$\gamma^{*}-p$ cross section at high energies in momentum space

M. A. Betemps
marcos.betemps@ufrgs.br
on behalf of M. B. Gay Ducati
Conjunto Agrotécnico Visconde da Graça
Universidade Federal de Pelotas, Pelotas, Brazil.
Instituto de Física
Universidade Federal do Rio Grande do Sul, Porto Alegre, Brazil.

GFPAE - UFRGS
http://www.if.ufrgs.br/gfpae

Work in collaboration with M. B. Gay Ducati, J. T. S. Amaral and G. Soyez

Introduction

- One of the most intriguing problems in Quantum Chromodynamics is the growth of the cross sections for hadronic interactions with energy; the increase of energy causes a fast growth of the gluon density and consequently of the cross section
- It is believed that at this regime gluon recombination might be important and it would decrease the growth of the parton density; this is called saturation

- $Q_{s}(Y)$ is the so called saturation scale
- The saturarion effects are important for all $Q \lesssim Q_{S}(Y)$, which is known as saturation region

Deep Inelastic Scattering (DIS)

Kinematics and variables

- The total energy squared of the photon-nucleon system

$$
s=(p+q)^{2}
$$

- Photon virtuality

$$
q^{2}=\left(k-k^{\prime}\right)=-Q^{2}<0
$$

- The Bjorken variable

$$
x \equiv x_{B j}=\frac{Q^{2}}{2 p \cdot q}=\frac{Q^{2}}{Q^{2}+s}
$$

- The high energy limit:

$$
s \rightarrow \infty, \quad x \approx \frac{Q^{2}}{s} \rightarrow 0
$$

Geometric Scaling

- Geometric scaling is a phenomenological feature of high energy deep inelastic scattering (DIS) which has been observed in the HERA data on inclusive $\gamma^{*}-p$ scattering, which is expressed as a scaling property of the virtual photon-proton cross section

$$
\sigma^{\gamma^{*} p}(Y, Q)=\sigma^{\gamma^{*} p}(\tau), \quad \tau=\frac{Q^{2}}{Q_{S}^{2}(Y)}
$$

where Q is the virtuality of the photon, $Y=\log 1 / x$ is the total rapidity and $Q_{s}(Y)$ is the saturation scaleand is an increasing function of Y.

Dipole model

- It is convenient to work within the QCD dipole frame of DIS

- In the LLA of perturbative QCD (pQCD), the cross section factorizes as

$$
\sigma_{T, L}^{\gamma^{*} p}(Y, Q)=\int d^{2} r \int_{0}^{1} d z\left|\Psi_{T, L}\left(r, z ; Q^{2}\right)\right|^{2} \sigma_{d i p}^{\gamma^{*} p}(r, Y),
$$

$\sigma_{d i p}^{\gamma^{*} p}(Y, \mathbf{r})$ is the dipole-proton cross section, z is the fraction of photon's momentum carried by the quark and \mathbf{r} is the transverse separation of the quark-anti-quark pair

Dipole model

- The wavefunctions are obtained from QED

$$
\left|\Psi_{T}\left(r, z ; Q^{2}\right)\right|^{2}=\frac{2 N_{c} \alpha_{e m}}{4 \pi^{2}} \sum_{q} e_{q}^{2}\left\{\left[z^{2}+(1-z)^{2}\right] \bar{Q}_{q}^{2} K_{1}^{2}\left(\bar{Q}_{q} r\right)+m_{q}^{2} K_{0}^{2}\left(\bar{Q}_{q} r\right)\right\}
$$

and

$$
\left|\Psi_{L}\left(r, z ; Q^{2}\right)\right|^{2}=\frac{2 N_{c} \alpha_{e m}}{4 \pi^{2}} \sum_{q} e_{q}^{2}\left\{4 Q^{2} z^{2}(1-z)^{2} K_{0}^{2}\left(\bar{Q}_{q} r\right)\right\}
$$

where $\bar{Q}_{q}=z(1-z) Q^{2}+m_{q}^{2}, m_{q}$ the light quark mass and $K_{0,1}$ are the Mc Donald functions of rank zero and one, respectively.

