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% Introduction
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® One of the most intriguing problems in Quantum Chromodynamics is the growth of the
cross sections for hadronic interactions with energy; the increase of energy causes a
fast growth of the gluon density and consequently of the cross section

® |tis believed that at this regime gluon recombination might be important and it would
decrease the growth of the parton density; this is called saturation
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4 Deep Inelastic Scattering (DIS)

Kinematics and variables

® The total energy squared of the
photon-nucleon system

s=(p+4q)°

® Photon virtuality

¢ =(k-FkK)=-Q° <0

® The Bjorken variable

Q* Q*

2p-q Q% +s

r=TRBj =

® The high energy limit:
Q2

s =00, T~ — —0
S
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» Geometric Scaling
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® Geometric scaling is a phenomenological feature of high energy deep inelastic
scattering (DIS) which has been observed in the HERA data on inclusive v* — p

scattering, which is expressed as a scaling property of the virtual photon-proton cross
section

G [1b]

) ) Q2
IYQ ="M, 7= s

where (@ is the virtuality of the photon,
Y = logl/x is the total rapidity and
Qs(Y) is the saturation scaleand is an
increasing function of Y.
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% Dipole model

10 anos

® |t is convenient to work within the QCD dipole frame of DIS

ry* 1 -Z ,Y*
<

P P

® Inthe LLA of perturbative QCD (pQCD), the cross section factorizes as
N 1
0%,5(3/’ Q) = /dQT/ dz |\IJT7L(T’ Z; Q | adz p(r Y),
0

adZ p(Y r) is the dipole-proton cross section, z is the fraction of photon’s momentum
carried by the quark and r is the transverse separation of the quark-anti-quark pair
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% Dipole model
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® The wavefunctions are obtained from QED

o 2Ncoem

W (r, 2 QN7 = — == D> _eq {[2" + (1 = 2)*] QKT (Qqr) + ma K3 (Qqr)}
q

and

WL (r, 2 Q)2 = 2Nc%’”2 [4Q?22(1 — 2)°K2(Qqr))}

where Q, = z(1 — 2)Q* + m2, m, the light quark mass and Kj,; are the Mc Donald
functions of rank zero and one, respectively.

® [f one treats the proton as a homogeneous disk of radius =,

o ain (1Y) = 2nRZT(r,Y)

® Where T'(r,Y) is the dipole scattering amplitude
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4 The evolution
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® Consider a fast-moving qq

-

Yo €« 1 € Y2 € Y

® Inthe large N, limit the gluons emitted can be replaced by quark-anti-quark pairs,
which interact with the target via two gluon exchanges

M. A. Betemps - ENFPC 2006 —p.



% BFKL equation

9 Consider a gq dipole at large rapidities

Yy y y Y

QX

(x —y)?
(x —2z)%(z —y)?

oy T(x,y) = a / 02 T(x,2) + T(z,y) — T(x, )

® BFKL equation
o = O‘STNC

® The solution = T « e*Y = violates unitarity T'(z,y) < 1
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% Balitskx-Kovchegov eguation
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® |f one considers multiple

r & y scatterings
Z
O
- o X ® In the evolution, these multiple
g scatterings appear as a term pro-
< portional to 72
O
O
O
> D
2 (x —y)?
oyT(x,y,Y) = &/d z T(x,z,Y)+T(z,y,Y) —T(x,y,Y)
(x —2)*(z—y)?

(x,2,Y)T'(z,y,Y)]

® BK equation

® The quadratic term is important when 7" ~ 1
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BK equation in momentum space

wai @ | et us consider that the amplitude T is independent of the impact parameter b = *£¥

and of the directionof r = x — y

T(x,y) = T(r,b) = T(r)
We define the forward scattering amplitude in momentum space 7'(k,Y)

T(k,Y) = /O A ()T (V)

-
The BK equation then reads
Oy T(k) = & / ap’

Y = 2

A\

p*T(p) — kK*T'(k) k2T (k)

+
k2 — p?| VAp* + k4

Ve

—aT?(k)

ax(—90r)
OyT = ax(—0r)T — C_MTQ,
In this equation

x(v) =2¢(1) = ¢(y) — (1 =)
is the characteristic function of the well known Balitsky-Fadin-Kuraev-Lipatov (BFKL)
kernel, and L = log (k?/kZ), where ko is some fixed low momentum scale

The kernel x is an integro-differential operator which may be defined with the help of
the formal series expansion
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4> BK and FKPP eguations
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® Considering the kernel x by the first three terms of the expansion (saddle point or
difusse approximation).

X = , second order differential operator.

o

The change of variables
ay ~t, log(k?/k3) ~xz, T ~u

BK equation reduces to FKPP equation.

® The Fisher and Kolmogorov-Petrovsky-Piscounov (FKPP) equation is a known equation
in non-equilibrium statistical physics, whose dynamics is called reaction-diffusion
dynamics,
Oru(x,t) = O%u(x,t) + u — u?,

where ¢ is time and x is the coordinate.
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Traveling wave solutions
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® The FKPP evolution equation admits the so-called traveling wave solutions

#® This implies that the solution u(x, t) takes the form u(x — v.t), for large values of =
at a critical speed v..

