

Dilepton Distributions at Backward Rapidities

M. B. Gay Ducati

beatriz.gay@ufrgs.br

High Energy Phenomenology Group

Instituto de Física

Universidade Federal do Rio Grande do Sul

Porto Alegre, Brazil

GFPAE - UFRGS

http://www.if.ufrgs.br/gfpae

Talk based on works Phys. Lett. B 636, 46 (2006) and hep-ph/0607247.

- Motivation;
- High Density System
- Forward rapidities;
 - Color Glass Condensate;
 - Saturation effects;
 - p_T and rapidity distributions;
 - Cronin data on hadron production at forward rapidities.
- Backward rapidities;
 - Dipole approach;
 - nuclear effects at small and large Bjorken x;
 - p_T and rapidity distributions;
 - Cronin data on hadron production at backward rapidities.

Motivation

Dilepton \Rightarrow Clean probe (eletromagnetic interactions);

Forward rapidities:

- RHIC and LHC experiments are characterized by a high density of gluons in the nucleus;
- Those interactions can be described by dense condensates (Color Glass Condensates);
- Search for signatures of the CGC description of the saturated regime;
- Cronin peak suppression at forward rapidities for hadrons => Initial/Final state effect?
- Dilepton ⇒ presenting the same suppression (Cronin peak suppression for hadrons ⇒ Initial state effect)
- Backward rapidites:
 - **•** Nucleus at large Bjorken x;
 - \checkmark Information about large x nuclear effects;
 - Pronounced Cronin peak at backward rapidities for hadrons field/Final state effect?
 - Dilepton \Rightarrow which is the behavior at backward??

GFPAE

Partonic System Evolution

- Parton at large Bjorken $x \Rightarrow$ Valence quarks.
- Increasing energy \Rightarrow Sea quarks.
- New partons are emitted.
- Emission probability $\propto \alpha_s \ln\left(\frac{1}{x}\right)$.
- DGLAP and BFKL evolution (only emission diagrams).
- At small x region (high energy limit).
- Density of partons increases.
- Large occupation number (partons eventually overlap).
- Recombination processes (GLR, AGL, BK, JIMWLK).

GFPAE

Partonic System Evolution

DGLAP and BFKL

- Consider only emission diagrams
- DGLAP \rightarrow evolution in Q^2 (\rightarrow diluted system)
- BFKL \rightarrow evolution in x.
 (\rightarrow saturation)
- Saturation \rightarrow overlap in phase-space (small x and low Q^2).

Color Glass Condensate (CGC)

L. McLerran, R. Venugopalan (1994)

Developped to describe the nucleus at high energy limit.

- **Color** \Rightarrow Gluonic field dominance at small x.
- Glass => Internal dynamics evolves slowly compared with the typical interaction scale time.
- **Condensate** \Rightarrow Dense and saturated gluonic field.

The theory:

- Separation of small x and large x modes.
- Small x modes \Rightarrow large occupation number
 - Described by classical color field \mathcal{A}^{μ} (CGC)
- Large x modes \Rightarrow acts as sources of the small x modes
 - Described by frozen color sources ρ_a

Color Glass Condensate

 \mathcal{A}^{μ} obeys classical Yang-Mills's equations

 $[D_{\mu\nu}, F_a^{\mu\nu}] = \delta^{\mu+} \rho_a(x^-, x_\perp)$

- $\rho_a(x, x_{\perp})$ stochastic variable with zero expectation value.
- solution a verage over all ρ_a configurations, with the gauge-invariant weight functional $W_{\Lambda^+}[\rho_a]$
- $\mathcal{W}_{\Lambda^+}[\rho_a]$ driven by JIMWLK evolution equation.
- $\ \, {} \ \, p^+>\Lambda^+ \ \, {\rm fast \ gluons,} \ \, p^+<\Lambda^+ \ \, {\rm soft \ gluons.}$
- Observables are calculated by averaging over the sources configurations by means of

$$\langle A_a^i(x^+, \vec{x}) A_b^j(x^+, \vec{y}) \dots \rangle_{\Lambda^+} = \int \mathcal{D}_{\rho} \mathcal{W}_{\Lambda^+}[\rho] \mathcal{A}_a^i(\vec{x}) \mathcal{A}_b^j(\vec{y}).$$

