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Abstract

We have studied the color dipole picture for the description of deep in-

elastic process, mainly the structure functions which are driven directly by

the gluon distribution. Estimates are obtained using the Glauber-Mueller

dipole cross section in QCD encoding the corrections due to the unitar-

ity e�ects which are associated with the saturation phenomenon. Frame

invariance is veri�ed in the calculations when analysing the experimental

data.

1 Introduction

In the kinematical region of small proton momentum fraction x, the gluon is the
main parton driving the behavior of the deep inelastic quantities. The standard
QCD evolution [1] furnishes a powerlike growth for the gluon distribution and
related observables. This result leads, at �rst glance, to the unitarity violation
at asymptotic energies, requiring a sort of control. In the partonic language,
at the in�nite momentum frame, the small x region corresponds to the high
parton density winsdom. The latter is connected with the black disk limit of
the proton target and with the parton recombination phenomenon. These issues
can be addressed through a non-linear dynamics beyond the usual DGLAP
formalism. The complete knowledge about the non-linear dynamical regime
plays an important role in the theoretical description of the reactions in the
forthcoming experiments RHIC and the LHC, where these e�ects are enhanced
by the high energies reached or by nuclear probes.

The description of DIS in the color dipole picture is somewhat intuitive,
providing with a simple representation in contrast to the involved one from the
Breit (in�nite momentum) frame. Considering small values of the Bjorken vari-
able x, the virtual photon uctuates into a q�q pair (dipole) with �xed transverse
separation r at large distances upstream of the target and interacts in a short
time with the proton. More complicated con�gurations should be considered for
larger transverse size systems, for instance the photon Fock state q�q + gluon.
An immediate consequence from the lifetime of the pair (lc = 1=2mpx) to be
bigger than the interaction one is the factorization between the photon wave-
function and the cross section dipole-proton in the � p total cross section. The
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wavefunctions are perturbatively calculable, namely through QED for the q�q
con�guration [2] and from QCD for the q�qG one [3]. The e�ective dipole cross
section should be modeled and it includes perturbative and non-perturbative
content. However, since the interaction strength relies only on the con�guration
of the interacting system the dipole cross section turns out to be universal and
may be employed in a wide variety of small x processes.

We have taken into account a sound formalism providing the unitarity cor-
rections to the DIS at small x, namely the Glauber-Mueller approach in QCD. It
was introduced by A. Mueller [4], who developed the Glauber formalism to study
saturation e�ects in the quark and gluon distributions in the nucleus considering
the heavy onium scattering. Later developments obtained an evolution equation
taking into account the unitarity corrections (perturbative shadowing), gener-
ating a non-linear dynamics which is connected with higher twist contributions.
Its main characteristic is to provide a theoretical framework for the saturation
e�ects, lying on the multiscattering of the pQCD Pomeron. In this contribution
we report our studies considering the parton saturation formalism to describe
the observables driven by the gluonic content of the proton at the color dipole
picture [5]. The inclusive structure function F2 is calculated, disregarding the
fairly approximations commonly considered in previous calculations [6]. The
structure functions FL and F c�c

2 are also presented using the Glauber-Mueller
approach and rest frame in comparison with the experimental data.

2 The DIS at the Rest Frame and Glauber-Mueller

Approach

The rest frame physical picture is advantageous since the lifetime of the photon
uctuation and the interaction process are well de�ned [7]. The more simple case
is the quark-antiquark state (color dipole), which is the leading con�guration
for small transverse size systems. The well known coherence lenght is expressed
as lc = 1=(2xmp), where x is the Bjorken variable and mp the proton mass.
An important consequence of this formulation is that the photoabsortion cross
section can be derived from the expectation value of the interaction cross section
for the multiparticle Fock states of the virtual photon weighted by the light-cone
wave functions of these states [2]. That cross section can be cast in the quantum
mechanical factorized form,

�
�p

T;L(x; Q
2) =

Z
d2r

Z 1

0

dz j	T;L(z; r)j
2 �dipole(x; z; r) ; (1)

