

Origem, Propagação e Detecção dos Raios Cósmicos Ultra-energéticos

M. A. Betemps[†]

† marcos.betemps@ufrgs.br

High Energy Phenomenology Group

Instituto de Física

Universidade Federal do Rio Grande do Sul

Porto Alegre, Brazil

GFPAE - UFRGS

http://www.if.ufrgs.br/gfpae

- Breve histórico
- Raios Cósmicos
- Definições importantes
- Raios cósmicos ultra energéticos (UHECR)
- Origem e Propagação:
 - Cenários "Bottom-up" e "Top-down"
- Neutrinos e raios γ
- Propriedades dos Raios Cósmicos
 - Direção de chegada
 - Composição
 - Energia
- Métodos de Detecção
- Experimentos
- Observatório Pierre Auger
- Resultados experimentais
- Conclusões

Um breve histórico

- Final do século XIX \Rightarrow propriedades elétricas do ar.
 - Radiatividade natural que vinha do chão.
 - Começo do século XX Goeckel com balão \Rightarrow radiação diminuia.
 - Entre 1911-1914, V. Hess e Kolhöster com balão \Rightarrow radiação aumenta.
- 1927 D. Zkobelzyn fotografou o primeiro traço de um raio cósmico.
- Millikan e Compton \Rightarrow medidas da intensidade da radiação.
- Anderson em 1932 \Rightarrow descoberta do pósitron com raios cósmicos.

Um breve histórico

- 1937 Neddermeyer e Anderson detectam o múon
- 1938 Pierre Auger detecta os chuveiros extensos.
- 1946 Primeiro experimento para detectar chuveiros extensos.
- 1949 surge a teoria de Fermi dos raios cósmicos (tenta explicar um mecanismo de aceleração das partículas).
- **9** 1962 Detecção do primeiro raio cósmico com 10^{20} eV.
- 1964 Detecção da radiação de microondas de fundo do Universo.
- 1966 Proposta do cutoff GZK.
- 1991 Fly's Eye detecta raios cósmicos ultra energéticos
- 1994 AGASA detecta evento de raio cósmico ultra energético.
- 1995 Início do projeto Pierre Auger.

Definições Importantes: Relembrar

1 parsec (pc) é igual a 3,3 anos-luz

 $30 Mpc = 30.10^6 \times 3, 3 \, \mathrm{anos}\text{-luz} = 99.10^6 \, \mathrm{anos} \, \mathrm{luz}$

Steradians (estereoradiano) é a medida de um ângulo sólido. Uma esfera completa, subentende 4π estereoradianos (rad²). Dada uma esfera de raio 1, a região com área igual a unidade na superfície da esfera subentende um ângulo sólido de 1 estereoradiano.

ângulo contínuo subentendido no centro de uma esfera do raio r por uma parcela da superfície da esfera que tem uma área r^2 .

- Raio de Larmor: raio da órbita circular que uma partícula carregada descreve transversamente ao campo magnético.
- Radiação Cherenkov ⇒ radiação emitida quando partículas carregadas passam através da matéria com uma velocidade maior que a da luz no meio.
- Luz Fluorescente ⇒ luz emitida isotropicamente por certas substâncias quando excitadas por raios cósmicos. A emissão se dá num comprimento de onda menor do que o comprimento de onda absorvido. A intensidade é proporcional ao número de partículas carregadas no chuveiro. Reemissão cessa logo após excitação.

O que são Raios Cósmicos

Partículas que provêm do espaço exterior e bombardeiam a Terra, de todos os lados.

Raios Cósmicos

PAE

- Os raios cósmicos foram medidos até energias da ordem de 10^{20} eV.
- Abaixo apresentamos o fluxo destes raios em termos da energia dos mesmos.

M. A. Betemps - Exame de Doutorado - 10/2006 - p.

GFPAE

Chuveiro Extensos no Ar (EAS)

Chuveiro Extensos no Ar (EAS)

Partículas energéticas interagindo com a atmosfera

PAE

Chuveiro Extensos no Ar (EAS)

PAE

Chuveiro Extensos no Ar (EAS)

Fluorescencia e Radiação Cherenkov.

FPAE

Raios Cósmicos Ultra-energéticos

- Podemos considerar raios cósmicos ultra-energéticos como sendo os raios cósmicos com energias da ordem de 10^{20} eV.
- O fluxo para esta energia é de aproximadamente 1 partícula por km² por século.
- Considerando toda a superfície terrestre teremos 5.10⁶ part./(sr. ano)
- Considerando o maior experimento de raios cósmicos \Rightarrow 30 part/sr ano.

