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Deep Inelastic Scattering (DIS)
Kinematics and variables

N(p)

e(k)

e(k’)

γ (q)*

The total energy squared of the
photon-nucleon system

s = (p+ q)2

Photon virtuality

q2 = (k − k′) = −Q2 < 0

The Bjorken variable

x ≡ xBj =
Q2

2p · q =
Q2

Q2 + s

The high energy limit:

s→ ∞, x ≈ Q2

s
→ 0
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QCD at high energies

As energy increases (with Q fixed) the gluon density grows fast and so does the cross
sections for hadronic interactions

This is still a challenge in Quantum Chromodynamics

At this regime gluon recombination and multiple scattering might be important to
restore unitarity
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BFKL

Q = Q
s
(Y )

Qs(Y ) is the so called saturation
scale

The nonlinear saturation effects
are important for all Q . QS(Y ),
which is known as saturation re-
gion
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Towards saturation

There has been a large amount of work devoted to the description and understanding
of QCD in the high energy limit corresponding to the saturation

Theory: non-linear QCD equations describing the evolution of scattering
amplitudes towards saturation - AGL, BK and JIMWLK equations

Phenomenology: discovery of geometric scaling in DIS at HERA

The Balitsky-Kovchegov (BK) nonlinear equation describes the evolution in rapidity of
the scattering amplitude of a dipole off a given target

This equation has been shown to lie in the same universality class as the
Fisher-Kolmogorov-Petrovsky-Piscounov (FKPP) equation

Geometric scaling has a natural explanation in terms of the so-called traveling wave
solutions of BK equation

The evolution at intermediate energies is well understood and is described by the linear
BFKL equation

The deep saturation regime can also be evaluated in some models, but the transition
between these two regimes is still a challenge
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Geometric Scaling

Geometric scaling is a phenomenological feature of high energy deep inelastic
scattering (DIS) which has been observed in the HERA data on inclusive γ∗ − p

scattering, which is expressed as a scaling property of the virtual photon-proton cross
section

σγ∗p(Y,Q) = σγ∗p (τ) , τ =
Q2

Q2
s(Y )

where Q is the virtuality of the photon,
Y = log 1/x is the total rapidity and
Qs(Y ) is an increasing function of Y
called saturation scale

[Stasto, Golec Biernat and Kwiecinsky,
2001]
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σγ∗p cross section
Consider the collision between a virtual photon and a proton at high energy; in a frame
where the proton carries most of the total energy one can consider that the photon
fluctuates into a qq̄ pair

Q2
z

1−z
b

r

The cross section

σγ∗p
T,L

(Y,Q) =
Z

d2r

Z 1

0
dz

��ΨT,L(r, z;Q2)

��2 σγ∗p
dip

(r, Y ), (1)

σγ∗p
dip

(Y, r) is the dipole-proton cross section, z is the fraction of photon’s momentum
carried by the quark, r is the size of the dipole and b is the impact parameter
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Dipole-proton cross section

The transverse and longitudinal photon wavefunctions

|ΨT (r, z;Q2)|2 =
2Ncαem

4π2

X

q

e2q

��

z2 + (1 − z)2

�
Q̄2

qK
2
1 (Q̄qr) +m2

qK
2
0 (Q̄qr)

	
(2)

and

|ΨL(r, z;Q2)|2 =
2Ncαem

4π2

X
q

e2q

�
4Q2z2(1 − z)2K2

0 (Q̄qr)

	
(3)

where Q̄q = z(1 − z)Q2 +m2
q , mq the light quark mass and K0,1 are the Mc Donald

functions of rank zero and one, respectively

If one treats the proton as an homogeneous disk of radius Rp, one can write the
dipole-proton cross section in terms of the dipole-proton forward scattering amplitude
T (r, Y )

σγ∗p
dip

(r, Y ) = 2πR2
pT (r, Y )
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F2 structure function (I)

The proton structure function F2 can be obtained from the γ∗p cross section through
the relation

F2(x,Q
2) =

Q2

4π2αem

h

σγ∗p
T

(x,Q2 + σγ∗p
L

(x,Q2)

i
=

Q2

4π2αem

σγ∗p(x,Q2) (4)

It is possible to express the γ∗p cross section in terms of the scattering amplitude in
momentum space, T̃ (k, Y ) , through the Fourier transform

T̃ (k, Y ) =
1

2π

Z
d2r

r2
eik·r T (r, Y )

=

Z
∞

0

dr

r
J0(kr)T (r, Y ) (5)
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F2 structure function (II)

