^{-8})$
	AuAu	$2 \times 10^{-3} (5 \times 10^{-4})$	$2 \times 10^{-7} (3 \times 10^{-8})$	$6 \times 10^{-11} (10^{-11})$
LHC	CaCa	0.74 (387)	3×10^{-3} (1.8)	8×10^{-5} (0.05)
	PbPb	61 (26)	0.25 (0.1)	$5 \times 10^{-3} (2 \times 10^{-3})$

> Decrease of cross-section with the increase of the meson mass

• Increase of the cross sections in comparison with the Born level \Rightarrow QCD Pomeron effects

Applications: e^+e^- collisions

- Simplicity of the initial state
- Observable in future linear colliders (TESLA,CLIC,ILC)
 - \blacktriangleright photon emission from lepton beams \Rightarrow Weizsäcker-Williams (WW) energy distribution
 - electron beam into photon beam by backscattering of photons off an intense laser beam
- Cross section

$$\sigma_{e^+e^- \to e^+e^- V_1 V_2}(\sqrt{s_{ee}}) = \int_0^1 dx_a \int_0^1 dx_b \,\Theta(\hat{s} - \hat{s}_{min}) f_{\gamma/e}(x_a) f_{\gamma/e}(x_b) \sigma_{\gamma\gamma \to V_1 V_2}(\hat{s})$$

with the WW energy spectrum

$$f_{\gamma/e}(x) = \frac{\alpha_{\rm em}}{2\pi} \left\{ \frac{1 + (1-x)^2}{x} \ln\left(\frac{Q_{max}^2}{Q_{min}^2}\right) - 2m^2 x \left[\frac{1}{Q_{min}^2} - \frac{1}{Q_{max}^2}\right] \right\}$$

where α_{em} is the EM coupling constant, $x = E_{\gamma}/E$, $Q_{min}^2 = (m^2 x^2)/(1-x)$, $Q_{max}^2 = E^2(1-x)\theta_{max}^2$ and

$$\sigma_{\gamma\gamma\to V_1V_2}(\hat{s}) = \int_{t_{min}}^{\infty} dt \, \frac{d\sigma_{\gamma\gamma\to V_1V_2}}{dt}(\hat{s})$$

High energy diffractive $\gamma \gamma$ scattering – p.13

Applications: e^+e^- collisions

Results:

	$\sqrt{s_{ee}}$ =	= 200 GeV	$\sqrt{s_{ee}}$:	= 500 GeV	$\sqrt{s_{ee}}$ =	= 1000 GeV	$\sqrt{s_{ee}} =$	3000 GeV
$ ho J/\Psi$	0.90	(0.015)	5.80	(0.049)	21.87	(0.097)	178.19	(0.22)
$\phi J/\Psi$	0.11	(0.0023)	0.69	(0.0073)	2.58	(0.014)	20.77	(0.033)
$\omega J/\Psi$	0.075	(0.0013)	0.48	(0.0041)	1.85	(0.0081)	15.03	(0.019)
$J/\Psi J/\Psi$	0.045	(0.0021)	0.27	(0.0066)	0.98	(0.012)	7.56	(0.031)
$ ho\Upsilon$	0.0013	(0.000055)	0.0093	(0.00017)	0.036	(0.00034)	0.31	(0.00080)
$\omega\Upsilon$	0.00011	(0.0000055)	0.00078	(0.000017)	0.0030	(0.000034)	0.026	(0.000080)
$\phi\Upsilon$	0.0002	(0.000011)	0.0013	(0.000034)	0.0050	(0.000068)	0.040	(0.00016)
$J/\Psi\Upsilon$	0.00025	(0.000027)	0.0015	(0.000086)	0.0052	(0.00017)	0.038	(0.00040)
ΥΥ	0.0000072	2 (0.0000014)	0.000038	(0.0000045)	0.00012	2 (0.000088)	0.0008	8 (0.000020)

 $|t|_{min} = 0$ and $\theta_{max} = 30$ mrad, BFKL Pomeron (Two-gluon). Cross sections in pb.