The formulation above is valid even beyond perturbation theory, since it is
determined from the space-time structure of the process. The 	T;L(z; r) are
the photon wavefunctions (for transverse T , and longitudinal L, polarizations)
describing the pair con�guration; z and 1� z are the fractions of the photon's
light-cone momentum carried by the quark and antiquark of the pair, respec-
tively. The transverse separation of the pair is r. The explicit expressions for
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the wavefunctions are well known,

j	T (z; r)j
2 =

6�em
4�2

nfX
i

e2i

n
[ z2 + (1� z)2 ] "2K2

1 (" r) + m2
q K

2
0 (" r)

o
(2)

j	L (z; r)j
2 =

6�em
4�2

nfX
i

e2i

n
4Q2 z2 (1� z)2K2

0 (� r)
o
: (3)

Lets de�ne the auxiliary variable "2 = z(1� z)Q2 +m2
q , with mq the light

quark mass, and K0 and K1 are the Mc Donald functions of rank zero and
one, respectively. The quantity �dipole is interpreted as the cross section of
the scattering of the e�ective dipole with �xed tranverse separation r [2]. The
most important feature of the dipole cross section is its universal character,
namely it depends only on the transverse separation r of the color dipole. The
dependence on the external probe particle, i.e., the photon virtuality, relies in
the wavefunctions. In general, an ans�atz for the e�ective dipole cross section
is obtained and the the process is analized in the impact parameter space.
The main feature of the current models in the literature is to interpolate the
physical regions of small transverse separations (perturbative QCD picture) and
the large ones (Regge-soft picture). Here we have used the Glauber-Mueller
approach to determine the dipole cross section, with the advantage of providing
the corrections required by unitarity in an eikonal expansion. For the large
r region, we choose to follow a similar procedure from the saturation model
(GBW) [8], namely saturating (r-independent constant value) the dipole cross
section at this region.

Now, we shortly show the main results from the Glauber-Mueller approach.
Considering the scattering amplitude dependent on the usual Mandelstan vari-
ables s and t, now written in the impact parameter representation b,

a(s;b) �
1

2�

Z
d2q e�iq:bA (s; t = �q2) : (4)

the corresponding total and elastic cross sections (from Optical theorem) are
rewritten in the impact parameter representation (b) as

�tot = 2

Z
d2b Im a(s;b) ; �el =

Z
d2b ja(s;b)j2 ; (5)

The most important property when treating the scattering in the impact param-
eter space is the simple de�nition for the unitarity constraint [6]. If the real part
of the scattering amplitude vanishes at the high energy limit, corresponding to
small x values, the solution to the that constraint is

a(s;b) = i
h
1� e�

1
2

 (s;b)

i
; �tot = 2

Z
d2b

h
1� e�

1
2

 (s;b)

i
; (6)

where the opacity 
 is an arbitrary real function and it should be determined
by a detailed model for the interaction. The opacity function has a simple
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physical interpretation, namely e�
 corresponds to the probability that no in-
elastic scatterings with the target occur. To realize the connection with the
Glauber formalism, the opacity function can be written in the factorized form

(s;b) = 
(s)S(b), considering S(b) normalized as

R
d2bS(b) = 1 (for a

detailed discussion, see i.e. [9]).
We identify the opacity 
(s � Q2=x; r) = �nucleon(x; r). The (q�q pair)

dipole-proton cross section is well known [6, 9] and in double logarithmic ap-
proximation (DLA) has the following form

�q�qnucleon(x; r) =
�2�s( ~Q

2)

3
r2 xG(x; ~Q2) (7)

with the r-dependent scale ~Q2 = r20=r
2. Considering Eq. (7) one can connect

directly the dipole picture with the usual parton distributions (gluon), since they
are solutions of the DGLAP equations. In our case, we follow the calculations
in Ref. [6, 9] and consider the e�ective scale ~Q2 = 4=r2. From the above
expression, one obtains a dipole cross section satisfying the unitarity constraint
and a framework to study the unitarity e�ects (saturation) in the gluon DGLAP
distribution function. Hence, hereafter we use the Glauber-Mueller dipole cross
section given by

�GMdipole = 2

Z
d2b

�
1� e�

1
2
�q�q
nucleon

(x;r) S(b)
�
: (8)

In order to perform numerical estimates one needs to de�ne the pro�le func-
tion S(b). This function contains information about the angular distribution in
the scattering. We have chosen a simple gaussian shape in the impact param-
eter space, S(b) = A

�R2
A

e�b
2=R2

A , where A is the atomic number and RA is the

target radius. We will keep this notation although we are only concerned with
the nucleon case. The R2

A value should be determined from the data, ranging
between 5 � 10 GeV�2 for the proton case [6]. Here, we have used the value
( R2

A = 5 GeV�2) obtained from a good description of both inclusive struc-
ture function and its derivative [10]. Such a value corresponds to signi�cative
unitarity corrections to the standard DGLAP input even in the current HERA
kinematics.

