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In a recent work[1], Drell-Yan dilepton production at backward
rapidities in hadrons collisions was studied in the rest frame
of the target, i. e., in the color dipole approach. In this work,
we compare these previous results with results obtained using
the well known intrinsic kT approach in the infinite momen-
tum frame [2, 3] (IMF). The dilepton production is of particu-
lar interest since dileptons do not interact strongly and therefore
carry information about initial state effects. We compare both
formalisms in proton-nucleus collisions at backward rapidities
(proton as a target) at RHIC and LHC energies. The results show
qualitative agreement between the two formalisms through the
nuclear modification ratio as a function of both rapidity and
transverse momentum and also show that low-mass dileptons
are relevant observables to probe nuclear effects.

Drell–Yan process in the IMF

In the IMF frame, the Drell-Yan process is understood as the
combination of two partons to create a virtual boson that sub-
sequently splits in the dilepton. For dilepton mass M much
smaller than the Z mass, the dominant process includes only the
photon as the virtual boson. In the kinematics used here partons
and hadrons are taken as massless, the momenta of hadrons A
and B are PA and PB, and the longitudinal momenta of partons
are pA = xAPA and pB = xBPB. The virtual photon momentum
is q, and q2 = M2 is the squared dilepton mass. The Mandel-
stam variables are given by: s = 2PA · PB, t = (q − PA)2, and
u = (q − PB)2. We also define x1 = 2PB · q/s, x2 = 2PA · q/s,
and the photon (longitudinal) rapidity y = 1

2 ln(x1/x2). It can be
showed that:

x1,2 =

√

M2 + p2
T

s
e±y, (1)

in which pT is the photon (also dilepton) transverse momentum.

We consider then partonic intrinsic transverse momentum, i. e.,
partons are not collinear to hadrons [2, 3]. The partonic distribu-
tions are modified as the following prescription:

f (x)dx → f (x)h( ~kT )dxd2kT . (2)

In this paper, we consider h( ~kT ) = 1
2πb2 exp

(

k2

T

2b2

)

. Therefore, the

cross section is given by[4, 5]:

σS(s, M2, y, pT ) = h′(p2
T )

dσ

dM2dy
(3)

+

∫

d2qTσP (s, M2, q2
T )[h′((~pT − ~qT )2) − h′(p2

T )].

In the above expression, it is included the NLO collinear double
differential cross section:

dσ

dM2dy
=

σ̂0

s

∫ 1

0
dxAdxBdzδ(xAxBz − τ )δ

(

y −
1

2
ln

xA

xB

)

×

{

Pqq̄(xA, xB, M2)

[

δ(1 − z) +
αs(M

2)

2π
Dq(z)

]

+ Pqg+gq(xA, xB, M2)

[

αs(M
2)

2π
Dg(z)

]}

.

Using the modified minimal subtraction scheme (MS), Dq(z) and
Dg(z) are given e.g. in Ref. [6] (CF = 4/3, TR = 1/2).

The second term in the right hand side of equation 3 is calculated
only from annihilation and Compton diagrams and is written
as[4]:

σP (s,M 2, p2

T ) =
1

π2

α2αs

M 2ŝ2

∫

1

xAmin

dxA
xBxA

xA − x1

{

Pqq̄(xA, xB, M 2)
8

27

2M 2ŝ + û2 + t̂2

t̂û

+Pqg(xA, xB, M 2)
1

9

2M 2û + ŝ2 + t̂2

−ŝt̂
+ Pgq(xA, xB, M 2)

1

9

2M 2t̂ + ŝ2 + û2

−ŝû

}

in which xAmin is given by (x1 − τ )/(1 − x2), xB = (xAx2 −
τ )/(xa − x1), and Pqq̄(xA, xB) =

∑

q e2
q

(

fq(xA)fq̄(xB) + q̄ ↔ q
)

;

Pqg(xA, xB) =
∑

q e2
q

(

fq(xA) + fq̄(xA)
)

fg(xB); Pgq(xA, xB) =
∑

q e2
qfg(xA)

(

fq(xB) + fq̄(xB)
)

.
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Figure 1: Ratio RA
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using EKS and nDS parameterizations.
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Figure 2: Factor RpA at RHIC energies (
√

s = 200 GeV) as a function of ra-

pidity and transverse momentum.

Color dipole picture of Drell–Yan

In the color dipole approach, Drell–Yan dilepton production is
studied in the rest frame of the target. So, the projectile emits
a quark (or antiquark), which fluctuates into a state of quark–
photon and interacts with the color field of the target, and the
photon is freed to split into a dilepton. The color dipole cross
section arises as the interference of the diagram in which the
quark first interacts with the target with the diagram in which
the quark first fluctuates in the quark–photon state. This result
was first stated in [7] and derived in detail in [5].

In [1], the color dipole approach was used to study dileptons
produced at backward rapidities, so the proton was considered
as the target and the nucleus as the projectile. In this case,
the color dipole approach is phenomenologically valid for small
x1[5] – very backward rapidities. The cross section is written as:

dσDY

dM2dyd2pT
=

α2
em

6π3M2

∫ ∞

0
dρW (x2, ρ, pT )σdip(x1, ρ), (4)

in which ρ is the dipole transverse size. In this case, x2 is the
projectile momentum fraction carried by the virtual photon.

