

Higgs boson photoproduction at LHC

M.B. Gay Ducati

beatriz.gay@ufrgs.br

High Energy Physics Phenomenology Group Universidade Federal do Rio Grande do Sul

Porto Alegre, Brazil

work with G. G. Silveira [based on PRD 78 113005 (2009)]

II Encontro de Física do RS, Pelotas — Mar 10-11, 2010

Outline

- Motivation
- Diffractive processes
 - Deeply Virtual Compton Scattering (DVCS)
 - Higgs boson production
 - $\gamma\gamma$ annihilation
 - Double Pomeron Exchange (DPE)
- Photoproduction approach: DPE in DVCS
- Ultraperipheral Collisions (UPC)
- Photoproduction at the Tevatron and LHC

Summary

Motivation

- LHC will allow to study a new kinematic region:
 - CM energy: 14 TeV \rightarrow 7x Tevatron energy
 - \blacktriangleright Luminosity: 10-100 fb^{-1} $\rightarrow \sim 10 x$ Tevatron luminosity
 - Higgs physics: it is expected that the pp collisions will be able to produce the Higgs boson.
- Some hadron-hadron collisions will occur with <u>no</u> strong interaction.
 - The ultraperipheral collisions are a new way to study the Higgs boson production in *pp* and *pA* collisions.
- Other processes of Higgs production are under study to allow its detection in hadron colliders.
 - ▶ DPE allows the Higgs boson production through the leading ggH vertex mainly in the mass range $M_H \sim 115 200$ GeV.
- Evidences show another mass range excluded for Higgs boson production.

New results from the Tevatron

Excluded range: The TEVNPH Working Group, arXiv:0903.4001[hep-ex]

 $160 {
m GeV} < M_H < 170 {
m GeV}$

• EW fits: $M_H = 116.3 \frac{+15.6}{-1.30} \text{ GeV}$

Goebel, arXiv:0905.2488[hep-ph]

Deeply Virtual Compton Scattering (DVCS)

- ▶ 1997: Ji PRD 55 (1997) 7114
 - $\gamma^* p \rightarrow \gamma p$ by **Pomeron exchange** in *ep* collisions.
- 2001: Munier, Staśto and Mueller NPB 603 (2001) 427
 - Vector meson production $\gamma^* p \rightarrow V p$ with **GBW model**.
- > 2008: Motyka and Watt

PRD 78 (2008) 014023

• Vector particle production $\gamma p \rightarrow Ep$ in **Ultraperipheral Collisions**.

M.B. Gay Ducati — UFRGS

Electromagnetic Higgs production

- 1990: Cahn and Jackson PRD 42 (1990) 3690 Müller and Schramm PRD 42 (1990) 3699
 - Ultraperipheral heavy-ion collision $\rightarrow \gamma \gamma$ annihilation
- 2007: Miller
 - Contribution from Electroweak boson loops to the $\gamma\gamma \rightarrow H$.
- 2009: D'Enterria and Lansberg

PRD 81 014004 (2010)

arXiv:0704.1985[hep-ph]

• Effective Higgs boson vertex in $\gamma\gamma$ fusion.

M.B. Gay Ducati — UFRGS

II Encontro de Física do RS, Pelotas — Mar 10-11, 2010

Higgs boson photoproduction at LHC

Diffractive Higgs production in pp and AA collisions

Diffractive Higgs photoproduction

Proposal: γp process by **DPE** in pp collision.

• The loop is treated in **impact factor formalism** at t = 0.

Scattering amplitude

▶ Partonic process: $\gamma q \rightarrow \gamma + H + q$

The scattering amplitude is obtained by the Cutkosky Rules

$$\mathsf{Im}\,\mathcal{A} = \frac{1}{2}\int d(PS)_3\;\mathcal{A}_{(\mathit{left})}\,\mathcal{A}_{(\mathit{right})}$$

Photon impact factor

• The color dipole is composed of two effective vertices to the γg coupling

$$\chi_L^{\mu\nu} = -ig_s \, ee_q \, t^s \left\{ \gamma^\mu \left[\frac{f_1 - q}{(f_1 - q)^2} \right] \gamma^\nu - \gamma^\nu \left[\frac{f_1 - k}{(f_1 - k)^2} \right] \gamma^\mu \right\}$$

$$\chi_{R}^{\lambda\eta} = -ig_{s} ee_{q} t^{b} \left\{ \gamma^{\lambda} \left[\frac{\not k - \not l_{2}}{(k - l_{2})^{2}} \right] \gamma^{\eta} - \gamma^{\eta} \left[\frac{\not q - \not l_{2}}{(q - l_{2})^{2}} \right] \gamma^{\lambda} \right\}$$