	110.01000
Partículas que constituem os raios cósmicos <	prótons
	elétrons
	X ??

- O que medimos são partículas do Modelo Padrão (SM).
- Partícula X \Rightarrow além do SM.
- A constituição dos UHECR depende da origem.
- Origem dos UHECR \Rightarrow dois cenários

bottom-up \Rightarrow	aceleração
top-down \Rightarrow	decaimento

Núcleos

Existem ainda os modelos híbridos.

Cenário "Bottom-up"

- Partículas carregadas aceleradas em meios astrofísicos:
 - Aceleração direta de partículas carregadas em campos elétricos.
 - Aceleração estatística (aceleração de Fermi) em plasmas magnetizados.

Aceleração direta:

- Estrêlas de nêutrons rotativas (pulsar) com campos magnéticos superficiais.
- Discos de acreção (com rotação) permeados por campos magnéticos.
- Aceleração Estatística:
 - Remanescentes de super-novas;
 - Núcleos de galáxias ativas (AGNs);
 - Galáxias com forte emissão na frequência de rádio;
 - Explosão de raios γ (GRBs);
 - Buracos negros não ativos na frequência de rádio;
 - Galáxias colisoras;
 - Conjunto de galáxias.

Trataremos apenas dos processos de acelaração estatística

Aceleração de Fermi

- Proposto por Fermi (Phys. Rev. 75, 1169 (1949)).
- Aceleração devido a espalhamento com nuvens magnéticas, massivas, que atuam como centros de espalhamento.
- O fluxo de partículas sob a influência da aceleração de Fermi \Rightarrow equação de difusão.

A densidade de partículas com energia entre E e E + dE é

$$\frac{dn(E)}{E} \approx -\left(1 + \frac{1}{\alpha t_{esc}}\right)\frac{n}{E}$$

- $t_{esc} \Rightarrow$ tempo do processo de aceleração (relacionado com a dimensão do objeto acelerador)
- Espectro de energia da distribuição de partículas neste processo de aceleração

$$n(E) \propto E^{-(1+(\alpha t_{esc})^{-1})}$$

- Fluxo de raios cósmicos $\Rightarrow E^{-p}$ (índice p não universal)
- depende das configurações locais.

Espectro Resultante (Fermi)

Energia média ganha por colisão

$$\frac{\langle \Delta E \rangle}{E} \sim \frac{8}{3} \frac{V^2}{c^2}$$

- Segunda ordem em V/c (Aceleração de Fermi de 2^a ordem).
- Embora o processo possa ser descrito como espalhamento por centros espalhadores, na realidade, temos aceleração de partículas carregadas

 Campo elétrico originados de campos magnéticos variáveis

$$\nabla \times \vec{E} = -\frac{\partial \vec{B}}{\partial t}$$

Processo de espalhamento numa nuvem magnética

 $E_{max} \propto ZeBR$

- - Raio de Larmor menor que a região de aceleração.

Primeira Ordem Fermi

Fermi Segunda-ordem

PAE

- Processo Lento
- Processo Ineficiente (Espectro E^{-p})
- Não prediz índice universal para o espectro.

Aceleração de Fermi de Primeira Ordem

- Partículas aceleradas por fortes ondas de choque propagando-se no meio interestelar
- Prediz uma lei de potência para o espectro
- Índice espectral universal para a potência

Útil para excluir possíveis fontes de UHECR

After A.M. Hillas

Propagação dos UHECR

Partículas energéticas através Radiação cósmica de fundo (CMB)Campos magnéticos

Raios cósmicos (partículas do modelo padrão) \Rightarrow Perda de energia

M. A. Betemps - Exame de Doutorado - 10/2006 - p.13

Perda de energia para $p + \gamma \rightarrow p + \pi^0$

- Energia média da radiação de fundo $\Rightarrow \varepsilon \approx 6.3 \times 10^{-4}$ eV.
- Para ter produção de píon $\Rightarrow \sqrt{s_{min}} = m_p + m_{\pi}^0 \sim 1.08 \text{ GeV}$ $s = m_p^2 + 2(1 - \cos \theta) E_p \varepsilon.$
- P para $\cos \theta = 0$, a energia mínima do próton deve ser $E_{min} \sim 2.3 \times 10^{20}$ eV

Considerando interações com $\cos \theta < 0$ podemos ter energias mínimas menores.