- If one treats the proton as a homogeneous disk of radius R_{p}

$$
\sigma_{d i p}^{\gamma^{*} p}(r, Y)=2 \pi R_{p}^{2} T(r, Y)
$$

- Where $T(r, Y)$ is the dipole scattering amplitude

The evolution

- Consider a fast-moving $q \bar{q}$

- In the large N_{c} limit the gluons emitted can be replaced by quark-anti-quark pairs, which interact with the target via two gluon exchanges

BFKL equation

- Consider a $q \bar{q}$ dipole at large rapidities

$$
\partial_{Y} T(\mathbf{x}, \mathbf{y})=\bar{\alpha} \int d^{2} z \frac{(\mathbf{x}-\mathbf{y})^{2}}{(\mathbf{x}-\mathbf{z})^{2}(\mathbf{z}-\mathbf{y})^{2}}[T(\mathbf{x}, \mathbf{z})+T(\mathbf{z}, \mathbf{y})-T(\mathbf{x}, \mathbf{y})]
$$

- BFKL equation
- $\bar{\alpha}=\frac{\alpha_{s} N_{c}}{\pi}$
- The solution $\Rightarrow T \propto e^{\omega Y} \Rightarrow$ violates unitarity $T(x, y) \leq 1$

Balitsky-Kovchegov equation

- If one considers multiple scatterings
- In the evolution, these multiple scatterings appear as a term proportional to T^{2}

$$
\begin{aligned}
\partial_{Y} T(\mathbf{x}, \mathbf{y}, Y)= & \bar{\alpha} \int d^{2} \mathbf{z} \frac{(\mathbf{x}-\mathbf{y})^{2}}{(\mathbf{x}-\mathbf{z})^{2}(\mathbf{z}-\mathbf{y})^{2}}[T(\mathbf{x}, \mathbf{z}, Y)+T(\mathbf{z}, \mathbf{y}, Y)-T(\mathbf{x}, \mathbf{y}, Y) \\
& -T(\mathbf{x}, \mathbf{z}, Y) T(\mathbf{z}, \mathbf{y}, Y)]
\end{aligned}
$$

- BK equation
- The quadratic term is important when $T \approx 1$

BK equation in momentum space

- Let us consider that the amplitude T is independent of the impact parameter $\mathbf{b}=\frac{\mathbf{x}+\mathbf{y}}{2}$ and of the direction of $\mathbf{r}=\mathbf{x}-\mathbf{y}$

$$
T(\mathbf{x}, \mathbf{y}) \rightarrow T(\mathbf{r}, \mathbf{b}) \rightarrow T(r)
$$

- We define the forward scattering amplitude in momentum space $T(k, Y)$

$$
T(k, Y)=\int_{0}^{\infty} \frac{d r}{r} J_{0}(k r) T(r, Y)
$$

- The BK equation then reads

$$
\begin{gathered}
\partial_{Y} T(k)=\underbrace{\frac{\bar{\alpha}}{\pi} \int \frac{d p^{2}}{p^{2}}\left[\frac{p^{2} T(p)-k^{2} T(k)}{\left|k^{2}-p^{2}\right|}+\frac{k^{2} T(k)}{\sqrt{4 p^{4}+k^{4}}}\right]}_{\bar{\alpha} \chi\left(-\partial_{L}\right)}-\bar{\alpha} T^{2}(k) \\
\partial_{Y} T=\bar{\alpha} \chi\left(-\partial_{L}\right) T-\bar{\alpha} T^{2}
\end{gathered}
$$

- In this equation

$$
\chi(\gamma)=2 \psi(1)-\psi(\gamma)-\psi(1-\gamma)
$$

is the characteristic function of the well known Balitsky-Fadin-Kuraev-Lipatov (BFKL) kernel, and $L=\log \left(k^{2} / k_{0}^{2}\right)$, where k_{0} is some fixed low momentum scale

- The kernel χ is an integro-differential operator which may be defined with the help of the formal series expansion

BK and FKPP equations

- Considering the kernel χ by the first three terms of the expansion (saddle point or difusse approximation).
- $\chi \Rightarrow$, second order differential operator.
- The change of variables

$$
\bar{\alpha} Y \sim t, \quad \log \left(k^{2} / k_{0}^{2}\right) \sim x, \quad T \sim u
$$

BK equation reduces to FKPP equation.

- The Fisher and Kolmogorov-Petrovsky-Piscounov (FKPP) equation is a known equation in non-equilibrium statistical physics, whose dynamics is called reaction-diffusion dynamics,

$$
\partial_{t} u(x, t)=\partial_{x}^{2} u(x, t)+u-u^{2},
$$

where t is time and x is the coordinate.

