

Raios Cósmicos Ultra Energéticos

M. A. Betemps[†]

† marcos.betemps@ufrgs.br

High Energy Phenomenology Group

Instituto de Física

Universidade Federal do Rio Grande do Sul

Porto Alegre, Brazil

GFPAE - UFRGS

http://www.if.ufrgs.br/gfpae

- Breve histórico
- Raios Cósmicos
- Definições importantes
- Raios cósmicos ultra energéticos (UHECR)
- Cenários "Bottom-up" e "Top-down"
- Neutrinos e raios γ
- Direção de chegada
- Métodos de Detecção
- Observarório Pierre Auger
- Constituição dos chuveiros
- Resultados experimentais recentes
- Conclusões

Um breve histórico

- Final do século XIX \Rightarrow propriedades elétricas do ar.
 - Radiatividade natural que vinha do chão.
 - Começo do século XX Goeckel com balão \Rightarrow radiação diminuia.
 - Entre 1911-1914, V. Hess e Kolhöster com balão \Rightarrow radiação aumenta.
- 1927 D. Zkobelzyn fotografou o primeiro traço de um raio cósmico.
- Millikan e Compton \Rightarrow medidas da intensidade da radiação.
- Anderson em 1932 \Rightarrow descoberta do pósitron com raios cósmicos.

Um breve histórico

- 1937 Neddermeyer e Anderson detectam o múon
- 1938 Pierre Auger detecta os chuveiros extensos.
- 1946 Primeiro experimento para detectar chuveiros extensos.
- 1949 surge a teoria de Fermi dos raios cósmicos (tenta explicar um mecanismo de aceleração das partículas).
- **9** 1962 Detecção do primeiro raio cósmico com 10^{20} eV.
- 1964 Detecção da radiação de microondas de fundo do Universo.
- 1966 Proposta do cutoff GZK.
- 1991 Fly's Eye detecta raios cósmicos ultra energéticos
- 1994 AGASA detecta evento de raio cósmico ultra energético.
- 1995 Início do projeto Pierre Auger.

O que são Raios Cósmicos

Partículas que provêm do espaço exterior e bombardeiam a Terra, de todos os lados.

Definições Importantes: Relembrar

1 parsec (pc) é igual a 3,3 anos luz

 $30 Mpc = 30.10^6 \times 3, 3 = 99.10^6 {\rm anos} ~{\rm luz}$

Steradians (estereoradiano) é a medida de um ângulo sólido. Uma esfera completa, subentende 4π estereoradianos (rad²). Dada uma esfera de raio 1, a região com área igual a unidade na superfície da esfera subentende um ângulo sólido de 1 estereoradiano.

ângulo contínuo subentendido no centro de uma esfera do raio r por uma parcela da superfície da esfera que tem uma área r^2 .

- Raio de Larmor: raio da órbita circular que uma partícula carregada descreve transversamente ao campo magnético.
- Radiação Cherenkov ⇒ radiação emitida quando partículas carregadas passam através da matéria com uma velocidade maior que a da luz no meio.
- Luz Fluorescente ⇒ luz emitida por moléculas de nitrogênio da atmosfera quando excitadas por raios cósmicos.

Raios Cósmicos

PAE

- Os raios cósmicos foram medidos até energias da ordem de 10^{20} eV.
- Abaixo apresentamos o fluxo destes raios em termos da energia dos mesmos.

M. A. Betemps - Seminrios GFPAE - 2006/1 - p.

Raios Cósmicos Ultra-energéticos

- Podemos considerar raios cósmicos ultra-energéticos como sendo os raios cósmicos com energias da ordem de 10²⁰ eV.
- O fluxo para esta energia é de aproximadamente 1 partícula por km² por século.
- Considerando toda a superfície terrestre teremos 5.10⁶ part./(sr. ano)
- Solution Considerando o maior experimento de raios cósmicos \Rightarrow 30 part/sr ano.

Partículas que constituem os raios cósmicos elétrons X ??

- O que medimos são partículas do Standard Model.
- Partícula X \Rightarrow além do Standard Model.
- A constituição depende da origem.
- Origem dos UHECR \Rightarrow dois cenários

bottom-up \Rightarrow	aceleração
top-down \Rightarrow	decaimento

Existe ainda os modelos híbridos.

Cenário "Bottom-up"

- Partículas carregadas aceleradas em meios astrofísicos:
 - Aceleração direta de partículas carregadas em campos elétricos.
 - Aceleração estatística (aceleração de Fermi) em plasmas magnetizados.

Aceleração direta:

- Estrêlas de nêutrons rotativas (pulsar) com campos magnéticos superficiais.
- Discos de acreção (com rotação) permeados por campos magnéticos.
- Aceleração Estatística:
 - Remanescentes de super novas;
 - Núcleos de galáxias ativas (AGNs);
 - Galáxias com forte emissão na frequência de rádio;
 - Explosão de raios gamms (GRBs);
 - Buracos negros não ativos na frequência de rádio;
 - Galáxias colisoras;
 - Conjunto de galáxias.