 $|t|_{min} = 1 \text{ GeV}^2$ and $heta_{max} = 30$ mrad, BFKL Pomeron (Two-gluon). Cross sections in pb

	$\sqrt{s_{ee}} = 200 \text{GeV}$	$\sqrt{s_{ee}} = 500 \text{GeV}$	$\sqrt{s_{ee}} = 1000 \text{GeV}$	$\sqrt{s_{ee}} = 3000 \text{GeV}$
ρρ	0.18 (0.035)	1.03 (0.11)	3.60 (0.21)	26.62 (0.51)
$ ho\phi$	0.033 (0.0053)	0.19 (0.016)	0.66 (0.032)	4.87 (0.077)
$ ho \omega$	0.015 (0.0030)	0.088 (0.0093)	0.309 (0.018)	2.28 (0.043)
$\phi\phi$	0.0067 (0.00084)	0.038 (0.0026)	0.130 (0.0051)	0.951 (0.012)
$\phi \omega$	0.0029 (0.00044)	0.016 (0.0013)	0.057 (0.0027)	0.41 (0.0064)
$\omega\omega$	0.0013 (0.00025)	0.007 (0.00080)	0.026 (0.0025)	0.19 (0.0036)

Number of events per year at TESLA, CLIC and ILC ($\sqrt{s_{ee}}$ = 500 GeV and $\theta_{max} = 30$ mrad).

	TESLA	CLIC	ILC
ho ho	350200.0	206000.0	226600.0
$ ho J/\Psi$	1972000.0	1160000.0	1276000.0
$J/\Psi J/\Psi$	91800.0	54000.0	59400.0
ΥΥ	12.92	7.6	8.4

- Comparison with previous results:
 - Kwiecinski/Motyka, full BFKL with IR cut and NLO BFKL with kinematic cuts: similar results
 - > Ziaja/Motyka, gluon distribution in $\rho J/\psi$
- Results are conservative (not include the soft Pomeron contribution)
 - \Rightarrow bound for real production

- Higher conformal spins
 - > BFKL kernel have conformal (Möbius) transformation symmetry
 - Fourier series solution for the equation ⇒ summation of eigenfunctions ⇒ usually only the n = 0 is consider ⇒ n ≠ 0 is sub-dominant ⇒ small differences.

- Higher conformal spins
 - BFKL kernel have conformal (Möbius) transformation symmetry
 - Fourier series solution for the equation ⇒ summation of eigenfunctions ⇒ usually only the n = 0 is consider ⇒ n ≠ 0 is sub-dominant ⇒ small differences.
- Virtual photons
 - same calculation \Rightarrow modification in the energy scale
 - ▶ recent calculation on $\gamma^*\gamma^* \rightarrow \rho\rho$ (Pire *et all.*)

- Higher conformal spins
 - > BFKL kernel have conformal (Möbius) transformation symmetry
 - Fourier series solution for the equation ⇒ summation of eigenfunctions ⇒ usually only the n = 0 is consider ⇒ n ≠ 0 is sub-dominant ⇒ small differences.
- Virtual photons
 - \blacktriangleright same calculation \Rightarrow modification in the energy scale
 - ▶ recent calculation on $\gamma^*\gamma^* \rightarrow \rho\rho$ (Pire *et all.*)
- NLO BFKL
 - ▶ hard task to include next leading order contributions (BFKL t = 0: 1977 ⇒ $t \neq 0$: 1986, NLO BFKL 1998) ⇒ *Large* contributions
 - Use a kinematic veto (Kwiecinski/Motyka)
 - ▶ Problems on energy scale choice (renormalization schemes: \overline{MS} , MOM) ⇒ BLM scheme ⇒ used in $\gamma^*\gamma^* \rightarrow hadrons$ with LEP & LEPII data
 - ▶ previous calculations (Brodsky & The Russian Gang) use NLO BFKL kernel with LO photon impact factors ⇒ a *true* calculation includes the NLO impact factors ⇒ Ivanov, Kotsky, Papa: *HUGE* expressions

- Helicity contributions (Enberg, Motyka, Poludniowski)
 - ▶ more general impact factor ⇒ polarization (odd, even) helicity amplitudes
 - include more complete meson wave functions
 - include conformal spins
 - complex analytical structure
 - describes the DESY data (HERA, ZEUS) in meson photo-production

Conclusions

- Probe QCD dynamics in a new & unexplored kinematic regime
- γγ processes have a important rôle in background contributions in other processes.
- γγ processes can constrain the QCD dynamics in more clear process.
- Future photon colliders can be experimentally check this predictions.

