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Introduction
One of the most intriguing problems in Quantum Chromodynamics is the growth of the
cross sections for hadronic interactions with energy; the increase of energy causes a
fast growth of the gluon density and consequently of the cross section

It is believed that at this regime gluon recombination might be important and it would
decrease the growth of the parton density; this is called saturation
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Qs(Y ) is the so called saturation
scale

The saturarion effects are impor-
tant for all Q . QS(Y ), which is
known as saturation region
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Deep Inelastic Scattering (DIS)
Kinematics and variables

The total energy squared of the
photon-nucleon system

s = (p+ q)2

Photon virtuality

q2 = (k − k′) = −Q2 < 0

The Bjorken variable

x ≡ xBj =
Q2

2p · q =
Q2

Q2 + s

The high energy limit:

s→∞, x ≈ Q2

s
→ 0
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Geometric Scaling
Geometric scaling is a phenomenological feature of high energy deep inelastic
scattering (DIS) which has been observed in the HERA data on inclusive γ∗ − p
scattering, which is expressed as a scaling property of the virtual photon-proton cross
section

σγ
∗p(Y,Q) = σγ

∗p (τ) , τ =
Q2

Q2
s(Y )

where Q is the virtuality of the photon,
Y = log 1/x is the total rapidity and
Qs(Y ) is the saturation scaleand is an
increasing function of Y .
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Dipole model

It is convenient to work within the QCD dipole frame of DIS

γ* γ*

p

z

1-z
r

p

 
In the LLA of perturbative QCD (pQCD), the cross section factorizes as

σγ
∗p
T,L(Y,Q) =

Z
d2r

Z 1

0
dz
˛̨
ΨT,L(r, z;Q2)

˛̨2
σγ
∗p
dip (r, Y ),

σγ
∗p
dip (Y, r) is the dipole-proton cross section, z is the fraction of photon’s momentum

carried by the quark and r is the transverse separation of the quark-anti-quark pair
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Dipole model

The wavefunctions are obtained from QED

|ΨT (r, z;Q2)|2 =
2Ncαem

4π2

X

q

e2q
˘ˆ
z2 + (1− z)2

˜
Q̄2
qK

2
1 (Q̄qr) +m2

qK
2
0 (Q̄qr)

¯

and

|ΨL(r, z;Q2)|2 =
2Ncαem

4π2

X

q

e2q
˘

4Q2z2(1− z)2K2
0 (Q̄qr)

¯

where Q̄q = z(1− z)Q2 +m2
q , mq the light quark mass and K0,1 are the Mc Donald

functions of rank zero and one, respectively.

If one treats the proton as a homogeneous disk of radius Rp

σγ
∗p
dip (r, Y ) = 2πR2

pT (r, Y )

Where T (r, Y ) is the dipole scattering amplitude
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The evolution
Consider a fast-moving qq̄

In the large Nc limit the gluons emitted can be replaced by quark-anti-quark pairs,
which interact with the target via two gluon exchanges
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BFKL equation
Consider a qq̄ dipole at large rapidities

BFKL and BK evolution

Consider a qq̄ dipole at large rapidity Y = log(s)

BFKL: Rapidity increase ⇒ Splitting into 2 dipoles

x

y

Y + δY
x

y
z

x

y
z

x

y
z

∂Y T (x,y) = ᾱ

∫

d2z
(x− y)2

(x− z)2(z− y)2
[T (x, z) + T (z,y) − T (x,y)]

Solution: T ∝ eωY Violates unitarity T (x, y) ≤ 1

G. Soyez Porto-Alegre, October 13th 2005 Geometric scaling in high-energy QCD – p. 3/34

∂Y T (x,y) = ᾱ

Z
d2z

(x− y)2

(x− z)2(z− y)2
[T (x, z) + T (z,y)− T (x,y)]

BFKL equation

ᾱ = αsNc
π

The solution⇒ T ∝ eωY ⇒ violates unitarity T (x, y) ≤ 1
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Balitsky-Kovchegov equation

If one considers multiple
scatterings

In the evolution, these multiple
scatterings appear as a term pro-
portional to T 2

∂Y T (x,y, Y ) = ᾱ

Z
d2z

(x− y)2

(x− z)2(z− y)2
[T (x, z, Y ) + T (z,y, Y )− T (x,y, Y )

−T (x, z, Y )T (z,y, Y )]

BK equation

The quadratic term is important when T ≈ 1
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BK equation in momentum space
Let us consider that the amplitude T is independent of the impact parameter b = x+y

2

and of the direction of r = x− y

T (x,y)→ T (r,b)→ T (r)

We define the forward scattering amplitude in momentum space T (k, Y )

T (k, Y ) =

Z ∞

0

dr

r
J0(kr)T (r, Y )