Traveling wave solutions

- The FKPP evolution equation admits the so-called traveling wave solutions
- This implies that the solution $u(x, t)$ takes the form $u\left(x-v_{c} t\right)$, for large values of x at a critical speed v_{c}.
- For a traveling wave solution one can define the position of a wave front $x(t)=v_{c} t$, irrespective of the details of the nonlinear effects
- At larges times, the shape of a traveling wave is preserved during its propagation, and the solution becomes only a function of the scaling variable $x-v_{c} t$

Traveling waves and saturation

- Translation:

$$
\begin{aligned}
& \text { Time } t \rightarrow Y \\
& \text { Space } x \rightarrow L=\log \left(k^{2} / k_{0}^{2}\right) \\
& \text { Wave front } u(x-v t) \rightarrow T(L-v Y) \\
& \text { Traveling Waves } \rightarrow \\
& \text { Geometric Scaling }
\end{aligned}
$$

- In the language of saturation physics the position of the wave front is nothing but the saturation scale

$$
\text { (position) } x(t)=v_{c} t \Rightarrow Q_{s}^{2}(Y)=k_{0}^{2} e^{v_{c} Y}
$$

and the scaling corresponds to the geometric scaling

$$
\text { (front) } u(t)=u\left(x-v_{c} t\right)=e^{\left(-\gamma_{c}\left(x-v_{c} t\right)\right)} \Rightarrow T=T\left(k^{2} / Q_{s}^{2}\right)=\left|k^{2} / Q_{s}^{2}\right|^{-\gamma_{c}}
$$

with

$$
v_{c}=\min \bar{\alpha} \frac{\chi(\gamma)}{\gamma}=\bar{\alpha} \frac{\chi\left(\gamma_{c}\right)}{\gamma_{c}}=\bar{\alpha} \chi^{\prime}\left(\gamma_{c}\right)
$$

where γ_{c} is the saddle point of the exponential phase factor. This fixes, for the BFKL kernel, $\gamma_{c}=0.6275 \ldots, v_{c}=4.88 \bar{\alpha}$

Transition to saturation

- The goal of this work is to study the connection between the traveling wave solution and the saturation region
- These different domains can be parametrized as

$$
T(\tau, Y)_{k \ll Q_{s}}=c-\log \left(\frac{k}{Q_{s}(Y)}\right)
$$

and

$$
T(\tau, Y)_{k \gg Q_{s}} \quad \approx \quad\left(\frac{k^{2}}{Q_{s}^{2}(Y)}\right)^{-\gamma_{c}} \log \left(\frac{k^{2}}{Q_{s}^{2}(Y)}\right) \exp \left(-\frac{\log ^{2}\left(\frac{k^{2}}{Q_{s}^{2}(Y)}\right)}{2 \bar{\alpha} \chi^{\prime \prime}\left(\gamma_{c}\right) Y}\right)
$$

with

$$
Q_{s}^{2}(Y)=k_{0}^{2} \exp \left(\bar{\alpha} v Y-\frac{3}{2 \gamma_{c}} \log Y-\frac{3}{\gamma_{c}^{2}} \sqrt{\frac{2 \pi}{\bar{\alpha} \chi^{\prime \prime}\left(\gamma_{c}\right)} \frac{1}{\sqrt{Y}}}\right)
$$

Matching saturation and traveling wave

- The first attempt was to perform a matching between the two regions by imposing continuity of T and its first derivative at $k / Q_{s}(Y)=1$
- However, this procedure does not necessarily imply a positive Fourier transform. Then, a better way to obtain the connection between the two regions is an interpolation through one expression only

The model

- The idea is to build the saturarion domain from the dilute one, in such a way that the scattering amplitude satisfies the correct asymptotic behaviour, that is,

$$
T_{d i l} \ll 1 \Rightarrow T \sim T_{d i l}, \quad T_{d i l} \gg 1 \Rightarrow T \sim 1
$$

- We do not want to use numerical solutions of BK in the momentum space, but rather use the properties of the solutions to build an analytical expression fot $T(k, Y)$.
- Our starting point is an expression which is monotically decreasing with L and reproduce (up to a logarithmic factor) the amplitude for diffusive scalling

$$
T_{d i l}=A \exp \left[-\gamma_{c} \log \left(\frac{k^{2}}{Q_{s}^{2}(Y)}\right)-\frac{L_{r e d}^{2}-\log ^{2}(2)}{2 \bar{\alpha} \chi^{\prime \prime}\left(\gamma_{c}\right) Y}\right] .
$$

- with

$$
L_{r e d}=\log \left[1+\frac{k^{2}}{Q_{s}^{2}(Y)}\right] \quad \text { and } \quad Q_{s}^{2}(Y)=k_{0}^{2} e^{\bar{\alpha} v_{c} Y}
$$

- Based on the requirements above, and interpolation model was suggested by the authors and this reads

$$
T(k, Y)=\left[\log \left(\frac{k}{Q_{s}}+\frac{Q_{s}}{k}\right)+1\right]\left(1-\exp \left(-T_{d i l}\right)\right)
$$

- Phenomenology \Rightarrow Deep Inelastic Scattering: F_{2} in the momentum space.