The weight function W (x2, ρ, pT ) contains the nuclear structure
function FA

2 (x2/α, M2) =
∑

q e2
q[xfA

q (x, M2) + xfA
q̄ (x, M2)]:

W (x2, ρ, pT ) =

∫

1

x2

dα

α2
FA

2
(
x2

α
, M 2)

{

[m2

qα
4 + 2M 2(1 − α)2]

[

1

p2

T + η2
T1(ρ) −

1

4η
T2(ρ)

]

+ [1 + (1 − α)2]

[

ηpT

p2

T + η2
T3(ρ) −

1

2
T1(ρ) +

η

4
T2(ρ)

]}

,

in which η2 = (1 − α)M2 + α2m2
q and mq = 0, 2 GeV is the quark

mass. The functions Ti are given by: T1(ρ) = ρ
αJ0

(pTρ
α

)

K0
(ηρ

α

)

,

T2(ρ) = ρ2

α2J0
(pTρ

α

)

K1
(ηρ

α

)

, and T3(ρ) = ρ
αJ1

(pTρ
α

)

K1
(ηρ

α

)

, in
which Jn(x) is the Bessel function of the first kind and Kn(x)
is the modified Bessel function of the second kind.

We use the model introduced by Golec-Biernat and Wüsthoff
(GBW)[8] for the dipole cross section:

σdip(x, r) = σ0

[

1 − exp

(

−
r2Q2

0

4(x/x0)λ

)]

, (5)

in which Q2
0 = 1 GeV2 and there are three fitted parameters:

σ0 = 23, 03 mb (59,14 GeV−2), x0 = 3, 04 × 10−4, and λ = 0, 288.
It is important to highlight that the present dipole cross section
includes saturation effects, not included in the IMF approach.

PDFs

We use GRV98[9, 10] as the parton distribution function (PDF)
of free protons. Two parameterizations of the nuclear PDFs
are used: EKS[11, 12, 13] and nDS[14]. EKS parameterization
gives the nPDF as the free proton PDF multiplied by a factor:
fA
q (x, Q) = RA

q (x, Q)f
p
q (x, Q), while nDS gives the nPDF as a con-

volution of the free proton PDF and a weight function:

fA
q (x, Q) =

∫ A

x

dy

y
Wq(y, A)f

p
q

(

x

y
, Q

)

. (6)

EKS parameterization is available only at leading order, while
nDS is also at NLO. In Fig. 1, both parameterizations are com-
pared at leading order calculating RA

F2
= FA

2 /F
p
2 . We would like

to stress that nDS parameterization presents lower ratio for most
values of x studied, in particular for EMC (0.3 < x < 0.8) and
shadowing (x < 0.1) effects – other regions correspond to anti-
shadowing (0.1 < x < 0.3) and Fermi motion (0.8 < x) effects.
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Figure 3: Factor RpA at LHC energies (
√

s = 8800 GeV) as a function of ra-

pidity and transverse momentum.

Results

We use dilepton mass of M = 6.5 GeV, gold nucleus (A = 196.97),
and intrinsic kT standard deviation of b = 0.48GeV. In Figs. 2 and
3, the nuclear modification factor:

RpA =
dσ(pA)

dp2
TdydM

/

A
dσ(pp)

dp2
TdydM

(7)

is calculated for RHIC and LHC energies. The main difference
among formalisms is a step near pT = 2.5 GeV in the IMF distri-
butions, caused by the different ways that the two terms in Eq. 3
take into account nuclear effects, since each is dominant in one
region of pT . This result shows that saturation effects included
in the dipole approach are not very effective in changing the nu-
clear modification ratio.

For RHIC energies, the behavior of RpA is mainly explained by
the inclusion of anti-shadowing effects with decreasing x2 ap-
proximately from 0.64 (y = −2.6, pT = 7) to 0.09 (y = −1.0, pT =
0). Anti-shadowing effects are characterized by an increase in
the nuclear cross section, exactly what is seen in Fig. 2. For LHC
energies (Fig. 3), shadowing effects are also important, repre-
sented by a decrease after the increase caused by anti-shadowing
as x2 decreases. EKS and nDS parameterizations give quali-
tatively similar results, showing that both approaches roughly
give the same dependence of RpA on the nuclear effects. EKS
parameterization predicts a smallerRpA than nDS parameteriza-
tion in both approaches and nDS parameterization shows more
sensitivity to the approach.

In conclusion, we show that low-mass dileptons are relevant in
probing nuclear effects at RHIC energies. The results obtained
showed strong dependence on the nuclear effects. Among the
approaches, qualitative agreement was obtained in the nuclear
modification factor, showing that saturation effects (considered
in the color dipole formalism) do not play a key role in this fac-
tor. However, the nuclear modification factor proved to be very
sensitive to the introduction of an intrinsic transverse momen-
tum, given the step seen in the pT distribution.
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