After a bit of algebra one obtains

F2(x,Q
2) =

Q2R2
pNc

4π2

Z

∞

0

dk

k

Z 1

0
dz |Ψ̃(k, z;Q2)|2T̃ (k, Y ) (6)

The wavefunction is now expressed in momentum space

|Ψ̃(k2, z;Q2)|2 =

X

q

 

4Q̄2
q

k2 + 4Q̄2
q

!2

e2q

8><>:�z2 + (1 − z)2

� 264 4(k2 + Q̄2
q)q

k2(k2 + 4Q̄2
q)

arcsinh

�

k

2Q̄q

�

+
k2 − 2Q̄2

q

2Q̄2
q

#

+
4Q2z2(1 − z)2 +m2

q

Q̄2
q

264k2 + Q̄2
q

Q̄2
q

−
4Q̄4

q + 2Q̄2
qk

2 + k4

Q̄2
q

q
k2(k2 + 4Q̄2

q)
arcsinh

�

k

2Q̄q

�3759>=>;

The amplitude T̃ (k, Y ), as we shall see, obeys the Balitsky-Kovchegov equation in
momentum space, where the asymptotic behaviour of its solutions is naturally
expressed
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Dipole evolution

Consider a fast-moving qq̄

In the large Nc limit the gluons emitted can be replaced by quark-anti-quark pairs,
which interact with the target via two gluon exchanges
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Balitsky-Kovchegov equation
Multiple scattering

In the evolution of the scattering amplitude, the multiple scattering appears as a term
proportional to T 2 (ᾱ = αsNc/π)

∂Y T (x,y, Y ) = ᾱ

Z
d2z

(x − y)2

(x − z)2(z − y)2
[T (x, z, Y ) + T (z,y, Y ) − T (x,y, Y )

−T (x, z, Y )T (z,y, Y )] (7)

This is the Balitsky-Kovchegov (BK) equation in coordinate space
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BK equation in momentum space
If one neglects the dependence on the impact parameter b = (x + y)/2 and integrates
out the remaining angular dependence of r, the BK equation becomes an equation for
T (r, Y )

After performing the Fourier transform the equation can be expressed in momentum
space

∂Y T̃ = ᾱχ(−∂L)T̃ − ᾱT̃ 2 (8)

where

χ(γ) = 2ψ(1) − ψ(γ) − ψ(1 − γ) (9)

is the characteristic function of the Balitsky-Fadin-Kuraev-Lipatov (BFKL) kernel and
L = log(k2/k2

0), with k0 some fixed soft scale.

The kernel χ is an integro-differential operator which may be defined with the help of
the formal series expansion

χ(−∂L) = χ(γ0)1 + χ′(γ0)(−∂L − γ01) +
1

2
χ′′(γ0)(−∂L − γ01)2

+
1

6
χ(3)(γ0)(−∂L − γ01)3 + . . . (10)

for some γ0 between 0 and 1
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BK and FKPP equations

It has been shown [Munier and Peshcanski, 03] that, after the change of variables

t ∼ ᾱY, x ∼ log(k2/k2
0), u ∼ T̃ (11)

BK equation reduces to Fisher and Kolmogorov-Petrovsky-Piscounov (FKPP) equation,
when its kernel is approximated by the first three terms of the expansion, the so-called
diffusive approximation

χ(−∂L) ≈ χ(γc)1 + χ′(γc)(−∂L − γc1) +
1

2
χ′′(γc)(−∂L − γc1)2, (12)

The FKPP equation is a known equation in non-equilibrium statistical physics, whose
dynamics is called reaction-diffusion dynamics,

∂tu(x, t) = ∂2
xu(x, t) + u− u2, (13)

where t is time and x is the coordinate.
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Traveling wave solutions

The FKPP evolution equation admits the so-called traveling wave solutions

For a traveling wave solution one can define the position of a wave front
x(t) = vc(t)t, irrespective of the details of the nonlinear effects

At large times, the shape of a traveling wave is preserved during its propagation,
and the solution becomes only a function of the scaling variable x− vct

x

u(x, t)

0

1

t = 0 t1

X(t1)

2t1

X(t2)

3t1

X(t3)
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Traveling waves and saturation

In the language of saturation physics the po-
sition of the wave front is nothing but the sat-
uration scale

x(t) ∼ lnQ2
s(Y )

and the scaling corresponds to the geometric
scaling

x− x(t) ∼ ln k2/Q2
s(Y )

Numerical solution to BK equation

Y = 25
Y = 20
Y = 15
Y = 10
Y = 5
Y = 0

log(k2)