- Perda de energia com $E_p \ge 5.10^{19} \text{ eV}$
- 20 % de perda em cada colisão.
- Fração de energia perdida na interação $\Rightarrow k_{inel}$.
- Sendo λ o comprimento de interação
- Definimos o comprimento de perda de energia (comprimento de atenuação).

$$L_{loss} = \lambda / k_{inel}$$

Cutoff GZK

- Perda de energia devido a interações com o CMB
- Cutoff no espectro de próton e núcleos $pprox 5 imes 10^{19}~{
 m eV}$

Greisen-Zatsepin-Kuz'min (GZK) Cutoff

Energia média dos prótons como função da distância de propagação no CMB.

Prótons adquirem energias inferiores a 10²⁰ eV após propagar-se por distâncias da ordem de 100 Mpc, quase que independentemente da energia inicial.

Prótons com $E > 10^{20}$ eV devem ter origem dentro $R < R_{GZK} \equiv 100$ Mpc.

Conseqüências no Espectro de UHECR

- Deve-se verificar um cut-off no espectro
- Comprimento de atenuação decresce com a energia
- Assumir uma lei de potência para o espectro injetado de UHECR

$$J_{in}(E) \propto E^{-\alpha}$$

- n(r) sendo a densidade de fontes
- O fluxo de fontes individuais decresce com r^{-2} , o qual compensa a integração $r^2 dr$.

$$J(E) \propto \int_0^{R(E)} n(r) dr \propto R(E)$$

se a distribuição de fontes não depende de r.

- R(E) é o comprimento de atenuação (distância em que raios cósmicos com energia E pode alcançar)
- Decresce com a energia: 1000 Mpc ($E < 5 \times 10^{19}$) e 10 Mpc ($E > 5 \times 10^{19}$).

O fluxo decai em duas ordens de magnitude para energia GZK se as fontes são uniformente distribuidas.

Direção de chegada

- Não existe preferência de uma grande taxa de eventos oriundos do plano da galáxia ou qualquer outra concentração astrofísica de matéria.
- Próton de 10^{19} eV num campo magnético de 1 μ G \Rightarrow Raio de Larmor 10 kpc.
- $\mu G \Rightarrow$ disco da galáxia
- Solution Campo magnético extragaláctico $\ll \mu G$.
- **Origem Galáctica** \Rightarrow anisotropia na direção do disco da galáxia (Sem cut-off GZK)
- Origem Extra-galáctica \Rightarrow Podem indicar diretamente a origem (Com cut-off GZK)
- Distribuição isotrópica em larga escala.
- Distribuição não isotrópica em pequenas escalas.
- Considerando dados UHECR "isotrópico" ..
 → Temos distribuição não isotrópica
 de luz < 100 Mpc da Terra.???
 </p>

Galáctica × Extra-galáctica

Definindo o fator de modificação

$$\eta(E) = \frac{J_p(E)}{J_p^{unmod}}$$

- J(E) \Rightarrow Espectro com todos os processos de perda de energia.
- J(E)^{unmod} \Rightarrow Espectro sem perdas (apenas adiabática (expansão)).
- J(E)^{unmod} $\propto E^{-\gamma_g}$ ($\gamma_g \Rightarrow$ índice de geração do espectro sem perdas).
- Tipos de perda:
 - Adiabática (expansão)

 - **9** $GZK \Rightarrow$ fotoprodução de píon

Considerando-se próton, obtém-se

Núcleos como UHECR

Comparando-se núcleos e prótons como principais constituintes dos UHECR

Resultado experimental

PAE

- Interação dos Raios Cósmicos com CMB
- Indica prótons como constituinte principal dos UHECR.

Bottom-up

- "Bottom-up" \Rightarrow Modelo Padrão:
 - UHECR podem ser compostos por núcleos, prótons ou fótons que são acelerados por algum objeto astrofísico.
 - Se existe "cutoff" GZK nos resultados experimentais \Rightarrow origem extragaláctica.
 - Resultados além dos GZK → origem galáctica (Problemas com direção de chegada).
 - Indicação de que UHECR são predominante formados de prótons.

Dois problemas: energia e direção

Solução: Física além do modelo padrão??