In the calculations we have used the GRV94 parametrization [11]: bearing
in mind that Q2 = 4=r2, its evolution initial scale Q2

0 = 0:4 GeV2 allows to scan
dipole sizes up to rcut =

2
Q0

GeV�1 (= 0.62 fm). For recent parametrizations,

where Q2
0 � 1 GeV2 (rcut � 0:4 fm), the uncertaint due to nonperturbative

content in the calculations would increase. An additional advantage is that
GRV94 does not include non-linear e�ects to the DGLAP evolution since it
was obtained from rather large x values, i.e. this ensures that GRV94 does not
include unitarity corrections in the initial scale. To proceed, for the large r
region, we choose the following ansatz: the gluon distribution is frozen at scale
rcut, namely xG(x; ~Q2

cut). Then, for the large distance contribution r � rcut
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the gluon distribution reads as

xG(x;Q2 � Q2
0) =

Q2

Q2
0

xG(x;Q2 = Q2
0) ; (9)

leading to the correct behavior xG(x;Q2) � Q2 as Q2 ! 0.

3 Obtaining the Structure Functions

This section is devoted to the study and estimate of the gluon driven observ-
ables measured at HERA kinematical domain in the rest frame. The �rst one is
the inclusive structure function F2(x;Q

2), the main quantity testing the small
x physics. The unitarity corrections are well stablished for this observable con-
sidering Glauber-Mueller approach [13] as well as its high energy asymptotics,
namely the black disk limit. We review these issues considering the dipole pic-
ture (rest frame), using a more complete analysis similar to [8], but mostly,
discuss in detail the role played by the nonperturbative physics needed to de-
scribe the structure function, and where in the transverse separation r range it
starts to be important.

The longitudinal structure function FL(x;Q
2) is also addressed, verifying

the frame invariance in comparison with previous laboratory frame calcula-
tions. The longitudinal wavefunction strongly suppress large r contributions,
thus selecting smaller nonperturbative contribution in comparison with the F2
case. Moreover, FL is one of the main observables scanning possible higher twist
corrections in the standard Operator Product Expansion (OPE). Therefore, a
reasonable description of this quantity suggests that the Glauber-Mueller for-
malism (or similar eikonal-like approaches) take into account the most important
contributions to the complete higher-twist corrections at current kinematical
regime.

The structure function F c�c
2 (x;Q2) gives the charm quark content on the pro-

ton and is directly driven by the gluon distribution. Therefore it is a powerful
observable to scan saturation e�ects in the small x region. However the cur-
rent experimental status requires more dedicated measurements and a better
statistics. We verify a consistent description in the rest frame corroborating
the similar analysis in the dipole models and in those ones considering unitarity
corrections in the laboratory frame.

3.1 The structure function F2

First, we perform estimates for the structure function F2 at the rest frame
considering the Glauber-Mueller dipole cross section [5]. The expression, with
the explicit integration limits on photon momentum fraction z and transverse
separation r is,

F2(x;Q
2) =

Q2

4�2 �em

Z 1

0

d 2r

Z 1

0

dz
�
j	T (z; r)j

2 + j	L (z; r)j
2
�
�GMdipole(x; r

2) : (10)
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Figure 1: The Glauber-Mueller (GM) result for the F2(x;Q
2) structure func-

tion. It is shown the transverse contribution (dot-dashed), the longitudinal one
(dashed) and total one (solid line).