• Photon polarization vectors for t = 0:

Applying the rules

Performing the product of the two sides of the cut one gets

▶ For a non-heavy Higgs ($M_H \lesssim 200$ GeV), the ggH vertex reads

$$V_{\mu\nu}^{ab} \approx \frac{2}{3} \frac{M_H^2 \alpha_s}{4\pi \nu} \left(g_{\mu\nu} - \frac{k_{2\mu} k_{1\nu}}{k_1 \cdot k_2} \right) \delta^{al}$$

Forshaw, hep-ph/0508274

Updates on $gg \rightarrow H$ cross section

Most recent advances taken into account:

- NNLL soft-gluon resummation;
- NLO bottom-quark contribution;
- 2-loop EW effects.

Significant improvements in LHC.

TEVATRON $\begin{cases} +9\% \rightarrow M_H = 115 \text{ GeV} \\ -9\% \rightarrow M_H = 200 \text{ GeV} \end{cases}$ **LHC** $\begin{cases} +30\% \rightarrow M_H = 115 \text{ GeV} \\ +9\% \rightarrow M_H = 300 \text{ GeV} \end{cases}$

M.B. Gav Ducati — UFRGS

De Florian and Grazzini PLB 674 (2009) 291

The amplitude in parton level

The imaginary part of the amplitude has the form

$$\frac{\mathrm{Im}\,\mathcal{A}}{s} = -\frac{4}{9} \left(\frac{M_{H}^{2} \alpha_{s}^{2} \alpha}{N_{c} v}\right) \left(\sum_{q} e_{q}^{2}\right) \left(\frac{\alpha_{s} C_{F}}{\pi}\right) \int \frac{d\mathbf{k}^{2}}{\mathbf{k}^{6}} \,\mathcal{X}(\mathbf{k}^{2}, Q^{2})\,,$$

with

$$\mathcal{X}(\mathbf{k}^2, Q^2) = \int_0^1 d\tau \int_0^1 d\rho \frac{\mathbf{k}^2 \left[\tau^2 + (1-\tau)^2\right] \left[\rho^2 + (1-\rho)^2\right]}{Q^2 \rho (1-\rho) + \mathbf{k}^2 \tau (1-\tau)}$$

First remark: dependence on \mathbf{k}^{-6} due to the presence of the color dipole.

Computing the event rate in central rapidity

$$\frac{d\sigma}{dy_H d\mathbf{p}^2 dt}\Big|_{y_H,t=0} = \frac{1}{2} \left(\frac{\alpha_s^2 \alpha M_H^2}{9\pi^2 N_c v}\right)^2 \left(\sum_q e_q^2\right)^2 \left[\frac{\alpha_s C_F}{\pi} \int \frac{d\mathbf{k}^2}{\mathbf{k}^6} \mathcal{X}(\mathbf{k}^2, Q^2)\right]^2$$

Only the quark contribution → extension to the hadron coupling.

M.B. Gay Ducati — UFRGS

II Encontro de Física do RS, Pelotas — Mar 10-11, 2010

$Parton \rightarrow Hadron$

▶ The hadron coupling is represented by a non-diagonal PDF

$$\frac{\alpha_s C_F}{\pi} \longrightarrow f_g(x, \mathbf{k}^2) = \mathcal{K}\left(\frac{\partial [xg(x, \mathbf{k}^2)]}{\partial \ell n \, \mathbf{k}^2}\right) \qquad \begin{array}{c} \text{Khoze, Martin and Ryskin} \\ \text{PLB 401 (1997) 330} \end{array}$$

The non-diagonality is approximated by a multiplicative factor

 $\mathcal{K} = (1.2) \exp(-B\mathbf{p}^2/2)$ Shuvaev et al PRD 60 (1999) 014015

where $B = 5.5 \text{ GeV}^{-2}$ is the slope of the gluon-proton form factor.

• To correctly compute the pomeron coupling to the proton: $x \sim 0.01$.