Novas Propostas

- "Bottom-up" \Rightarrow além do Modelo Padrão:
 - UHECR composto por partículas supersimétricas. pouca perda de energia na interação com CMB. Produzidas como partículas secundárias na fonte ou na propagação de partículas conhecidas.
 - UHECR são nucleons e/ou raios γ produzidos dentro do limite GZK de distância através de interação de neutrinos de altas energias com neutrinos do background. Exige alguma espécie de neutrino com massa ~ eV (compatível com oscilação atmosférica de neutrinos).
 - Objeto astrofísico para acelerar prótons a extremas energias (10^{23}) .
 - Luminosidade muito alta na fonte.
 - Requerem matéria escura super massiva.
 - UHECR são nucleons, porém alguma modificação nas leis fundamentais é permitida, por exemplo uma pequena violação invariância de Lorentz. Esta violação elimina (ou desloca) o "cutoff" GKZ e nucleons podem ser oriundos de fontes extragalácticas.

Cenário "Top-down" e Outras proposta

- Principais problemas com o cenário "Bottom-up"
 - Poucos objetos astrofísicos possuem campos eletromagnéticos estendidos sobre grandes regiões para acelerar prótons a extremas energias.
 - Inexistência do "cutoff" GZK implica que as fontes dos UHECR devem estar situadas dentro de uma região de < 100 Mpc. Não se verifica nenhuma fonte de UHECR relacionando com as direções de chegada, nem galactica ou extragalactica.
- Outras propostas:
 - Partículas supersimétricas [P. Bhattacharjee, G. Sigl, Phys. Repts. 327, 109 (2000)].
 - Violação da Invariância de Lorentz, Modificação da relação de dispersão ("top-down" e "bottom-up") [J.R. Chisholm, E.W. Kolb, Phys. Rev. D 69, 085001 (2004).]

$$E^2 = p^2 c^2 + m^2 c^4$$

- Idéia básica cenário "Top-down":
 - Solution Postula a existência de partículas X, com $m_X \ge 10^{12}$ eV e tempo de vida $\tau_X \ge 10^{10}$ anos.

- As partículas X foram produzidas por colapso, aniquilação, ou outro processo envolvendo sistemas cosmológicos com defeitos topológicos tais como,
 - cordas cósmicas,
 - monopólos magnéticos,
 - cordas cósmicas supercondutoras.
- Produzidas na fase de quebra de simetria da evolução do Universo. Neste caso as partículas tem massa tão grande quanto a escala GUT $\sim 10^{16}$ GeV.
- Partículas X são relíquias, supermassivas e metaestáveis,

 - tempo de vida comparável a idade do Universo.
- Produzidas no estágio de expansão do Universo de redução de partículas por inflação, são candidatas a matéria escura fria do Universo.

O decaimento destas partículas pode explicar a não existência do "cutoff" GZK nos resultados experimentais.

Neutrinos de Altas Energias e Raios γ

- ν 's de altíssimas energias e raios γ podem surgir do decaimento de algum processo exótico ("top-down").
- ν 's e raios $\gamma \rightarrow$ decaimento dos píons \Rightarrow GZK processes.

$$n \rightarrow p + e^{-} + \bar{\nu}_{e}$$

$$\pi^{+} \rightarrow \mu^{+} + \nu_{\mu}$$

$$\mu^{+} \rightarrow e^{+} + \nu_{e} + \bar{\nu}_{\mu}$$

- ν 's podem viajar por grandes distâncias...
- Pouco provável que sejam responsáveis pelos UHECR.
- medida do fluxo \Rightarrow informações adicionais (ANITA, IceCube, etc.).
- $\nu e \gamma$ possíveis UHECR em modelos "Top-Down".

Raios Cósmicos Ultra-energéticos \Rightarrow fótons

Métodos de Detecção

- $E < 10^{14} \text{ eV} \Rightarrow$ detecção direta por balões ou satélites.
- $E > 10^{15} \text{ eV} \Rightarrow$ baixo fluxo (não é possível detecção direta).
- Usa-se a atmosfera como calorímetro:
 - Chuveiro registrado por detectores na superfície da Terra;
 - Funcionais todo tempo do processo.
 - Independente das condições climáticas.
 - A qualidade dos dados melhora com o aumento da energia.
 - Determinação da direção de chegada pela diferença de tempos de chegada dos UHECR.
 - Energia determinada a partir da simulação da distribuição lateral do chuveiro.
 - Não observa a evolução do EAS.
 - Traçado da luz fluorescente emitida quando o chuveiro excita moléculas de nitrogênio no ar.
 - Analisa a evolução do EAS na atmosfera
 - Extensa região de detecção
 - Detecção conjunta determina a direção de chegada com precisão.
 - Estima energia a partir da intensidade da fluorescência (forma mais direta).
 - Operam apenas em noites claras sem lua e com boas condições climáticas (10%)

Geometria Detector de fluorescência

$$t_i - t_0 = \frac{R_p}{c} \tan\left(\frac{\theta_i}{2}\right)$$

$$\theta_i = \pi - \psi - \chi_i$$

$$N_{\gamma} = N_e Y_{\gamma} \frac{\Delta L}{4\pi r^2} \exp\left(\frac{-r}{r_e}\right) A,$$

- \blacksquare N_e número de partículas carregadas.
- $\mathbf{P} = Y_{\gamma}$ eficiência de fluorescência do ar.
- r distância ao fotomultiplicador.
- r_e comprimento de extinção do fóton.
- A área óptica do espelho.