- Regge theory \Rightarrow measurable quantities from general postulates from S matrix \Rightarrow Lorentz invariance, unitarity, analyticity, dispersion relations
- In Regge limit ($s \gg |t|$), exchange in t channel: $\mathcal{A}(s,t) \propto s^{\alpha(t)}, \ \alpha(t) = \alpha(0) + \alpha' t$

- Regge theory \Rightarrow measurable quantities from general postulates from S matrix \Rightarrow Lorentz invariance, unitarity, analyticity, dispersion relations
- In Regge limit ($s \gg |t|$), exchange in t channel: $\mathcal{A}(s,t) \propto s^{\alpha(t)}, \ \alpha(t) = \alpha(0) + \alpha' t$
- Dominant contribution in high energies \Rightarrow vacuum quantum numbers exchange \Rightarrow **Pomeron**
- Frajectory: $\alpha_{\mathbb{P}}(t) = 1,08 + 0,25 t. \Rightarrow$ not exist any particle related with this trajectory \Rightarrow "glueball"
- > Description of hadronic collisions (proton-proton and proton-antiproton)

- Regge theory \Rightarrow measurable quantities from general postulates from S matrix \Rightarrow Lorentz invariance, unitarity, analyticity, dispersion relations
- In Regge limit ($s \gg |t|$), exchange in t channel: $\mathcal{A}(s,t) \propto s^{\alpha(t)}, \ \alpha(t) = \alpha(0) + \alpha' t$
- Dominant contribution in high energies \Rightarrow vacuum quantum numbers exchange \Rightarrow **Pomeron**
- Trajectory: $\alpha_{\mathbb{P}}(t) = 1,08 + 0,25 t. \Rightarrow$ not exist any particle related with this trajectory \Rightarrow "glueball"
- Description of hadronic collisions (proton-proton and proton-antiproton)
- \blacktriangleright QCD as the theory of strong interactions \times results of Regge theory.
- QCD simplest object \Rightarrow two gluons in color singlet state
- summation of dominant Feynman diagrams in the Regge regime (order by order)
- Result: gluon ladder with uncrossed rungs, vertical gluons "reggeized", non-local vertexes, strong ordering of the momenta along the ladder.
- Integral equation for the Mellin transform of the scattering amplitude: <u>Balitskii-Fadin-Kuraev-Lipatov</u> Equation.

(

- Regge theory \Rightarrow measurable quantities from general postulates from S matrix \Rightarrow Lorentz invariance, unitarity, analyticity, dispersion relations
- In Regge limit ($s \gg |t|$), exchange in t channel: $\mathcal{A}(s,t) \propto s^{\alpha(t)}, \ \alpha(t) = \alpha(0) + \alpha' t$
- Dominant contribution in high energies \Rightarrow vacuum quantum numbers exchange \Rightarrow **Pomeron**
- Trajectory: $\alpha_{\mathbb{P}}(t) = 1,08 + 0,25 t. \Rightarrow$ not exist any particle related with this trajectory \Rightarrow "glueball"
- Description of hadronic collisions (proton-proton and proton-antiproton)
- \blacktriangleright QCD as the theory of strong interactions \times results of Regge theory.
- QCD simplest object \Rightarrow two gluons in color singlet state
- summation of dominant Feynman diagrams in the Regge regime (order by order)
- Result: gluon ladder with uncrossed rungs, vertical gluons "reggeized", non-local vertexes, strong ordering of the momenta along the ladder.
- Integral equation for the Mellin transform of the scattering amplitude: <u>Balitskii-Fadin-Kuraev-Lipatov</u> Equation.
- Differences between the BFKL eq. solutions and the Regge theory: cut in the amplitude instead poles; large dominant singularity \Rightarrow violation of the Froissart-Martin limit: $\sigma_{tot} \leq \ln^2 s$;
- > BFKL eq. as a diffusion eq.: IR divergences
- Solutions: NLO BFKL, unitarity corrections,...

