

Diffractive Higgs boson photoproduction in pp collisions

G.G. Silveira, M.B. Gay Ducati

gustavo.silveira@ufrgs.br

High Energy Physics Phenomenology Group Universidade Federal do Rio Grande do Sul Porto Alegre, Brazil

Outline

- Motivation
- Photoproduction approach
- Peripheral Collisions
- Photoproduction at the Tevatron and LHC
- Conclusions

Motivation

- ▶ LHC will allow to study a new kinematic region:
 - ► CM energy: 14 TeV → 7x Tevatron energy
 - ▶ Luminosity: $10-100 \text{ fb}^{-1} \rightarrow \sim 10x$ Tevatron luminosity
 - Higgs physics: low luminosity regime favorable to the Higgs boson production in diffractive processes.
- Some hadron-hadron collisions will occur with <u>no</u> strong interaction.
 - The peripheral collisions are a new way to study the Higgs boson production in pp(AA) collisions.
- Other processes of Higgs production are under study to allow its detection in hadron colliders.
 - ▶ DPE allows the Higgs boson production through the leading ggH vertex mainly in the mass range $M_H \sim 115 200$ GeV.
- ▶ New evidences: excluded mass range of 160 GeV $< M_H < 170$ GeV.

$$114.4 \text{ GeV} < M_H < 160 \text{ GeV}$$

Diffractive Higgs photoproduction

Proposal: γp process by **DPE** in pp collision.

NON-DIAGONAL PDF

▶ The loop is treated in **impact factor formalism** at t = 0.

Scattering amplitude

▶ Partonic process: $\gamma q \rightarrow \gamma + H + q$

▶ The scattering amplitude is obtained by the Cutkosky Rules

$$\operatorname{Im} \mathcal{A} = \frac{1}{2} \int d(PS)_3 \ \mathcal{A}_{(left)} \ \mathcal{A}_{(right)}$$

Applying the rules

▶ Performing the product of the two sides of the cut one gets

$$\mathcal{A}_{L}\mathcal{A}_{R} = (4\pi)^{3} \alpha_{s}^{2} \alpha \left(\sum_{q} e_{q}^{2}\right) \left(\frac{\epsilon_{\mu} \epsilon_{\nu}^{*}}{k^{6}}\right) \frac{V_{\sigma \eta}^{ba}}{N_{c}} \left(t^{b} t^{a}\right) \frac{\text{eikonal}}{4p_{\lambda} p^{\sigma}} \times 2 \left\{\frac{\text{Tr}\left[(\not q - \not l)\gamma^{\mu} \not l \gamma^{\lambda} (\not k + \not l)\gamma^{\eta} \not l \gamma^{\nu}\right]}{l^{4}} + \frac{\text{Tr}\left[(\not q - \not l)\gamma^{\lambda} (\not k + \not l - \not q)\gamma^{\mu} (\not k + \not l)\gamma^{\eta} \not l \gamma^{\nu}\right]}{l^{2} (k + l + q)^{2}}\right\}$$
OTHER
POSSIBILITIES

▶ For a non-heavy Higgs ($M_H \lesssim 200$ GeV), the ggH vertex reads

Forshaw, hep-ph/0508274

The amplitude in parton level

▶ The imaginary part of the amplitude has the form

$$\frac{\text{Im}\,\mathcal{A}}{s} = -\frac{4}{9} \left(\frac{M_H^2 \alpha_s^2 \alpha}{N_c v} \right) \left(\sum_q e_q^2 \right) \left(\frac{\alpha_s \, C_F}{\pi} \right) \int \frac{d\mathbf{k}^2}{\mathbf{k}^6} \, \, \mathcal{X}(\mathbf{k}^2, Q^2) \,,$$

with

$$\mathcal{X}(\mathbf{k}^2, Q^2) = \int_0^1 d\tau \int_0^1 d\rho \; \frac{\mathbf{k}^2 \left[\tau^2 + (1-\tau)^2\right] \left[\rho^2 + (1-\rho)^2\right]}{Q^2 \rho (1-\rho) + \mathbf{k}^2 \tau (1-\tau)}.$$

- ► <u>First remark</u>: dependence on k⁻⁶ due to the presence of the color dipole.
- Computing the event rate in central rapidity

$$\left.\frac{d\sigma}{dy_H d\mathbf{p}^2 dt}\right|_{y_H,t=0} = \frac{1}{2} \left(\frac{\alpha_s^2 \alpha M_H^2}{9\pi^2 N_c v}\right)^2 \left(\sum_q e_q^2\right)^2 \left[\frac{\alpha_s \, C_F}{\pi} \int \frac{d\mathbf{k}^2}{\mathbf{k}^6} \; \mathcal{X}(\mathbf{k}^2,Q^2)\right]^2.$$

▶ Quark → Proton: $\alpha_s C_F/\pi$ → $f_g(x, \mathbf{k}^2) = \mathcal{K} \partial_{(\ell_R \mathbf{k}^2)} x g(x, \mathbf{k}^2)$.

