

New saturation predictions with heavy quarks at HERA in momentum space

J. T. S. Amaral, M. B. Gay Ducati and E. Basso

thiago.amaral@ufrgs.br, beatriz.gay@ufrgs.br, ebasso@if.ufrgs.br

High Energy Phenomenology Group – Instituto de Física Universidade Federal do Rio Grande do Sul – Porto Alegre, Brazil

GFPAE - UFRGS

http://www.if.ufrgs.br/gfpae

Deep Inelastic Scattering (DIS)

The total energy squared of the photon-nucleon system

 $s = (P+q)^2$

Photon virtuality

$$q^2 = (k - k') = -Q^2 < 0$$

The Bjorken variable

$$x \equiv x_{Bj} = \frac{Q^2}{2P \cdot q} = \frac{Q^2}{Q^2 + s}$$

The high energy limit:

$$s \to \infty, \quad x \approx \frac{Q^2}{s} \to 0$$

The rapidity variable

 $Y \equiv \ln(1/x)$

QCD at high energies

- As energy increases (with *Q* fixed) the gluon density grows fast and so does the cross sections for hadronic interactions
 - This is still a challenge in Quantum Chromodynamics
- At this regime gluon recombination and multiple scattering might be important to restore unitarity: nonlinear evolution equations

- $Q_s(Y)$ is the so called saturation scale
- The nonlinear saturation effects are important for all $Q \leq Q_s(Y)$, which is known as saturation region

$\gamma^* p$ cross section: dipole frame

Consider the collision between a virtual photon and a proton at high energy; in a frame where the proton carries most of the total energy one can consider that the photon fluctuates into a $q\bar{q}$ pair

The cross section

$$\sigma_{T,L}^{\gamma^* p}(Y,Q) = \int d^2r \int_0^1 dz \, \left| \Psi_{T,L}(r,z;Q^2) \right|^2 \sigma_{dip}(r,Y), \tag{1}$$

 $\sigma_{dip}^{\gamma^* p}(Y, r)$ is the dipole-proton cross section, *z* is the fraction of photon's momentum carried by the quark, *r* is the size of the dipole and *b* is the impact parameter

Dipole-proton cross section

If one treats the proton as an homogeneous disk of radius R_p , one can write the dipole-proton cross section in terms of the dipole-proton forward scattering amplitude T(r, Y)

$$\sigma_{dip}(r,Y) = 2\pi R_p^2 T(r,Y)$$

P The proton structure function F_2 can be obtained from the $\gamma^* p$ cross section through the relation

$$F_{2}(x,Q^{2}) = \frac{Q^{2}}{4\pi^{2}\alpha_{em}} \left[\sigma_{T}^{\gamma^{*}p}(x,Q^{2}) + \sigma_{L}^{\gamma^{*}p}(x,Q^{2}) \right]$$
$$= \frac{Q^{2}}{4\pi^{2}\alpha_{em}} \sigma^{\gamma^{*}p}(x,Q^{2})$$
(2)

It is possible to express the $\gamma^* p$ cross section in terms of the scattering amplitude in momentum space, $\tilde{T}(k, Y)$, through the Fourier transform

$$\tilde{T}(k,Y) = \int_0^\infty \frac{dr}{r} J_0(kr) T(r,Y)$$
(3)

After a bit of algebra one obtains

$$F_2(x,Q^2) = \frac{Q^2 R_p^2 N_c}{4\pi^2} \int_0^\infty \frac{dk}{k} \int_0^1 dz \, |\tilde{\Psi}(k,z;Q^2)|^2 \tilde{T}(k,Y) \tag{4}$$

where the photon wavefunction is now expressed in momentum space [1]

The scattering amplitude $\tilde{T}(k, Y)$ obeys the The Balitsky-Kovchegov (BK) nonlinear equation in momentum space ($\bar{\alpha} = \alpha_s N_c / \pi$)

$$\partial_Y \tilde{T} = \bar{\alpha} \chi (-\partial_L) \tilde{T} - \bar{\alpha} \tilde{T}^2 \tag{5}$$

where

$$\chi(\gamma) = 2\psi(1) - \psi(\gamma) - \psi(1 - \gamma)$$
(6)

is the characteristic function of the leading-order (LO) Balitsky-Fadin-Kuraev-Lipatov (BFKL) kernel and $L = \log(k^2/k_0^2)$