® For atraveling wave solution one can define the position of a wave front
x(t) = vct, irrespective of the details of the nonlinear effects

® At larges times, the shape of a traveling wave is preserved during its propagation,
and the solution becomes only a function of the scaling variable x — vt

u(x,t)
1
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Traveling waves and saturation
GFPAE

® Translation:

9

Timet — Y
Spacex — L =log(k?/k?)
Wave front u(z — vt) — T(L —oY)
Traveling Waves  —  Geometric Scaling

In the language of saturation physics the position of the wave front is nothing but the
saturation scale
(position) x(t) = vet = Q2(Y) = kieVs¥

and the scaling corresponds to the geometric scaling

(front) u(t) — u(:l} _ Uct) — e(—’Yc(x—'uct)) = T = T(k2/Qg) — |k2/Qg|—’Yc

with
oo — mina X _ g X(0)

Y Ye

where . is the saddle point of the exponential phase factor. This fixes, for the BFKL
kernel, v. = 0.6275..., v. = 4.88&

— @X/(’YC)
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% Transition to saturation
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® The goal of this work is to study the connection between the traveling wave solution and
the saturation region

® These different domains can be parametrized as

T(1,Y)k<q, = c— log (QjY))

and

e, = () e (e ()
e ® gwm)  lam )P\ Tmetay |

with

3 3 27 1
Q*(Y) = kiexp|avy — logY — — :
- ’ 2%e ve | ax’’(ve) VY
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Matching saturation and traveling wave

The first attempt was to perform a matching between the two regions by imposing
continuity of 7" and its first derivative at k/Qs(Y) = 1

However, this procedure does not necessarily imply a positive Fourier transform. Then,
a better way to obtain the connection between the two regions is an interpolation
through one expression only
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The model

® The idea is to build the saturarion domain from the dilute one, in such a way that the
scattering amplitude satisfies the correct asymptotic behaviour, that is,

GFPAE
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Tgiu < 1=1T ~ Ty, Tgu>1=T~1

® We do not want to use numerical solutions of BK in the momentum space, but rather
use the properties of the solutions to build an analytical expression fot T'(k, Y").

® Our starting point is an expression which is monotically decreasing with L and
reproduce (up to a logarithmic factor) the amplitude for diffusive scalling

| ( k> ) L2, —log?(2)
—_— C O _ .
T Q2(y) 26" (7e)Y

Tdil = Aexp

» with

2

Q3 (Y)
® Based on the requirements above, and interpolation model was suggested by the
authors and this reads

L,cq = log [1 + ] and Q%(Y) = k%edch

T(k,Y)= {log <& + %) + 1} (1 —exp(—Tgi1))

® phenomenology=- Deep Inelastic Scattering: F» in the momentum space.
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Observable: F5 structure function

GFPAE
® The proton structure function F» can be obtained from the ~*p cross section through
the relation
P@.Q) = —o— [077(2.0%) + 0 *(@.Q)]
AT2 e

® We can express the v*p cross section in terms of T'(k, Y). After a bit of algebra one

obtains
2 D2
Fo(w, Q) = QRN/ d’“/ dz |F (K, = ,Q>|.

where the wavefunction is now expressed in momentum space

4(k? + Q2)

~ 402\’
U (K2, 2;Q%))? = <—q_> e2 {22+ (1 — 2)? 27 arcsinh (
) Zq: @ aqz) ) | k2 (k2 +4Q2) 2Q

k2_2_2 4 2 21_ 2 2 k2 2 4_4 2_2k2 k4
Qq]+ Q%22(1 — 2)% + m? +QF  4Q7 +2Q2k* + arcsinh( e )

+

207 Q7 Q7 Q2\/k2 (k2 +4Q2) 2Qq

q

)

M. A. Betemps - ENFPC 2006 —p.1’



Fitting procedure
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® We fit the HERA (H1 and ZEUS) data in the kinematic range

0.045 < Q% < 150GeV?, =z < 0.01

and the fixed parameters are . = 0.6275, @ = 0.2 and A = 1.0

® The values of light quark masses used were m, = 50, 140 MeV

® The charm mass value used here m. = 50 MeV and m. = 1.3 GeV.

® 279 datapoints.

® We have allowed for a 5% renormalisation uncertainty on the H1 data.

Results:

Masses k3 (1073 GeV?) Ve Xe R, (GeV™?) ||x?*/nop
mq = 50 MeV, m. = 50 MeV 3.782 £0.293 |1.065 £ 0.018(4.691 4 0.221(2.770 £ 0.045 || 0.960
mq = 50 MeV, m. = 1.3 GeV 7.155 £ 0.624 [0.965 £ 0.017(2.196 4= 0.161 {3.215 £ 0.065|| 0.988
mq = 140 MeV, m. = 1.3 GeV || 3.917 £+ 0.577 [0.807 & 0.025|2.960 + 0.279 (4.142 + 0.167 || 1.071
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% Results
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*

ol P = ééggﬂkfb($7622)

0.0037 0.0061

ZEUS, H1
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Predictions to cm
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% Conclusions...
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® We have proposed a parametrization for the dipole cross section, based on the
solutions of BK equation in the context of the traveling waves solutions of the FKPP
equation.

® We have obtained a parametrization in the momentum space, with a positive Fourier
transform.

The x? /nop reach very good results (including charm mass).

Good predictions for the F'.

L I

Perform some investigations with other observables.
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