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ums Deep Inelastic Scattering (DIS) %‘

Kinematics and variables

® The total energy squared of the
e(k’) photon-nucleon system

e(kl__, / s=(P+q)°

® Photon virtuality

7" (q)
=(k—k)=-Q%<0
p(P)____ | e
® The Bjorken variable
2 2
r=TBj = Q = Q
2P-q Q2% +s
® The rapidity variable
= In(1/x)

® The high energy limit:

L s — 00, TR Q—2—>O J

S
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® One of the most intriguing problems in Quantum Chromodynamics is the growth with
energy (and Q fixed) of the gluon density, and consequently of the cross sections, for
hadronic interactions

® At very high energies gluon recombination and multiple scattering might be important to
restore unitarity: nonlinear evolution equations

v Y B
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f h +* b Nonlinear evolution
!-. | | g ‘?di Dense system

L A 2

Saturation scale

—— MNon—perturbative region

Linear evolution
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® In this frame, the virtual foton (which travels fast) fluctuates into a ¢g pair of size r which

then interacts with the proton

® The cross section is factorized like

» 1
U%,f(Y7 Q) — /dQT/(; dz ‘\IJT,L(Taz;Q2>‘20-dip(T7 Y)a (1)

where ag;p(Y, ) is the dipole-proton cross section, z is the fraction of photon’s
momentum carried by the quark, r is the size of the dipole and b is the impact

parameter and U . (r, z; Q%) stands for the transverse and longitudinal photon
wavefunctions
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= F5 structure function 7\
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f.’ Assuming an independence on the impact paremeter, the dipole-proton cross section is—‘

proportional to the dipole-proton forward scattering amplitude 7'(r, Y") through the
relation

Odip(r,Y) = 27TR]23T(7°, Y)
where R, is the proton radius.

® The proton structure function F» can be obtained from the v*p cross section through
the relation

Fo(2,Q%) = —— |of P(2,Q%) + 0] (2,Q%)]

AT2 e

2
- Y P(x,Q%) 2)

AT2 e

® |tis possible to express the v*p cross section in terms of the scattering amplitude in
momentum space, 7'(k,Y") , through the Fourier transform

T(k,Y) = /O oo %Jo(kr) T(r,Y) 3)

o |
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® The proton structure function is related to 7°(k, ') through
Q2R2 dk
Fy(z,Q%) = / / dz | U (k, z; Q) |*T(k,Y) (4)

where the photon wavefunction is now expressed in momentum space [1]

® The scattering amplitude 7'(k, Y') obeys the The Balitsky-Kovchegov (BK) nonlinear
equation in momentum space (@ = as N, /)

Oy T = ax(—0p)T — aT? (5)

where

xX(y) = 2¢(1) —(y) — (1 — ) (6)
is the characteristic function of the leading-order (LO) Balitsky-Fadin-Kuraev-Lipatov
(BFKL) kernel and L = log(k?/k?)

® The BK equation lies [2] in the equivalence class of the Fisher-Kolmogorov-
Petrovsky-Piscounov (F-KPP) equation, which admits the the traveling wave

solutions
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The asymptotic behaviours of the solutions to BK equation are naturally expressed in
momentum space

At asymptotic rapidities, the amplitude 7°(k, Y), instead of depending separately on k
and Y, depends only on the scaling variable k£ /Q%(Y"), where we have introduced the
saturation scale Q2(Y) = k2 exp(\Y'), measuring the position of the wavefront

The expression for the tail of the scattering amplitude [1]

k@ (R Nk N[ dog? (K2/Q2(Y))
16" E (gm) o (Gm) p[ 26x" (70)Y ] @

In the infrared domain, one can show that the amplitude behaves like

r (Qfm ’ Y) e g (QL)) ©

where c is an unfixed constant
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The AGBS model 7y
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The description of the transition to the saturation region is performed by an analytic
interpolation between both asymptotic behaviours [2]

The expression for the amplitude is unitarised — up to a logarithmic factor — by an
eikonal i.e. Tyt = 1 — exp(—Tyj)

The following choice gives good results:

- B k' Qs T,
T(k,Y) = {log <@+?> +1} (1—e dl> ©)
where
k2 L2 —log?(2)
T' — o Cl . red
e [ 0108 (377 ) ~ “hey a0
and
kz 2 2 Y
Lieg = log [1 - 02 (Y)} and Q:i(Y)=kge (11)

The equations above determine the model for the scattering amplitude, to be inserted
into the expression for the F5 structure function, resulting in a good fit to the HERA data

[1]
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® BK equation is a “mean field” approximation of the Balitsky
: _ (x—y)*
h|erachy(/\/lXyz = (X_Z)Q(Z_y)g)
o
O (Ty) = o= [ Mooy ((Ta) + (Tay) = (Toy) = (ToaTiy)
) (12)

® ror afixed color field in the target we have (Tx, T,y ) = (Txz) (Tzy ), wich yields the BK
equation

Oy (Tay) = o [ Moy (Taa) + (Ti) = (Toy) = (Boa) (Tay)) 13

® However, the Balitsky equations don’t take into account the possibility of multiple
scattering in the projectile, or the fluctuations in the particle (dipole or gluon) number in
the target [3]
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f’ (T%) we identify: —‘