- Haverah Park (UK)
 - Detectores de solo.
- Yakutsk (Rússia)
 - Detectores de solo.
- AGASA (Japão)
 - Detectores de solo.
- Fly's Eye HiRes (USA)
 - Detectores de luz fluorescente.
- Observatório Pierre Auger (Argentina)
 - Detectores de solo e detectores de luz fluorescente.

Experimentos (AGASA)

Akeno Giant Air Shower Array

- AGASA Ground Array (02/1990 01/2004) Observatório de Akeno (Japão)
 - $100 \text{ km}^2 \text{ com } 111 \text{ detectores de solo.}$
 - Detectores cintilantes.
 - 9 27 detectores de múons.

High Resolution Fly's Eye

- High Resolution Fly's Eye (1987 2006) Universidade de Utah
 - 2 detectors de fluorescência

High Resolution Fly's Eye

Observatório Pierre Auger

- Projetado para medir raios cósmicos com energias acima de 10^{18} eV:
 - Fluxo;
 - Distribuição de direção de chegada;
 - Composição.
- Prevê instrumentos em ambos hemisférios (Sul Argentina / Norte EUA). (Brasil)
- **9** 3000 km 2 por sítio.
- 1600 detectores Cherenkov no solo distanciados 1,5 km (900 coletando dados e 200 já montados).
- 4 estações de detectores de luz fluorescente com 6 telescópios cada (3 estações coletando dados).
 - Detector híbrido.

Estrutura do Observatório

Detector de Fluorescência

Detecção de fótons ultravioletas fluorescentes

PAE

Detector de Fluorescência

Detector de Partículas Carregadas

Detector Cherenkov

Constituição dos Chuveiros

- Como diferenciar chuveiros iniciados por núcleos, prótons ou elétrons??
- Para uma mesma energia, os chuveiros são mais penetrantes para núcleos mais leves.
- X_{max} é a profundidade na atmosfera onde o perfil do chuveiro partônico atinge seu máximo.
- Dados dos detectores de fluorescência.
- Utilizar conhecimentos de laboratório para simular evolução do chuveiro.
 - Sibyll.

PAE

- QGSJET.
- Black-body limit (BBL).
- Dependência no modelo de evolução.

Resultados Experimentais

Resultados Experimentais

Máximo do chuveiro X_{max}

Fator de Modificação η

FPAE

M. A. Betemps - Exame de Doutorado - 10/2006 - p.44

Direção de Chegada

Não verifica-se anisotropia na direção do centro da galáxia.

Resultados Experimentais Auger

- Não há ainda identificação das possíveis fontes dos UHECR.
- Simulações sugerem UHECR compostos principalmente de prótons.
- Evidência de perda de energia pela produção de pares.
- Conflito na existência de perda de energia GZK.
- Não é verificada nenhuma direção preferencial de chegada.
- Resultados de Auger ainda não esclarecem a questão

- T. Stanev, SLAC Summer Institute on Particle Physics (SSI04), 2004.
- P. Bhattacharjee, G. Sigl, Pjys. Repts. 327, 109 (2000).
- A.V. Olinto, Phys. Repts, 333-334, 329 (2000).
- A.A. Watson, Phys. Repts, 333-334, 309 (2000).
- J.W. Cronin, Nucl. Phys. B (Nucl. Suppl.) 138, 465 (2005).
- V. Berezinsky et. al. Phys. Lett. B 612, 147 (2005).
- L. O'C Drury, Rep. Prog. Phys. 46, 973 (1983).
- Auger Collaboration, Nucl. Instr. Meth. Phys. Res. A 523, 50 (2004).
- A. Zech, astro-ph/0605344
- Hires Fly's Eye Collaboration, Phys. Rev. Lett. 92, 151101 (2004).
- Hires Fly's Eye Collaboration, Astropart. Phys.23, 157 (2005).
- M. Takeda, et al. Astropart. Phys. 19, 447 (2003).