Phenomenology:

The color source distribution employed here is a Non-local Gaussian (predicted by the mean field asymptotic solution of the JIMWLK evolution equations)

$$\mathcal{W}[x,\rho] = \exp\left\{-\int dy_{\perp} dx_{\perp} \frac{\rho_a(x_{\perp})\rho^a(y_{\perp})}{2\mu^2(x)}\right\}$$

 ${}^{{}}$ $\mu^2(x)$ is the average color charge squared of the valence quarks per unit transverse area and color. M. B. Gay Ducati - ICHEP'06 – p.

Investigating the CGC

Cronin Effect at forward rapidities.

PAE

Multiple scatterings of the quark with the nucleus environment \Rightarrow transverse momentum broadening.

$$R_{dA} = \frac{\frac{d\sigma^{dA \to hX}}{dp_T^2 dy}}{\mathcal{N}_{coll} \frac{d\sigma^{pp \to hX}}{dp_T^2 dy}}$$

Suppression of the ratio with the rapidity;

Cronin effect in the CGC approach

charged hadrons

Dilepton Production in CGC

The cross section of dilepton production at forward rapidities can be written as

$$\frac{d\sigma^{pA \to ql^+l^-X}}{dp_T^2 \, dM \, dy} = \frac{4\pi^2}{M} R_A^2 \frac{\alpha_{em}^2}{3\pi} \int \frac{dl_T}{(2\pi)^3} l_T W(p_T, l_T, x_1) \, C(l_T, x_2, A),$$

• $C(l_T, x_2, A)$ color field correlation \Rightarrow interaction of the quark with the condensated gluonic field (Classical field) \Rightarrow information about the CGC.

Saturation
$$\Rightarrow \text{low } p_T$$

$$C(l_T) \equiv \int d^2 x_{\perp} e^{i l_T \cdot x_{\perp}} \langle U(0) U^{\dagger}(x_{\perp}) \rangle_{\rho},$$

- $U(x_{\perp}) \Rightarrow$ interaction of the quark with the color field of the nucleus.
- Here is where the non-local Gaussian is used to obtain $\langle U(0)U^{\dagger}(x_{\perp})\rangle_{
 ho}$

$$\langle U(0)U^{\dagger}(x_{\perp})\rangle = \int \mathcal{D}_{\rho}\mathcal{W}_{\Lambda^{+}}[\rho]U(0)U^{\dagger}(x_{\perp}).$$

F. Gelis, J.Jalilian-Marian, Phys. Rev. D 66, 094014 (2002).

- M.A.Betemps, MBGD, Phys. Rev. D 70, 116005 (2004). Eur. Phys. J. C 43, 365 (2005).
- R. Baier, A. H. Mueller and D. Schiff, Nucl. Phys. A 741, 358 (2004).

Nuclear modification ratio

Investigating the saturation effects,

$$R_{pA} = \frac{\frac{d\sigma(pA)}{R_A^2 dp_T^2 dy dM}}{A^{1/3} \frac{d\sigma(pp)}{R_p^2 dp_T^2 dy dM}}.$$

- Dilepton mass M = 6 GeV.
- RHIC energies $\sqrt{s} = 200$ GeV.
- LHC energies $\sqrt{s} = 8800$ GeV.
- **P** Rapidity and p_T spectra.
- Normalization factor $A^{1/3} \Rightarrow$ cylindrical nucleus $\Rightarrow R_A^2$ in the cross section $\Rightarrow R_A^2 \propto A^{2/3}$.

R_{pA} Forward rapidity and p_T

• LHC $\sqrt{s} = 8.8 \text{ TeV}$

PAE

M.A.Betemps, MBGD, Phys. Lett. B, 636, 46 (2006).

- Lepton pair mass M = 6GeV
- Suppression at small p_T ;
- Suppression of the Cronin peak;
- RHIC
 - small effects in the rapidity spectra;
 - Effects are independent of the p_T value;
- LHC
 - Suppression in the rapidity spectra is intensified for large p_T;
- Similar behavior of the ratio in p_T at M = 3 GeV.