Phenomenology inside

Gluon Radiation

Forshaw, hep-ph/0508274

ogoooo Ê, p

Higgs rest frame

- The real gluon emission from the ggH vertex needs to be suppressed.
 - Sum the virtual graphs that include terms like $ln(M_H/k^2)$.
- The emission probability of 1-gluon is computed by Sudakov form factors

$$S(\mathbf{k}^2, M_H^2) = \frac{N_c}{\pi} \int_{\mathbf{k}^2}^{M_H^2/4} \frac{\alpha_s(\hat{\mathbf{p}}^2)}{\hat{\mathbf{p}}^2} d\hat{\mathbf{p}}^2 \int_{\rho_T}^{M_H/2} \frac{d\hat{\mathsf{E}}}{\hat{\mathsf{E}}} = \frac{3\alpha_s}{4\pi} \, \ell n^2 \left(\frac{M_H^2}{4\mathbf{k}^2}\right)$$

- Real emissions are **not suppressed** if the gluon color neutralization fails.
- Suppressing many gluons emission:
 - It is included a factor e^{-5} to the cross section.
 - Emissions below k² are forbidden.
 - 2000 • As $\mathbf{k}^2 \rightarrow 0$ the non-emission probability goes to zero faster than any power of **k**, like \mathbf{k}^{-6} .

Phenomenology inside

Rapidity Gaps KMR, EPJC 18 (2000) 167; Gotsman, Levin, Maor, arXiv:0708.1506[hep-ph]

The Rapidity Gap Survival Probability is calculated by

$$S_{gap}^{2} = \frac{\int |\mathcal{A}(s,b)|^{2} e^{-\Omega(b)} d^{2}\mathbf{b}}{\int |\mathcal{A}(s,b)|^{2} N d^{2}\mathbf{b}} = \begin{cases} 5\% \text{ Tevatron} \\ 2.7\% - 3\% \text{ LHC} \end{cases}$$

where $N = e^{-\Omega_0}$ is the relevant opacity at $\Omega = 0$.

• Pomeron loops: Higgs boson production with $S_{gap}^2 = 0.4\%$ Miller EPJC **56** (2008) 39 arXiv:0908.3450[hep-ph]

M.B. Gay Ducati — UFRGS

Cross section for central rapidity Gay Ducati and Silveira PRD 78 (2008) 113005

• The cross section is calculated for central rapidity $(y_H = 0)$

$$\frac{d\sigma}{dy_H dt}\Big|_{y_H,t=0} = \frac{S_{gap}^2}{2\pi B} \left(\frac{\alpha_s^2 \alpha M_H^2}{3N_c \pi_V}\right)^2 \left(\sum_q e_q^2\right)^2 \left[\int_{\mathbf{k}_0^2}^{\infty} \frac{d\mathbf{k}^2}{\mathbf{k}^6} e^{-S(\mathbf{k}^2, M_H^2)} f_g(\mathbf{x}, \mathbf{k}^2) \mathcal{X}(\mathbf{k}^2, Q^2)\right]^2$$

► Proton content¹: $\alpha_s C_F / \pi \rightarrow f_g(x, \mathbf{k}^2) = \mathcal{K} \partial_{(\ell n \mathbf{k}^2)} xg(x, \mathbf{k}^2)$

- ► Gap Survival Probability²: $S_{gap}^2 \rightarrow 3\%$ (5%) for LHC (Tevatron)
- ► Gluon radiation suppression³: Sudakov factor $S(\mathbf{k}^2, M_H^2) \sim \ell n^2 (M_H^2/4\mathbf{k}^2)$
- Cutoff k_0^2 : Necessary to avoid infrared divergencies :: $k_0^2 = 1 \text{ GeV}^2$.
- Electroweak vacuum expectation value: v = 246 GeV
- Gluon-proton form factor: $B = 5.5 \text{ GeV}^{-2}$

¹Khoze, Martin, Ryskin, EJPC **14** (2000) 525

²Khoze, Martin, Ryskin, EJPC **18** (2000) 167

³Forshaw, hep-ph/0508274

Results: predictions for the γp process

- The predictions for different PDF's are close in LHC
- **Tevatron**: restricted to $M_H < 140$ GeV (reason: x > 0.01)

M.B. Gay Ducati — UFRGS

II Encontro de Física do RS, Pelotas — Mar 10-11, 2010

Results: gluon PDF parametrizations

 All parametrizations start the distribution evolution from

$$\mathbf{k}_{0}^{2} = \left\{ egin{array}{c} 1.25 \ \mbox{GeV}^{2}, \ \mbox{MRST} \ \mbox{and} \ \mbox{CTEQ6} \ 1.31 \ \mbox{GeV}^{2}, \ \mbox{ALEKHIN} \end{array}
ight.$$

 \blacktriangleright One can extrapolate the distribution for ${\bf k}^2 \rightarrow 0$

 $k_{\leftarrow}^2 \sim k^{4+2(\gamma+2)\mathbf{k}^2}$

For each parametrization one needs to compute the parameters to match the function and its derivative in the correct value.