Trataremos apenas dos processos de acelaração estatística

Mecanismos de aceleração

Proposto por Fermi (Phys. Rev. 75, 1169 (1949)).

Idéia básica

- Campo elétrico médio nulo.
- Pode existir uma transferência de energia cinética → plasma magnetizado para partículas carregadas.
- Ocorre devido a repetidos espalhamentos das partículas com inomogeneidade dos campos magnéticos ou com frente de choque.
- O formalismo orginal de Fermi é chamado de "Mecanismo de segunda ordem de Fermi"
- Mecanismo de aceleração por choque difusivo ("DSAM").
 - Mecanismo de Fermi \Rightarrow espalhamento por frente de choque planas.
 - Partículas emergem com espectro que obedece lei de potência.
- Energia máxima de aceleração:

$E_{max} \propto ZeBR$

 $B \Rightarrow$ valor do campo magnético. $R \Rightarrow$ dimensão linear do objeto

After A.M. Hillas

Propagação dos UHECR

Partículas energéticas através \Rightarrow Radiação cósmica de fundo (CMB)
Campos magnéticos

Raios cósmicos (partículas do modelo padrão) \Rightarrow Perda de energia

M. A. Betemps - Seminrios GFPAE - 2006/1 - p.12

Perda de energia para $p + \gamma \rightarrow p + \pi^0$

- Energia média da radiação de fundo média $\Rightarrow \varepsilon \approx 6.3 \times 10^{-4}$ eV.
- Para ter produção de píon $\Rightarrow \sqrt{s_{min}} = m_p + m_{\pi}^0 \sim 1.08 \text{ GeV}$ $s = m_p^2 + 2(1 - \cos \theta) E_p \varepsilon.$
- P para $\cos \theta = 0$, a energia mínima do próton deve ser $E_{min} \sim 2.3 \times 10^{20}$ eV
- Considerando interações com $\cos \theta < 0$ podemos ter energias mínimas menores.
- Perda de energia com $E_p \ge 5.10^{19} \text{ eV}$
- Inelasticidade $k_{inel} \Rightarrow$ fração de energia perdida na interação.
- Definindo $L_{loss} = \lambda / k_{inel}$ ($\lambda \Rightarrow$ comprimento de interação)

Cutoff GZK

PAE

- Perda de energia devido a interações com o CMB
- Cutoff no espectro de próton e núcleos $pprox 6 imes 10^{19} \text{ eV}$

Greisen-Zatsepin-Kuz'min (GZK) Cutoff

Energia média dos prótons como função da distância de propagação no CMB.

- Inexistência cutoff GZK \Rightarrow origem UHECR \Rightarrow vizinhança cosmológica ~ 50 Mpc.
- Existência do GZK \Rightarrow UHECR \Rightarrow origem extragaláctica.

Cenário "Top-down" e Outras proposta

- Principais problemas com o cenário "Bottom-up"
 - Pouco objetos astrofísicos possuem campos eletromagnéticos extendidos sobre grandes regiões para acelerar prótons a extremas energias.
 - Inexistência do "cutoff" GZK implica que as fontes dos UHECR devem estar situadas dentro de uma região de ~ 50 Mpc. Não se verifica nenhuma fonte de UHECR relacionando com as direções de chegada, nem galactica ou extragalactica.
- Idéia básica cenário "Top-down":
 - Solution Postula a existência de partículas X, com $m_X \ge 10^{12}$ eV e tempo de vida $\tau_X \ge 10^{10}$ anos.
- Outras propostas:
 - Partículas supersimétricas [P. Bhattacharjee, G. Sigl, Phys. Repts. 327, 109 (2000)].
 - Violação da Invariância de Lorentz, Modificação da relação de dispersão ("top-down" e "bottom-up") [J.R. Chisholm, E.W. Kolb, Phys. Rev. D 69, 085001 (2004).]

$$E^2 = p^2 c^2 + m^2 c^4$$

Neutrinos de Altas Energias e Raios γ

- ν 's de altíssimas energias e raios γ podem surgir do decaimento de algum processo exótico ("top-down").
- \checkmark ν 's podem viajar por grandes distâncias...
- Pouco provável que sejam responsáveis pelos UHECR.
- \blacksquare medida do fluxo \Rightarrow informações adicionais.

Raios Cósmicos Ultra-energéticos
$$\Rightarrow \begin{cases} prótons \\ núcleos \\ fótons \end{cases}$$

Direção de chegada

- Não existe preferência de uma grande taxa de eventos oriundos do plano da galáxia ou qualquer outra concentração astrofísica de matéria.
- Próton de 10^{19} eV num campo magnético de $1\mu G \Rightarrow$ Raio de Larmor 10 kpc.
- $\mu G \Rightarrow$ disco da galáxia
- Campo magnético extragaláctico $\ll \mu G$.
- Direção de chegada do UHECR (próton, núcleos) \Rightarrow direção da fonte (erro de alguns graus).
- Distribuição isotrópica em larga escala.
- Distribuição não isotrópica em pequenas escalas. Galactic Latitude
- dados UHECR "isotrópico" ⇒ distribuição não isotrópica de luz a 50 Mpc da Terra.???