Cronin effect at forward rapidities

BK/BFKL \Rightarrow suppression of the Cronin peak (suppression at small x for all p_T).

charged hadrons

PAE

J.V. Albacete et al. Phys. Rev. Lett. 92, 082001 (2004).

- Ratio suppression with the rapidity;
- Suppression at forward rapidities \Rightarrow quantum evolution at small x.

Dileptons

Dileptons carry information about the high density QCD system (CGC);

Dilepton at Backward Rapidities

Dipole picture changing nucleus and proton

ΑE

$$\frac{d\sigma^{DY}}{dM^2 dy d^2 p_T} = \frac{\alpha_{em}^2}{6\pi^3 M^2} \int_0^\infty d\rho W(x_2, \rho, p_T) \sigma_{dip}(x_1, \rho),$$

 $x_{\begin{pmatrix} 1\\2 \end{pmatrix}} = \sqrt{\frac{M^2 + p_T^2}{s}} e^{\pm y}$. Large x_2 (nucleus) and small x_1 proton.

$$\begin{aligned} W(x_2,\rho,p_T) &= \int_{x_2}^1 \frac{d\alpha}{\alpha^2} F_2^A(\frac{x_2}{\alpha},M^2) \left\{ \left[m_q^2 \alpha^2 + 2M^2 (1-\alpha)^2 \right] \left[\frac{1}{p_T^2 + \eta^2} T_1(\rho) - \frac{1}{4\eta} T_2(\rho) \right] \right. \\ &+ \left[1 + (1-\alpha)^2 \right] \left[\frac{\eta p_T}{p_T^2 + \eta^2} T_3(\rho) - \frac{1}{2} T_1(\rho) + \frac{\eta}{4} T_2(\rho) \right] \right\}, \end{aligned}$$

 $\alpha \Rightarrow$ momentum fraction of the quark carried by the virtual photon

$$T_{1}(\rho) = \frac{\rho}{\alpha} J_{0}(\frac{p_{T}\rho}{\alpha}) K_{0}(\frac{\eta\rho}{\alpha})$$

$$T_{2}(\rho) = \frac{\rho^{2}}{\alpha^{2}} J_{0}(\frac{p_{T}\rho}{\alpha}) K_{1}(\frac{\eta\rho}{\alpha}) \qquad (\eta^{2} = (1-\alpha)M^{2} + \alpha^{2}m_{q}^{2})$$

$$T_{3}(\rho) = \frac{\rho}{\alpha} J_{1}(\frac{p_{T}\rho}{\alpha}) K_{1}(\frac{\eta\rho}{\alpha}).$$

M.A. Betemps, MBGD, E.G. de Oliveira, hep-ph/0607247.

GFPAE

Coherence length (l_c) at backward

- mean lifetime of fluctuation $|ql^+l^-\rangle$.
- Important quantity controlling \Rightarrow nuclear effects.
- smaller than the target (Fig (a)) \Rightarrow energy loss in the target (there is no significative energy loss with proton target).
 - l_c larger than the target (Fig (b)) \Rightarrow cross section in the factorized form

M.B.Johnson, et al. Phys. Rev. Lett. 86, 4483 (2001).

l_c at backward (our case - insight for backward)

- Consider here large $l_c \propto \frac{1}{x_1} \Rightarrow x_1$ momentum fraction of the proton target.
- Applicable only at small x_1 (proton).
- Explain the exchange between proton and nucleus in the dipole approach.

Nuclear parton distributions and σ_{dip}

Eskola, Kolhinen and Salgado (EKS parametrization) *Eur. Phys. J. C* 9, 61 (1999)

PAE

D. de Florian and R. Sassot (nDS parametrization) Phys. Rev. D 69, 074028 (2004)

• $\sigma_{dip} \Rightarrow \text{GBW}$ dipole cross section $\sigma_{dip}(x, r) = \sigma_0 (1 - \exp\left\{\left(\frac{r^2 Q_0^2}{4(x/x_0)^{\lambda}}\right)\right\}$ • Fit to the HERA data ($\sigma_0 = 23.03$ mb, $x_0 = 3.04 \times 10^{-4}$, $\lambda = 0.288$) *K. Golec-Biernat, M. Wusthoff, Phys. Rev. D* **59**, 014017 (1999)