This equation lies [2] equation, which admits the the traveling wave solutions

Scattering Amplitude $\tilde{T}(k)$

- The asymptotic behaviours of the solutions to BK equation are naturally expressed in momentum space
- At asymptotic rapidities, the amplitude $\tilde{T}(k, Y)$, instead of depending separately on k and Y, depends only on the scaling variable $k^2/Q_s^2(Y)$, where we have introduced the saturation scale $Q_s^2(Y) = k_0^2 \exp(\lambda Y)$, measuring the position of the wavefront
- The expression for the tail of the scattering amplitude

$$\tilde{T}(k,Y) \stackrel{k \gg Q_s}{\approx} \left(\frac{k^2}{Q_s^2(Y)}\right)^{-\gamma_c} \log\left(\frac{k^2}{Q_s^2(Y)}\right) \exp\left[-\frac{\log^2\left(k^2/Q_s^2(Y)\right)}{2\bar{\alpha}\chi''(\gamma_c)Y}\right]$$
(7)

In the infrared domain, one can show that the amplitude behaves like

$$\tilde{T}\left(\frac{k}{Q_s(Y)}, Y\right) \stackrel{k \ll Q_s}{=} c - \log\left(\frac{k}{Q_s(Y)}\right)$$
(8)

where c is an unfixed constant

The model

- The description of the transition to the saturation region is performed by an analytic interpolation between both asymptotic behaviours [1]
- The following choice gives good results:

$$\tilde{T}(k,Y) = \left[\log\left(\frac{k}{Q_s} + \frac{Q_s}{k}\right) + 1\right] \left(1 - e^{-T_{\mathsf{dil}}}\right)$$
(9)

where

$$T_{\mathsf{dil}} = \exp\left[-\gamma_c \log\left(\frac{k^2}{Q_s^2(Y)}\right) - \frac{L_{\mathsf{red}}^2 - \log^2(2)}{2\bar{\alpha}\chi''(\gamma_c)Y}\right]$$
(10)

and

$$L_{\rm red} = \log\left[1 + \frac{k^2}{Q_s^2(Y)}\right]$$
 and $Q_s^2(Y) = k_0^2 e^{\lambda Y}$ (11)

The equations above determine the model for the scattering amplitude, to be inserted into the expression for the F_2 structure function

Parameters and dataset

The critical slope γ_c and the saturation exponent λ are obtained from the knowledge of the BFKL kernel alone:

$$\lambda = \min_{\gamma} \bar{\alpha} \frac{\chi(\gamma)}{\gamma} = \bar{\alpha} \frac{\chi(\gamma_c)}{\gamma_c} = \bar{\alpha} \chi'(\gamma_c)$$

- For the LO BFKL kernel, one finds $\gamma_c = 0.6275...$, and $\lambda \approx 0.9$
- Our analysis is restricted to the following kinematic range:

$$\begin{cases} x \leq 0.01, \\ 0.045 \leq Q^2 \leq 150 \text{ GeV}^2 \end{cases}$$

In the original work [1]:

- $\gamma_c = 0.6275$ and $\bar{\alpha} = 0.2$ kept fixed
- Different situations for the quarks masses: the light-quarks mass m_q has been set to 50 or 140 MeV while we have used $m_c = 1.3$ GeV for the charm mass
- v_c, χ_c'', k_0^2 and R_p are free parameters

 $m_q = 50 \text{ MeV}$ and $m_c = 1.3 \text{ GeV}$

H1 [EPJC 21, 2002] and ZEUS [EPJC 12, 2000; EPJC 21, 2001]

The parameters obtained from the fit to the experimental data for F_2 :

Masses	$k_0^2 \ (10^{-3} \ { m GeV}^2)$	λ	χ_c''	R_p (GeV $^{-1}$)	χ^2 /nop
$m_q=50~{ m MeV},m_c=50~{ m MeV}$	3.782 ± 0.293	0.213 ± 0.004	4.691 ± 0.221	2.770 ± 0.045	0.960
$m_{\mathbf{q}} = 50$ MeV, $m_{\mathbf{c}} = 1.3~\text{GeV}$	7.155 ± 0.624	0.193 ± 0.003	2.196 ± 0.161	3.215 ± 0.065	0.988
$m_q=140~{ m MeV},m_c=1.3~{ m GeV}$	3.917 ± 0.577	0.161 ± 0.005	2.960 ± 0.279	4.142 ± 0.167	1.071

- Good agreement with the measurements of F_2 due to the small χ^2
- Decrease in the saturation exponent when considering the heavy quark (charm) contribution, as predicted by other dipole models [3,4]
- Some advantages:
 - Improvement of the IIM model [5] including charm
 - This model is already formulated in momentum space
 - Its inverse Fourier transform (scattering amplitude in coordinate space) remains between 0 and 1
- Good parametrization to investigate the properties of the observables at RHIC and LHC energies, considering the dipole approach