In the Fig. (1) one shows F2 for representative virtualities Q2 from the
latest H1 Collaboration measurements [12]. The longitudinal and transverse
contributions are shown separately. An e�ective light quark mass (u; d; s quarks)
was taken, with the value mq = 300 MeV, and the target radius is considered
R2
A = 5 GeV�2. It should be stressed that this value leads to larger saturation

corrections rather than using radius ranging over R2
A � 8�15 GeV�2. The soft

contribution comes from the freezing of the gluon distribution at large transverse
separation as discussed at the previous section.

From the plots we verify a good agreement in the normalization, however the
slope seems quite steep. This fact is due to the modeling for the soft contribution
and it suggests that a more suitable nonperturbative input should be taken. To
clarify the role played by the soft nonperturbative contribution to F2, in the
Fig. (2) we plot separately the perturbative contribution and parametrize the
soft contribution introducing the nonperturbative structure function F soft

2 =
Csoft x

�0:08 (1 � x)10 [13], which is added to the perturbative one. The soft
piece normalization is Csoft = 0:22. Accordingly, we have used just shadowing
corrections for the quark sector, taking into account only the transverse photon
wavefunction and zero quark mass. The integration on the transverse separation
is taken over 1=Q2 � r2 � 1=Q2

0, with Q2
0 = 0:4 GeV2 for leading order GRV94

gluon distribution. This leads to a residual contribution to the soft piece which
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Figure 2: The Glauber-Mueller prediction for the F2 structure function in the
rest frame. For sake of comparison, one uses quark sector (R2

A = 5 GeV�2,
mq = 0) and only transverse wavefunction. Radius integration 1=Q2 < r2 <
1=Q2

0 and soft Pomeron added ( F soft
2 = Csoft x

�0:08(1� x)10).

would come from the transverse separations r2 < 1=Q2. It is again veri�ed that
the soft contribution is important at small virtualities and decreasing as it gets
larger. The data description is quite successful.

Concluding, we have a theoretical estimate, i.e. no �tting procedure, of the
inclusive structure function F2(x;Q

2) through the Glauber-Mueller approach
for the dipole cross section, detecting a non negligible importance of a suitable
input for the large dipole size region.

3.2 The structure function FL

From QCD theory, the structure function FL has a non-zero value due to the
gluon radiation, as is encoded in the Altarelli-Martinelli equation (see [14]),
considering the Breit frame. Experimentally, the determination of the FL is
quite limited, providing few data points. Most recently, the H1 Collaboration
has determined the longitudinal structure function through the reduced double
di�erential cross section, where the data points were obtained consistently with
the previous measurements, however being more precise and lying into a broader
kinematical range [12].

In Fig. (3) we present the estimates for the FL structure function, in repre-
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Figure 3: The Glauber-Mueller estimates for the FL structure function. One
uses light quarks (mq = 300 MeV), target size R2

A = 5 GeV�2 and frozen gluon
distibution at large r. Data from H1 Collaboration [12].

sentative virtualities as a function of x [5]. For the calculations, it was considered
light quarks (u; d; s) with e�ective mass mq = 300 MeV and the target radius
R2
A = 5 GeV�2. The large r region is considered by the freezening of the gluon

distribution at this region. Our expression for the observable is then,

FL(x;Q
2) =

Q2

4�2 �em

Z 1

0

d 2r

Z 1

0

dz j	L (z; r)j
2 �GMdipole(x; r

2) : (11)

The behavior is quite consistent with the experimental result, either in shape
as in normalization. The quantity is less sensitive to the non-perturbative con-
tent than F2. A better description can be obtained by �ne tunning the target
size or the considered gluon distribution function, however it should be stressed
that the present prediction is parameter-free and determined using the dipole
picture taking into account unitarity (saturation) e�ects in the e�ective dipole
cross section [5]. We verify that the rest frame calculation, taking into account
the dipole degrees of freedom and unitarity e�ects produces similar conclusions
to those ones using the Breit system. For instance, in a previous work [14], the

8



unitarity corrections to the longitudinal structure function were estimated in the
laboratory frame considering the Altarelli-Martinelli equation, with unitarized
expressions for F2 and xG(x;Q

2), obtaining that the expected corrections reach
up to 70 % as ln(1=x) = 15, namely on the kinematical corner of the upcoming
THERA project.