In the diagrams for (7%, 7,y ) =
a BFKL term: 8y (T?) o (T?)
a saturation term (pomerons merging): dy (1%) o (1)
a fluctuation term (pomeron splitting): 9y (1%) o (T')

pomeron merging + pomerons splitting = pomeron loop equations

We consider the fluctuations to be local — (Tky) = ka?|x — y|* (nxy ), with k = O(1)

L I B

After Fourier transform (r = |x — y| — k) and an coarse-graining approximation to get
rid of the impact parameter dependence of the fluctuation term, we have

Oy (Tx) =ax (—0L) (Tk) — (T, k)

%% <T131,k:2> =ax (—0r,) <T131,k:2> - <TI§1,I<:1,I<:2> +(1<2)

14
+ aralkis(k3 — k3) (Tk, ) (14)

where L; = log(k?/k2).
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The hierarchy of pomeron loop equations can be rewriten under a form of a Langevin
equation for the event—by—event amplitude

OyT(L,Y) = & [X(—E)L)T(L, Y)—T2(L,Y) + \/mgT(L, Y)n(L, Y)} (15)

where 7 is a Gaussian white noise satisfying:

(n(L,Y)) =0
4 (16)
(n(L1,Y1)n(L2,Y2)) 255@1 — L2)6(Y1 — Y2)

Langevin equation = BK + noise term

o e

In the diffusive approximation for x(—3y, ), this equation is equivalent to the sFKPP =
FKPP + noise

® For each realization of the noise (single event), the evolved amplitude shows a
travelling-wave patern, i.e., the geometric scaling is preserved

o |
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Different realizations of the target lead to a dispersion of the solutions, and then in the
saturation momentum p, = In(Q%/k3) which define the position of the wavefront

® The saturation scale is now a random variable whose average value is given by
(Qi(Y)) = exp[A"Y] (17)
® The dispersion in the position of the individual fronts is given by
0% = (p3) — (ps)* = Day (18)

where D is the diffusion coefficient

® The probability distribution of p; is, to a good approximation, a Gaussian

(19)

Py (ps) ~ \/;7 exp {— (ps _U<208>)2}

o |
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For each single event the geometric scaling is preserved, but the speed of the wave is
smaller than the speed predicted by BK equation. This speed, or the (average)
saturation exponent, has been found to be [3]

2 /!
Vo ) TeX (%). 20)
In(1/a3)

The average ( physical) amplitude is determined by (X = In(1/r%k3))

+o00
(T(X, ps)) = / dps Py (ps)T(X, ps). (21)

— o0

For sufficiently high energies the physical amplitudes do not show geometric scaling

Additional dependencies upon Y, through the front dispersion o, lead to the
replacement of the geometric scaling by the so-called diffusive scaling [3,4,5]

X—<ps>>.

22
aDY 22

|
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® The scattering amplitude given by AGBS model act as a single event one to be inserted
into the expression for the average scattering amplitude (p = In(k?/k3))

“+oo
<TAGBS(p, ps)> = / dps Py (ps)T%P% (p, ps). (23)

— 0

which is now used in the F» expression to correctly describe the last HERA data with
the fluctuations included [6]

® D and )\* are analytically known only in the asymptotic limit as — 0, and then are
treated as free parameters
Free parameters: R, x”, k3, A e D

c

Fixed parameters: 7. = 0.6275 e & = 0.2
® Kinematical range:
x < 0.01,
0.045 < Q? < 150 GeV?

°

We consider only light quarks in two cases: m,, 4, = 50 MeV e m,, 4 s = 140 MeV

°

As usual, we rescaled the H1 data by a factor 1.05, within the normalization uncertainty
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f.’ Ma.d,s = 50 MeV T
x2/n.op | k3 (x1073) A R(GeV—1) X" (7e) D (x1072)
THGBS 0.949 | 3.79+0.30 | 0.213+0.003 | 3.576 +0.059 | 4.69 + 0.23 0
<T§\GBS> 0.949 | 3.79+£0.30 | 0.213+0.003 | 3.576£0.059 | 4.69+023 | 0.0+ 1.1
9 My, d,s — 140 MeV
x2/n.o.p | kE (x1073) A R(GeV—h X" () D (x1073)
THGBS 0.942 | 1.69+0.16 | 0.176 £0.004 | 4.83+0.12 | 6.43 +£0.29 0
<T§\GBS> 0.942 | 1.69+0.16 | 0.176+0.004 | 4.83+£0.12 | 6434029 | 0.0+9.6
® Only ZEUS with Q2 < 50 GeV?, m,, 4. = 140 MeV
x2/n.op | k3 (x1073) A R(GeV—1) X" (7e) D
THGBS 0.778 | 1.97+£0.22 | 0.177 £0.006 | 4.68+0.14 | 5.95+ 0.94 0
<T§\GBS> 0.768 | 1.38+£0.12 | 0.120+0.010 | 546 £0.04 | 5.46+0.55 | 1.78 + 0.38

o
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((Q>=70  T@Q*=90 Q=120 T Q*=150

O 1 1 1
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® We conclude that, in the framework of the AGBS model, there is

no evidence of fluctuations in DIS at HERA energies, because:

We obtained a good fit to the F5 structure function, shown
by the good y?/n.o.p

For the whole data set (H1 + ZEUS), the diffusion
coefficient D — 0

This indicate that a mean field treatment (BK), with fixed o,
IS enough to investigate high energy QCD phenomenology, at
least at HERA energies

® For large energies (LHC) will be possible to see if the
fluctuations are really important to the evolution at high energy,
or if they are suppressed by the running of the coupling

L constant J
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