89 events, $E > 4x10^{19}$ eV AGASA(red), Haverah(green), Yakutsk(blue), Volca

Tentando Organizar?

- "Bottom-up" \Rightarrow Modelo Padrão:
 - UHECR composto por núcleos, prótons ou fótons são acelerados por algum objeto astrofísico.
 - Se existe "cutoff" GZK nos resultados experimentais \Rightarrow origem extragaláctica.
 - Resultados além dos GZK → origem galáctica (Problemas com direção de chegada).

Dois problemas: energia e direção

Solução: Física além do modelo padrão??

Novas Propostas

- "Bottom-up" \Rightarrow além do Modelo Padrão:
 - UHECR composto por partículas supersimétricas. pouca perda de energia na interação com CMB. Produzidas como partículas secundárias na fonte ou na propagação de partículas conhecidas.
 - UHECR são nucleons e/ou raios γ produzidos dentro do limite GZK de distância através de interação de neutrinos de altas energias com neutrinos do background. Exige alguma espécie de neutrino com massa ~ eV.
 - UHECR são nucleons, porém alguma modificação nas leis fundamentais é permitida, por exemplo uma pequena violação invariância de Lorentz. Esta violação elimina (ou desloca) o "cutoff" GKZ e nucleons podem ser oriundos de fontes extragalácticas.

Tentando Organizar??

- "Top-down"
 - As partículas X foram produzidas por colapso, aniquilação, ou outro processo envolvendo sistemas cosmológicos com defeitos topológicos tal como,
 - cordas cósmicas,
 - monopólos magnéticos,
 - cordas cósmicas supercondutoras.
 - Produzidas na fase de quebra de simeatria da evolução do Universo. Neste caso as partículas tem mass tão grande quanto a escala GUT $\sim 10^{16}$ GeV.
 - "Top-down"
 - Partículas X são reliquias, supermassivas e metaestáveis,

 - tempo de vida comparável a idade do Universo.
 - Produzidas no estágio de expansão do Universo de redução de partículas por inflação, são cadidatas a matéria escura fria do Universo. O decaimento destas partículas pode explicar a não existência do "cutoff" GZK nos dados recentes (que veremos posteriormente).

- $E < 10^{14} \text{ eV} \Rightarrow \text{detecção direta por balões ou satélites.}$
- $E > 10^{15} \text{ eV} \Rightarrow$ baixo fluxo (não é possível detecção direta).
- Usa-se a atmosfera como calorímetro:
 - Chuveiro registrado por detectores na superfície da Terra;
 - Medida da luz Cherenkov produzida por partículas na atmosfera;
 - Traçado da luz fluorescente emitida quando o chuveiro excita moléculas de nitrogênio no ar.

Observatório Pierre Auger

- Projetado para medir raios cósmicos com energias acima de 10^{18} eV:
 - Fluxo;
 - Distribuição de direção de chegada;
 - Composição.
- Projeto prevê instrumentos em ambos hemisférios.
- **9** 3000 km 2 por sítio.
- 1600 detectores Cherenkov no solo distanciados 1,5 km (900 coletando dados e 200 já montados).
- 4 estações de detectors de luz fluorescente com 6 telescópios cada (3 estações coletando dados).
 - Detector híbrido.

Estrutura do Observatório

Detector de Fluorescência

Detecção de fótons ultravioletas fluorescentes

PAE

Detector de Fluorescência

Geometria Detector de fluorescência

$$t_i - t_0 = \frac{R_p}{c} \tan\left(\frac{\theta_i}{2}\right)$$

$$\theta_i = \pi - \psi - \chi_i$$

$$N_{\gamma} = N_e Y_{\gamma} \frac{\Delta L}{4\pi r^2} \exp\left(\frac{-r}{r_e}\right) A,$$

- Y_{γ} eficiência de fluorescência do ar
 - r distância ao fotomultiplicador
 - r_e comprimento de extinção do fóton
- $\bullet A \text{ área óptica do espelho}$

Constituição dos Chuveiros

PAE

- Como diferenciar chuveiros iniciados por núcleos, prótons ou elétrons??
- X_{max} é a profundidade na atmosfera onde o perfil do chuveiro partônico atinge seu máximo.
- Utilizar conhecimentos de laboratório para simular evolução do chuveiro.

Máximo do chuveiro X_{max}

Resultados Experimentais

- Não podemos identificar fontes.
- Simulações sugerem UHECR compostos de prótons.
- Resultados de Auger ainda não esclarecem a questão

- T. Stanev, SLAC Summer Institute on Particle Physics (SSI04), 2004.
- P. Bhattacharjee, G. Sigl, Pjys. Repts. 327, 109 (2000).
- A.V. Olinto, Phys. Repts, 333-334, 329 (2000).
- J.W. Cronin, Nucl. Phys. B (Nucl. Suppl.) 138, 465 (2005).