The higher twist corrections to the longitudinal structure function have been
pointed out. For instance, Bartels et al. [15] have calculated numerically the
twist-four correction founding they are large for FT and FL, however having
opposite signs. This fact leads to remaining small e�ects to the inclusive struc-
ture function by almost complete cancellation between those contributions. The
higher twist content is analyzed considering the model [8] as initial condition.
Concerning FL, it was found that the twist-four correction is large and has
negative signal, concluding that a leading twist analysis of FL is unreliable
for high Q2 and not too small x. The results are in agreement with the sim-
ple parametrization for higher twist (HT) studied by the MRST group in Ref.

[16], where FHT
2 (x;Q2) = FLT

2 (x;Q2)(1 +
DHT2 (x)

Q2 ). The second term would
parametrize the higher twist content. In our case, the unitarity corrections pro-
vide an important amount of higher twist content, namely it takes into account
some of the several graphs determining the twist expansion.

3.3 The structure function F
c�c

2

In perturbative QCD, the heavy quark production in electron-proton interaction
occurs basicaly through photon-gluon fusion, in which the emitted photon in-
teracts with a gluon from the proton generating a quark-antiquark pair. There-
fore, the heavy quark production allows to determine the gluon distribution and
the amount of unitarity (saturation) e�ects for the observable. In particular,
charmed mesons have been measured at deep-inelastic at HERA and the cor-
responding structure function F c�c

2 (x;Q2) is de�ned from the di�erential cross
section for the c�c pair production.

Experimentally, the measurements of the charm structure function are ob-
tained by measuring mesons D�� production [17]. The function F c�c

2 (x;Q2)
shows an increase with decreasing x at constant values of Q2, whereas the rise
becomes sharper at higher virtualities. The data are consistent with the NLO
DGLAP calculations. Concerning the ratio Rc�c = F c�c

2 =F2, the charm contribu-
tion to F2 grows steeply as x diminishes. It contributes less than 10% at low
Q2 and reaches to about 30 % for Q2 > 120 GeV2 [17].

Once more the color dipole picture will provide a quite simple description
for the charm structure function in a factorized way. Now, the Glauber-Mueller
dipole cross section is weighted by the photon wavefunction constituted by a
c�c pair with mass mc. Our expression for the charmed contribution in deep
inelastic is thus written as

F c�c
2 (x;Q2) =

Q2

4�2 �em

Z 1

0

d 2r

Z 1

0

dz
�
j	c�c

T (z; r)j2 + j	c�c
L (z; r)j2

�
�GMdipole(x; r

2) (12)

where j	c�c
T; L (z; r)j

2 is the probability to �nd in the photon the c�c color dipole
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Figure 4: The Glauber-Mueller result for the F c�c
2 structure function as a function

of Bjorken variable x at �xed virtualities (in GeV2). One uses charm mass
mc = 1:5 GeV, target size R2

A = 5 GeV�2 and frozen gluon distibution at large
r. Data from ZEUS Collaboration [17] (statistical errors only).

with the charmed quark carrying fraction z of the photon's light-cone mo-
mentum with T; L polarizations. For the correspondent wavefunctions, the
quark mass in Eqs. (2,3) should be substituted by the charm quark mass
mc. Here, we should take care of the connection between the Regge param-
eter x = (W 2+Q2)=(Q2+4m2

q) and the Bjorken variable xBj. For calculations
with the light quarks these variables are equivalent, however for heavier quarks
the correct relation is [18]: xBj = x (Q2=Q2 + 4m2

c ).
In Fig. (4) we show the estimates for the charm structure function as a

function of xBj at representative virtualities [5]. In our calculations, it was
used charm mass mc = 1:5 GeV, target size R2

A = 5 GeV�2 and frozen gluon
distibution at large r. We have veri�ed small soft contribution, decreasing as
the virtuality rises. There is a slight sensitivity to the value for the charm
mass, increasing the overall normalization as mc diminishes. Such a feature
suggests that the charm mass is a hard scale suppressing the non-perturbative
contribution to the corresponding cross section. This conclusion is in agreement
with the recent BFKL color dipole calculations of Nikolaev-Zoller [18] and those
from Donnachie-Dosch [19].