T

4035302520151050-5

10

1

0.1

0.01

0.001

1e-04

1e-05

Summarizing:

Time t → Y

Space x → L

Wave front u(x− vt) → T̃ (L− vcY )

Traveling Waves → Geometric Scaling (14)
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Behaviour at k ≫ Qs

This property of the FKPP equation is actually true if one considers the BK equation
with the full BFKL kernel

At asymptotic rapidities, the amplitude T̃ (k, Y ), instead of depending separately on k
and Y , depends only on the scaling variable k2/Q2

s(Y ), where we have introduced the
saturation scale Q2

s(Y ) = k2
0 exp(vcY ), measuring the position of the wavefront

A more detailed calculation allows also for the extraction of two additional subleading
corrections, resulting into the following expression for the tail of the scattering amplitude

T (k, Y )
k≫Qs≈

�

k2

Q2
s(Y )

�−γc

log
�

k2

Q2
s(Y )

�
exp

"
−

log2

�
k2/Q2

s(Y )

�

2ᾱχ′′(γc)Y

#

(15)

where the saturation scale

Q2
s(Y ) = k2

0 exp
 

ᾱvcY − 3

2γc

log(Y ) − 3

γ2
c

s

2π

ᾱχ′′(γc)

1√
Y

!

(16)
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Critical parameters

The critical parameters γc and vc are obtained from the knowledge of the BFKL kernel
alone and correspond to the selection of the slowest possible wave:

vc = min
γ
ᾱ
χ(γ)

γ
= ᾱ

χ(γc)

γc

= ᾱχ′(γc)

For the leading-order BFKL kernel, one finds γc = 0.6275..., and vc = 4.88ᾱ

The geometric scaling expresses the fact that when one moves along the saturation
line, the behaviour of the scattering amplitudes remains unchanged

The last term in the expression for the tail introduces an explicit dependence on the
rapidity Y and hence violates geometric scaling. However, this term can be neglected
when

log2
�
k2/Q2

s(Y )

�
2ᾱχ′′(γc)Y

< 1

This means that geometric scaling is obtained for

log

�
k2/Q2

s(Y )

�

.

p

2χ′′(γc)ᾱY
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Dipole scattering amplitude

In order to complete the description, we also need expressions for T̃ around the
saturation scale and at saturation

In the infrared domain , one can show that the amplitude behaves like

T̃

�

k

Qs(Y )
, Y

�

k≪Qs

= c− log

�
k

Qs(Y )

�
(17)

where c is an unfixed constant

We are now left with the matching around the saturation scale

The easiest way is to use the expression for the tail given previously for k > Qs

and the above expression for k < Qs and match the constant c to obtain a
continuous distribution

The problem with this definition by parts is that it may introduce oscillations in the
coordinate space amplitude T (r, Y ) which may even lead to negative amplitudes

Then the best way to obtain the description of the transition to the saturation region is to
perform an analytic interpolation between both asymptotic behaviours.
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The model
Our starting point to describe the transition to saturation is an expression which is
monotonically decreasing with L and which reproduces (up to the logarithmic factor),
the amplitude for geometric scaling (tail)

Tdil = exp

"

−γc log

�

k2

Q2
s(Y )

�
−
L2

red − log2(2)

2ᾱχ′′(γc)Y

#
(18)

with

Lred = log

�

1 +
k2

Q2
s(Y )

�
and Q2

s(Y ) = k2
0 e

ᾱvcY (19)

This result is unitarised à la Glauber-Mueller i.e. Tunit = 1 − exp(−Tdil) and we reinsert
both logarithmic behaviours in the infrared and in the ultraviolet

We obtain that the following choice gives good results:

T (k, Y ) =
�

log

�
k

Qs

+
Qs

k

�
+ 1

� �

1 − e−Tdil

�

(20)

The equations above determine our model for the scattering amplitude, to be inserted
into the expression for the F2 structure function
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Dataset

We fit all the last HERA measurements of the proton structure function from H1 and
ZEUS

Our analysis is restricted to the following kinematic range:8<:x ≤ 0.01,

0.045 ≤ Q2 ≤ 150 GeV2

The first limit comes from the fact that our approach is meant to describe the
high-energy amplitudes i.e. the small x behaviour

The second cut prevents to reach too high values of Q2 for which DGLAP
corrections need to be included properly

Total amount of data points: 279; we have allowed for a 5% renormalisation uncertainty
on the H1 data