Improved IIM model

- The IIM model has been recently improved [6] by fully including heavy quarks contribution (both charm and bottom)
- Parameters:
 - The saturation scale $Q_s^2(Y) = \left(\frac{x_0}{x}\right)^{\lambda} \text{ GeV}^2$
 - x_0 free, R_p free, $T_0 = T(r = 1/Q_s) = 0.7$ fixed
 - λ free: LO BFKL predicts $\lambda = \bar{\alpha}_s \chi'_c \approx 0.9$ and NLO BFKL analysis gives $\lambda \sim 0.3$ [7]
 - The parameter $\kappa = \chi_c'' / \chi_c'$ was set from the LO BFKL kernel, which gives $\kappa \approx 9.9$ [7]
 - Allowing γ_c to vary, one recovers a saturation scale similar to that found with only light quarks
 - A Good fit is obtained
 - In addition, the value for γ_c coming out of the fit is rather close to what one expects from NLO BFKL ($\gamma_c \gtrsim 0.7$)

		γ_c	λ	$x_0 (10^{-4})$	R_p (GeV $^{-1}$)	$\chi^2/$ n.o.p.
light+heavy quarks	γ_c fixed	0.6275	0.1800 ± 0.0026	0.0028 ± 0.0003	3.819 ± 0.017	1.116
	γ_c free	$\textbf{0.7376} \pm \textbf{0.0094}$	0.2197 ± 0.0042	$\boldsymbol{0.1632 \pm 0.0471}$	3.344 ± 0.041	0.900

New analysis: momentum space

- Follow a similar procedure with our model in momentum space:
 - Inclusion of bottom contribution $m_b = 4.5 \text{ GeV}$
 - Make γ_c freely vary and try to find a value around 0.7, as well as a not so strong decrease in the saturation scale when heavy quarks are included

$$T(k,Y) = \left[\log\left(\frac{k}{Q_s} + \frac{Q_s}{k}\right) + 1\right] \left(1 - e^{-T_{\mathsf{dil}}}\right)$$
(12)

with

$$T_{\mathsf{dil}} = \exp\left[-\gamma_c \log\left(\frac{k^2}{Q_s^2(Y)}\right) - \frac{L_{\mathsf{red}}^2 - \log^2(2)}{2\chi''(\gamma_c)Y}\right]$$
(13)

and

$$L_{\rm red} = \log\left[1 + \frac{k^2}{Q_s^2(Y)}\right]$$
 and $Q_s^2(Y) = k_0^2 e^{\lambda Y}$ (14)

In a first test, we kept γ_c fixed at 0.7 and allowed λ , χ_c'' , k_0^2 and R_p to vary

Values of rapitity (from bottom to top): Y = 0, 2, 4, 6, 8

F2 Structure Function

Parameters:

$k_0^2 \ (10^{-3} \ { m GeV^2})$	λ	χ_c''	R_p (GeV $^{-1}$)	$\chi^2/n.o.p.$
9.108 ± 0.063	0.213 ± 0.003	1.869 ± 0.131	2.975 ± 0.045	1.105

We have obtained good values for the parameters:

- In particular, one can see that the value of the saturation exponent is not so small as it was obtained in [1] and it is similar to the one obtained in [6]
- However the $\chi^2/n.o.p.$ is still poor
- To search for better results for HERA, it seems that the modified Bjorken

$$x_{eff} = x \left(1 + \frac{4m_q^2}{Q^2} \right) \tag{15}$$

should be used to account for correctly the threshold for heavy-quark production

Also, for a near future: to investigate R_{pA} at RHIC and fluctuations

[1] J. T. de Santana Amaral, M. B. Gay Ducati, M. A. Betemps and G. Soyez, arXiv:hep-ph/0612091, accepted for publication in Physical Review D.

[2] S. Munier and R. Peschanski, Phys. Rev. Lett. 91, 232001 (2003) [arXiv:hep-ph/0309177];
Phys. Rev. D69, 034008 (2004) [arXiv:hep-ph/0310357]; Phys. Rev. D70, 077503 (2004)
[arXiv:hep-ph/0310357].

[3] K. Golec-Biernat and M. Wusthoff, Phys. Rev. D **59**, 014017 (1999) [arXiv:hep-ph/9807513].

[4] K. Golec-Biernat and S. Sapeta, Phys. Rev. D 74, 054032 (2006) [arXiv:hep-ph/0607276].

[5] E. Iancu, K. Itakura and S. Munier, Phys. Lett. B 590, 199 (2004).

[6] G. Soyez, arXiv:hep-ph/0703672.

[7] D. Triantafyllopoulos, Phys. Rev. Lett. 91, 232001 (2003).