Regarding the Breit system description, in Ref. [14] it was found strong
corrections to the charm structure function, which are larger than those of
the F2 ones. Considering the ratio Rc

2 = F cGM
2 (x;Q2)=F cDGLAP

2 (x;Q2), the
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corrections predicted by the Glauber-Mueller approach would reach up to 62
% at values of ln(1=x) � 15 (THERA region). Then, an important result is a
large deviation of the standard DGLAP expectations at small x for the ratio
Rc�c = F c�c

2 =F2 due to the saturation phenomena (unitarization). With our
calculation [5] one veri�es that it is obtained a good description of data in both
reference systems, suggesting a consistent estimation of the unitarity e�ects for
that quantity.

4 Conclusions

We study the dipole picture for the description of deep inelastic scattering,
focusing on observables driven directly by the gluon distribution. Starting from
the dipole cross section provided by the Glauber-Mueller approach in QCD,
we perform estimates for the inclusive structure function F2, the longitudinal
function FL and the charm structure function on the proton F c�c

2 .
For each of the observables discussed, we obtain theoretical estimates, at

the rest frame, without further �tting procedure, in good agreement with the
updated data from HERA. The resulting calculations corroborate a quite con-
sistent picture for the unitarity corrections from Glauber-Mueller approach in
both Breit and rest reference systems. In the laboratory frame the unitarity
e�ects are connected with the gluon distribution function, whereas in the color
dipole framework the basic block is the dipole cross section which is corrected
by saturation e�ects.

The small transverse separation r region is dominated by the leading log
DGLAP formalism, with the additional ingredient of unitarization phenomenon
as the momentum fraction acquires quite small values. Such corrections are
associated with the taming of the gluon distribution in the very small x region, in
general named saturation regime. However, it should be stressed that Glauber-
Mueller approach and similar eikonal-like models provide a logarithmic ln(1=x)
asymptotic behavior for the inclusive structure function and gluon distribution,
instead of a constant value at asymptotic energies.

The large transverse separation is described by non-perturbative aspects of
QCD. Since this domain is not well determined at the moment, some modeling
of the soft region is needed. In this work we choose the ans�atz in which the gluon
distribution is frozen for virtualities above a cut radius r2 > r2cut , which corre-
sponds to the region Q2 < Q2

0. A convenient choice for the gluon pdf in order to
cover the widest possible kinematical window diminishes the uncertainty coming
from the soft sector. The most appropriated input is the GRV94 parametriza-
tion, where rcut = 0:6 fm is found, whereas it can take values rcut = 0:4� 0:5
fm for the more recent pdf's. Throughout the paper we used the target size
R2
A = 5 GeV�2, which corresponds to strong unitarity corrections.
When considering the structure function F2, we have found that it is dom-

inated by small transverse distances contributions. However, a non-negligible
content from the soft sector is present. Moreover, the photon wavefunctions
enhances the dipole cross section into smaller dipole sizes, since the weight
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function selects smaller r as the virtuality Q2 diminishes. Our estimates here
are parameter-free, however a �ne tunning of the parameters can improve the
data description. Furthermore, we notice that in calculations from [6], only the
aligned jet dipole con�guration z, (1 � z) � 0 (and only transverse contribu-
tion) is considered, whereas we take into account all con�gurations, including
the symmetric ones. Thus, all dipole sizes, even those from non-perturbative
region are included in our results.

Concerning FL, the estimates are consistent with the previous calculations
in the Breit system and are in good agreement with data. A remarkable feature
is that the Glauber-Mueller approach in the color dipole framework gives im-
portant higher twist contributions to the leading twist calculation in a simple
way. As is well known, FL is the main quantity to study the expected higher
twist e�ects in low virtualities.

The function F c�c
2 is directly dependent of the gluon distribution and im-

portant unitarity correction had been found when considering the Breit frame.
Here, we verify consistent results in the rest frame in comparison with the previ-
ous ones in the fast proton system. We veri�ed that the charm mass suppressed
soft contributions in comparison with the F2 case, and the results present a
slight dependence with the speci�c value of mc.

In conclusion, the Glauber-Mueller approach provides a well stablished for-
malism to take into account the unitarity e�ects. It allows to estimate the higher
twist contributions to the quantities in a simpli�ed way. Moreover, it matches
DGLAP evolution equation at Born level and includes the impact parameter
dependence properly.
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