 $\mathbf{MRST2001lo} \rightarrow \gamma = 1.987455222$

Higgs production in Ultraperipheral Collisions

• The γp process is a subprocess in ultraperipheral pp collisions

- ▶ Impact parameter: $|\vec{b}| > 2R \rightarrow \text{NO STRONG INTERACTION!}$
- Only <u>EM force</u> acts in the second proton \rightarrow **REAL PHOTONS**

Peripheral photons

Baur, Hencken and Trautman J. Phys. **G24** (1998) 1657

The photon virtuality is related to the nucleus radius: coherent action of the charged particles

 $Q^2 \lesssim 1/R^2$

COHERENCE CONDITION

• In the proton case: $Q^2 \lesssim 10^{-2} \text{ GeV}^2$.

Uncertainty principle: upper limit to the photon transverse momentum

$$\mathbf{Q} \lesssim rac{1}{R} pprox \left\{egin{array}{c} 28 ext{ MeV, Pb beam} \\ 330 ext{ MeV, proton beam} \end{array}
ight.$$

Photon spectra

The energy fraction of the photon related to the incident nucleus obey the coherence condition

$$x_{\gamma} = rac{\text{photon energy}}{\text{beam energy}} = rac{\omega}{E} \left\{ \begin{array}{c} x_{\gamma} \lesssim 10^{-3}, \text{Ca} \\ x_{\gamma} \lesssim 10^{-4}, \text{Pb} \end{array}
ight.$$

d'Enterria and Lansberg arXiv:0909.3047[hep-ph]

The photon distribution is strongly suppressed at high energies.

F

Z

Hadronic cross section

For pp collisions, $\sigma_{\gamma p}$ is convoluted with the photon flux

$$\sigma(pp \rightarrow p + H + p) = 2 \int_{\omega_0}^{\sqrt{s}/2} \frac{dn}{d\omega} \sigma_{\gamma p}(\omega, M_H) d\omega,$$

where the photon flux is given by

$$\frac{dn}{dk} = \frac{\alpha_{em}}{2\pi\omega} \left[1 + \left(1 - \frac{2k}{\sqrt{s}}\right)^2 \right] \left(\ell nA - \frac{11}{6} + \frac{3}{A} - \frac{3}{2A^2} + \frac{1}{3A^2} \right)$$

with $A\simeq 1+(0.71\,{
m GeV}^{-2})\sqrt{s}/2\omega^2$, and for nucleus

$$\frac{dn}{d\omega} = \frac{2Z^2 \alpha_{em}}{\pi \omega} \left\{ \mu \mathcal{K}_0(\mu) \mathcal{K}_1(\mu) - \frac{\mu^2}{2} \left[\mathcal{K}_1^2(\mu) - \mathcal{K}_0^2(\mu) \right] \right\}$$

where $\mu = \omega b_{min}/\gamma_L$, and $b_{min} = r_P + R_A$.

The parametrization allows one to write the virtuality as

$$Q^2 = -\omega^2/(\gamma_L^2 \beta_L^2) - q_\perp^2$$

with $\gamma_L = (1 - \beta_L^2)^{-1/2} = \sqrt{s}/2m_p$.

Results: Higgs boson in UPCs

- Similar to those from $\gamma\gamma$ process (10⁻¹ fb).
- Clear distinction among the predictions in LHC for different PDF's.
- ► The event rate is obtained from the relation $\frac{d\sigma_{pp}}{dy_u} = 2 \int_{\omega_0}^{\sqrt{s}/2} \frac{dn}{d\omega} \frac{d\sigma_{\gamma p}}{dy_u} d\omega$.

Results: Cutoff sensitivity

- The main contribution comes from the range $k_0^2 < 30 \text{ GeV}^2$.
- Sensitivity: almost the same behavior than the direct pp process.

Results: pA collisions

Some species are inspected for the Higgs boson photoproduction:

Pb, Au, Ar, O

• The photon flux is improved by a factor of Z^2 ;

Summary

We compute the event rate for Higgs boson production in Ultraperipheral Collisions at LHC:

 $\sigma_{pp} \sim 0.1 \; {
m fb} \qquad \sigma_{pPb} \sim 80 \; {
m fb}$

- The computed total cross section is lower than the direct *pp* process, however,
 - The Rapidity Gap Survival Probability (GSP) is not appropriated to the γp process (3%).
 - We must compute the GSP for the γp collsions.

Subprocess	GSP (%)	σ_{pp} (fb)
IPIP	2.3	2.7
IPIP	0.4	0.47
$\gamma\gamma$	100	0.1
γp	3.0	0.08

- The predictions can be analysed with the data for non-central collisions.
 - It will be less competitive than direct pp processes if analysed separetely.