Nuclear modification ratio

Investigating effects in the backward region,

$$R_{pA} = \frac{\frac{d\sigma(pA)}{dp_T^2 dy dM}}{A \frac{d\sigma(pp)}{dp_T^2 dy dM}}$$

- Dilepton mass M = 6 GeV.
- RHIC energies $\sqrt{s} = 200 \text{GeV}$.
- LHC energies $\sqrt{s} = 8800$ GeV.
- **P** Rapidity and p_T spectra.
- Normalization factor $A \Rightarrow$ nucleus configuration \rightarrow there is no R_A^2 in the cross section.

Backward rapidity and p_T at RHIC

AE

- $0.08 < x_2 < 0.5$.
- Large x nuclear effect;
- $Iower \ y \to large \ x_2$
- Suppression in $y \rightarrow \text{large } x$ effect;
- large $p_T \rightarrow$ large x_2 ;
- Suppression in $p_T \rightarrow \text{large } x$ effect $\rightarrow \text{less intense};$
- Comparison EKS \times nDS (large x effect predictions).

M. B. Gay Ducati - ICHEP'06 - p.1

GFPAE

Backward rapidity and p_T at LHC

- $0.002 < x_2 < 0.3.$
- antishadowing and shadowing nuclear effects;
- Peak at $y \sim -4.5 \rightarrow$ antishadowing effect;
- Two behaviors with p_T :
 - Suppression in $p_T \rightarrow$ large x effect (very backward);
 - Decreasing with $p_T \rightarrow$ shadowing effect;
- EKS × nDS (similar behavior)
- Caution with the terminology (pdf's).

Dilepton at backward-forward rapidities

RHIC energies.

PAE

 $\begin{array}{l} R_{pA} \Rightarrow \text{Different } p_T \text{ behavior.} \\ \left\{ \begin{array}{l} \text{Forward} & \Rightarrow & p_T \text{ increases} \Rightarrow R_{pA} \text{ enlarged (saturation)} \\ \text{Backward} & \Rightarrow & p_T \text{ increases} \Rightarrow R_{pA} \text{ reduced (large } x \text{ effects)} \end{array} \right. \end{array}$

- Pronounced peak at backward rapidities (0.5 GeV $< p_T < 4$ GeV).
- \square R_{pA} for dileptons prediction for RHIC does not present such a peak.
- Cronin peak at backward rapidities at RHIC energies \Rightarrow large x effects + final state effect.

S.S. Adler, et al. PHENIX Collaboration, Phys. Rev. Lett. 94, 082302 (2005).

Dilepton × **Hadrons**

R_{pA}	Forward	Backward
Dileptons	- Suppression of Cronin peak.	Rapidity Spectra
	- Saturation	- Weak enhancement of R_{pA} in comparison
		with forward.
		- (RHIC) - Large x nuclear effects.
		- (LHC) - Large and small x nuclear effects.
		Transverse Momentum
		(RHIC) - R_{pA} reduces as p_T increases
		(large x effects)
		(LHC) - two behaviors (small and large x effects)
Hadrons	- Suppression of Cronin peak.	- Enhanced Cronin peak in the rapidity spectra
	- Saturation	in comparison with forward (DATA).
	- Initial state effect.	- Large x nuclear effects + final state effects
		(Dileptons indicate that).

- Saturation effects should be present at RHIC, hadrons and dileptons, at forward rapidities.
- Nuclear modification ratio suppression at forward rapidities for dileptons indicates the Cronin suppression for hadrons as initial state effect.
- At backward rapidities dileptons present different p_T dependence at RHIC (large x nuclear effects) comparing with the forward ones (saturation) (non symmetric).
- At LHC energies and backward rapidities, the p_T distribution for the ratio R_{pA} present distinct behaviors comparing very backward (large *x* effects) and more central rapidities (shadowing).
- Cronin effect peak in the rapidity spectra for hadrons at backward rapidities should be due to \Rightarrow final state effects + large x nuclear effects.