Cross section for central rapidity Gay Ducati and Silveira PRD 78 (2008) 113005

▶ The cross section is calculated for central rapidity $(y_H = 0)$

$$\left. \frac{d\sigma}{dy_H dt} \right|_{y_H, t=0} = \frac{S_{gap}^2}{2\pi B} \left(\frac{\alpha_s^2 \alpha M_H^2}{3N_c \pi v} \right)^2 \left(\sum_q e_q^2 \right)^2 \left[\int_{\mathbf{k}_0^2}^{\infty} \frac{d\mathbf{k}^2}{\mathbf{k}^6} e^{-S(\mathbf{k}^2, M_H^2)} f_{\mathbf{g}}(\mathbf{x}, \mathbf{k}^2) \mathcal{X}(\mathbf{k}^2, Q^2) \right]^2$$

- ▶ Proton content¹: $\alpha_s C_F/\pi \rightarrow f_g(x, \mathbf{k}^2) = \mathcal{K} \partial_{(\ell n \mathbf{k}^2)} xg(x, \mathbf{k}^2)$
- ► Gap Survival Probability²: $S_{gap}^2 \rightarrow 3\%$ (5%) for LHC (Tevatron)
- ► Gluon radiation suppression³: Sudakov factor $S(\mathbf{k}^2, M_H^2) \sim \ell n^2 \left(M_H^2/4\mathbf{k}^2\right)$
- ► Cutoff k_0^2 : Necessary to avoid infrared divergencies :: $k_0^2 = 0.3 \text{ GeV}^2$.
- ▶ Electroweak vacuum expectation value: v = 246 GeV
- ▶ Gluon-proton form factor: $B = 5.5 \text{ GeV}^{-2}$

Khoze, Martin, Ryskin, EPJC 14 (2000) 525

²Khoze, Martin, Ryskin, EPJC **18** (2000) 167

Forshaw, hep-ph/0508274

Results: predictions for the γp process

- ► The predictions for different PDF's are close in LHC
- **Tevatron**: restricted to $M_H < 140$ GeV (reason: x > 0.01)

Higgs production in Peripheral Collisions

▶ The γp process is a subprocess in peripheral pp collisions

- ▶ Impact parameter: $|\vec{b}| > 2R \rightarrow \text{NO STRONG INTERACTION!}$
- ▶ Only EM force acts in the second proton → REAL PHOTONS

Hadronic cross section

▶ For pp collisions, σ_{γ_p} is convoluted with the photon flux

$$\sigma(pp \to p + H + p) = 2 \int_{\omega_0}^{\sqrt{s}/2} d\omega \frac{dn}{d\omega} \sigma_{\gamma p}(\omega, M_H),$$

where the photon flux is given by

$$\frac{dn}{d\omega} = \frac{\alpha_{em}}{2\pi\omega} \left[1 + \left(1 - \frac{2\omega}{\sqrt{s}} \right)^2 \right] \left(\ell n A - \frac{11}{6} + \frac{3}{A} - \frac{3}{2A^2} + \frac{1}{3A^2} \right).$$

with $A \simeq 1 + (0.71 \text{ GeV}^{-2})\sqrt{s}/2\omega^2$.

lacktriangle The photon virtuality can be written in terms of the ω and ${f q}_\perp$

$$Q^2 = -\omega^2/(\gamma_L^2 \beta_L^2) - q_\perp^2$$

with
$$\gamma_L = (1 - \beta_L^2)^{-1/2} = \sqrt{s}/2m_p$$
.

► The γp center-of-mass energy: $W^2 = 2\omega\sqrt{s}$.

Results: Higgs boson in peripheral collisions

- Results similar to those from $\gamma\gamma$ process (10⁻¹ fb).
- ▶ Disparity betweem the predictions for LHC with distinct parametrizations.
- ► The event rate is obtained by $\frac{d\sigma_{pp}}{dy_H} = 2\int_{\omega_0}^{\sqrt{s}/2} \frac{dn}{d\omega} \frac{d\sigma_{\gamma p}}{dy_H} d\omega$.

Conclusions

▶ We compute the event rate for **Higgs boson production** in PC at LHC:

LHC:
$$\sigma_{\sf pp} \sim 0.1 \; {\sf fb}$$

- ▶ The predicted cross section is lower than the direct *pp* process, however,
 - The Rapidity Gap Survival Probability (GSP) is not appropriated to the γp process (3% like KMR).
 - ▶ We must compute the GSP for the γp collsions.

Subprocess	GSP (%)	σ_{pp} (fb)
IPIP	2.3	2.7
IPIP	0.4	0.47
$\gamma\gamma$	100	0.1
γp	3.0	0.08

- ▶ The predictions can be analysed with data from non-central collisions.
 - ▶ Will be less competitive with direct *pp* processes if analysed separetely.