We have kept γc = 0.6275 and ᾱ = 0.2 fixed assumed different situations for the
quarks masses: the light-quarks mass mq has been set to 50 or 140 MeV while we
have used mc = mq or mc = 1.3 GeV for the charm mass

vc, χ′′
c , k2

0 and Rp are free parameters
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Results (I): σγ∗p cross section
mq = 50 MeV and mc = 1.3 GeV
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Results (II): Parameters
The parameters obtained from the fit to the experimental data for F p

2 :

Masses k2
0 (10−3 GeV2) vc χ′′

c Rp (GeV−1)

mq = 50 MeV, mc = 50 MeV 3.782 ± 0.293 1.065 ± 0.018 4.691 ± 0.221 2.770 ± 0.045

mq = 50 MeV, mc = 1.3 GeV 7.155 ± 0.624 0.965 ± 0.017 2.196 ± 0.161 3.215 ± 0.065

mq = 140 MeV, mc = 1.3 GeV 3.917 ± 0.577 0.807 ± 0.025 2.960 ± 0.279 4.142 ± 0.167

The χ2 per point

Masses χ2/nop

mq = 50 MeV, mc = 50 MeV 0.960

mq = 50 MeV, mc = 1.3 GeV 0.988

mq = 140 MeV, mc = 1.3 GeV 1.071

Good agreement with the measurements of F p
2 due to the small χ2
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Results (III): prediction for F c
2

mq = 50 MeV and mc = 1.3 GeV
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The saturation scale

Within our parametrization, the saturation scale Qs corresponds to the
energy-dependent scale at which the dipole scattering amplitude is
T (k = Qs(Y ), Y ) = [1 + log(2)](1 − 1/e) ≈ 1.07

For the fit corresponding to mq = 50 MeV and mc = 1.3 GeV, we obtain a saturation
scale Qs = 0.206 GeV for x = 10−4 and Qs = 0.257 GeV for x = 10−5

These values, although they seem rather small, correspond to large values for T

If, instead, we extract the saturation scale by requiring that T = 1/2 when k = Qs, we
get Qs = 0.296 (resp. Qs = 0.375) GeV for x = 10−4 (resp. x = 10−5)

These last values are still a bit smaller than the saturation scales observed in previous
studies (Qs ≈ 1 GeV for x ≈ 10−5) and, hence, tend to confirm the tendency for the
saturation scale to decrease when heavy-quark effects are taken into account
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Summary

We have investigated the traveling-wave solutions of the BK equation which describe
the forward scattering amplitude at high energies and tested their phenomenological
implications for the virtual photon-proton scattering

We have proposed an expression for the amplitude in momentum space which
interpolates between the behaviour of the dipole-proton amplitude at saturation and the
traveling-wave, ultraviolet, amplitudes predicted by perturbative QCD from the BK
equation

This expression was used to compute the proton structure function F2 (in the
framework of the dipole model) and tested against the HERA data

We verify a good agreement with the measurements of F p
2 due to the small χ2

provided by the fit

Moreover, the F c
2 predicted by the parametrization is in reasonable agreement with the

experimental results, which shows the robustness of the model proposed
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Analysis: previous models

It is interesting to compare our results with those from previous approaches, namely

GBW model [Golec-Biernat and Wüsthoff, 1999]

IIM model or CGC fit [Iancu, Itakura and Munier, 2004]

recent developments concerning the Bartels-Golec-Biernat-Kowalski (BGK) model
[Golec-Biernat and Sapeta, 2006]

Parametrization Quark masses nop χ2/nop

GBW mq = 140 MeV, mc = 1.5 GeV 372 1.5

IIM mq = 140 MeV, no charm 156 0.81

BGK mq = 0 MeV, mc = 1.3 GeV 288 1.06

This work mq = 50 MeV, mc = 1.3 GeV 279 0.988

These three models were developed in coordinate space and not in momentum space

Our choice is directly motivated by the analysis of the BK equation in momentum space
leading to universal asymptotic results on which we heavily rely
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Analysis: conclusions
Our model can be differentiated from the previous ones at two levels:

The analysis is based on the BK equation to account for unitarity effects. Thus, we
expect it to be more precise, especially in the small-x and low Q2 domain under
study

We improved the IIM model by including massive charm

Moreover, in the case of GBW model, one obtains a Fourier transform of the dipole
cross section which presents an unrealistic perturbative behaviour, in the case of IIM it
presents non-positivity values [Betemps and Gay Ducati, 2004]

These problems are tamed in our model, where the inverse Fourier transform
(scattering amplitude in coordinate space) remains between 0 and 1

We then conclude that the dipole scattering amplitude proposed in this work should be
a good parametrization to investigate the properties of the observables at RHIC and
LHC energies, considering the dipole approach
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