Observable: F_{2} structure function

- The proton structure function F_{2} can be obtained from the $\gamma^{*} p$ cross section through the relation

$$
F_{2}\left(x, Q^{2}\right)=\frac{Q^{2}}{4 \pi^{2} \alpha_{e m}}\left[\sigma_{T}^{\gamma^{*} p}\left(x, Q^{2}\right)+\sigma_{L}^{\gamma^{*} p}\left(x, Q^{2}\right)\right] .
$$

- We can express the $\gamma^{*} p$ cross section in terms of $T(k, Y)$. After a bit of algebra one obtains

$$
F_{2}\left(x, Q^{2}\right)=\frac{Q^{2} R_{p}^{2} N_{c}}{4 \pi^{2}} \int_{0}^{\infty} \frac{d k}{k} \int_{0}^{1} d z\left|\tilde{\Psi}\left(k^{2}, z ; Q^{2}\right)\right| T(k, Y),
$$

where the wavefunction is now expressed in momentum space

$$
\begin{aligned}
& \left|\tilde{\Psi}\left(k^{2}, z ; Q^{2}\right)\right|^{2}=\sum_{q}\left(\frac{4 \bar{Q}_{q}^{2}}{k^{2}+4 \bar{Q}_{q}^{2}}\right)^{2} e_{q}^{2}\left\{[z ^ { 2 } + (1 - z) ^ { 2 }] \left[\frac{4\left(k^{2}+\bar{Q}_{q}^{2}\right)}{\sqrt{k^{2}\left(k^{2}+4 \bar{Q}_{q}^{2}\right)}} \operatorname{arcsinh}\left(\frac{k}{2 \bar{Q}_{q}}\right)\right.\right. \\
& \left.\left.+\frac{k^{2}-2 \bar{Q}_{q}^{2}}{2 \bar{Q}_{q}^{2}}\right]+\frac{4 Q^{2} z^{2}(1-z)^{2}+m_{q}^{2}}{\bar{Q}_{q}^{2}}\left[\frac{k^{2}+\bar{Q}_{q}^{2}}{\bar{Q}_{q}^{2}}-\frac{4 \bar{Q}_{q}^{4}+2 \bar{Q}_{q}^{2} k^{2}+k^{4}}{\bar{Q}_{q}^{2} \sqrt{k^{2}\left(k^{2}+4 \bar{Q}_{q}^{2}\right)}} \operatorname{arcsinh}\left(\frac{k}{2 \bar{Q}_{q}}\right)\right]\right\}
\end{aligned}
$$

Fitting procedure

- We fit the HERA (H1 and ZEUS) data in the kinematic range

$$
0.045 \leq Q^{2} \leq 150 \mathrm{GeV}^{2}, \quad x \leq 0.01
$$

and the fixed parameters are $\gamma_{c}=0.6275, \bar{\alpha}=0.2$ and $A=1.0$

- The values of light quark masses used were $m_{q}=50,140 \mathrm{MeV}$
- The charm mass value used here $m_{c}=50 \mathrm{MeV}$ and $m_{c}=1.3 \mathrm{GeV}$.
- 279 datapoints.
- We have allowed for a 5% renormalisation uncertainty on the H 1 data.

Results:

Masses	$k_{0}^{2}\left(10^{-3} \mathrm{GeV}^{2}\right)$	v_{c}	$\chi_{c}^{\prime \prime}$	$R_{p}\left(\mathrm{GeV}^{-2}\right)$	χ^{2} / nop
$m_{q}=50 \mathrm{MeV}, m_{c}=50 \mathrm{MeV}$	3.782 ± 0.293	1.065 ± 0.018	4.691 ± 0.221	2.770 ± 0.045	0.960
$m_{q}=50 \mathrm{MeV}, m_{c}=1.3 \mathrm{GeV}$	7.155 ± 0.624	0.965 ± 0.017	2.196 ± 0.161	3.215 ± 0.065	0.988
$m_{q}=140 \mathrm{MeV}, m_{c}=1.3 \mathrm{GeV}$	3.917 ± 0.577	0.807 ± 0.025	2.960 ± 0.279	4.142 ± 0.167	1.071

Results

$G F P_{10} A E$
$\sigma^{\gamma^{*} p}=\frac{4 \pi \alpha_{e m}}{Q^{2}} F_{2}\left(x, Q^{2}\right)$

ZEUS, H1
F_{2} as a function of Q^{2} fixed Bjorken x

ZEUS, H1 and NMC data

Predictions to F_{2}^{C}

$G F P A E$

Conclusions...

- We have proposed a parametrization for the dipole cross section, based on the solutions of BK equation in the context of the traveling waves solutions of the FKPP equation.
- We have obtained a parametrization in the momentum space, with a positive Fourier transform.
- The $\chi^{2} /$ nop reach very good results (including charm mass).
- Good predictions for the F_{2}^{C}.
- Perform some investigations with other observables.