The BK equation then reads

∂Y T (k) =
ᾱ

π

Z
dp2

p2

"
p2T (p)− k2T (k)

|k2 − p2| +
k2T (k)p
4p4 + k4

#

| {z }
ᾱχ(−∂L)

−ᾱT 2(k)

∂Y T = ᾱχ(−∂L)T − ᾱT 2,

In this equation
χ(γ) = 2ψ(1)− ψ(γ)− ψ(1− γ)

is the characteristic function of the well known Balitsky-Fadin-Kuraev-Lipatov (BFKL)
kernel, and L = log

`
k2/k2

0

´
, where k0 is some fixed low momentum scale

The kernel χ is an integro-differential operator which may be defined with the help of
the formal series expansion
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BK and FKPP equations

Considering the kernel χ by the first three terms of the expansion (saddle point or
difusse approximation).

χ⇒ , second order differential operator.

The change of variables

ᾱY ∼ t, log(k2/k2
0) ∼ x, T ∼ u

BK equation reduces to FKPP equation.

The Fisher and Kolmogorov-Petrovsky-Piscounov (FKPP) equation is a known equation
in non-equilibrium statistical physics, whose dynamics is called reaction-diffusion
dynamics,

∂tu(x, t) = ∂2
xu(x, t) + u− u2,

where t is time and x is the coordinate.
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Traveling wave solutions
The FKPP evolution equation admits the so-called traveling wave solutions

This implies that the solution u(x, t) takes the form u(x− vct), for large values of x
at a critical speed vc.

For a traveling wave solution one can define the position of a wave front
x(t) = vct, irrespective of the details of the nonlinear effects

At larges times, the shape of a traveling wave is preserved during its propagation,
and the solution becomes only a function of the scaling variable x− vct

x

u(x, t)

0

1

t = 0 t1

X(t1)

2t1

X(t2)

3t1

X(t3)
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Traveling waves and saturation
Translation:

Time t → Y

Space x → L = log(k2/k2
0)

Wave front u(x− vt) → T (L− vY )

Traveling Waves → Geometric Scaling

In the language of saturation physics the position of the wave front is nothing but the
saturation scale

(position) x(t) = vct⇒ Q2
s(Y ) = k2

0e
vcY

and the scaling corresponds to the geometric scaling

(front) u(t) = u(x− vct) = e(−γc(x−vct)) ⇒ T = T (k2/Q2
s) = |k2/Q2

s|−γc

with

vc = min ᾱ
χ(γ)

γ
= ᾱ

χ(γc)

γc
= ᾱχ′(γc)

where γc is the saddle point of the exponential phase factor. This fixes, for the BFKL
kernel, γc = 0.6275..., vc = 4.88ᾱ
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Transition to saturation

The goal of this work is to study the connection between the traveling wave solution and
the saturation region

These different domains can be parametrized as

T (τ, Y )k�Qs = c− log

„
k

Qs(Y )

«

and

T (τ, Y )k�Qs ≈
„

k2

Q2
s(Y )

«−γc
log

„
k2

Q2
s(Y )

«
exp

0
@−

log2
“

k2

Q2
s(Y )

”

2ᾱχ′′(γc)Y

1
A .

with

Q2
s(Y ) = k2

0 exp

 
ᾱvY − 3

2γc
log Y − 3

γ2
c

s
2π

ᾱχ′′(γc)
1√
Y

!
.
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Matching saturation and traveling waves
The first attempt was to perform a matching between the two regions by imposing
continuity of T and its first derivative at k/Qs(Y ) = 1

However, this procedure does not necessarily imply a positive Fourier transform. Then,
a better way to obtain the connection between the two regions is an interpolation
through one expression only
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The model
The idea is to build the saturarion domain from the dilute one, in such a way that the
scattering amplitude satisfies the correct asymptotic behaviour, that is,

Tdil � 1⇒ T ∼ Tdil, Tdil � 1⇒ T ∼ 1

We do not want to use numerical solutions of BK in the momentum space, but rather
use the properties of the solutions to build an analytical expression fot T (k, Y ).

Our starting point is an expression which is monotically decreasing with L and
reproduce (up to a logarithmic factor) the amplitude for diffusive scalling

Tdil = A exp

"
−γc log

„
k2

Q2
s(Y )

«
− L2

red − log2(2)

2ᾱχ′′(γc)Y

#
.

with

Lred = log

»
1 +

k2

Q2
s(Y )

–
and Q2

s(Y ) = k2
0e
ᾱvcY

Based on the requirements above, and interpolation model was suggested by the
authors and this reads

T (k, Y ) =

»
log

„
k

Qs
+
Qs

k

«
+ 1

–
(1− exp(−Tdil))

Phenomenology⇒ Deep Inelastic Scattering: F2 in the momentum space.
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Observable: F2 structure function
The proton structure function F2 can be obtained from the γ∗p cross section through
the relation

F2(x,Q2) =
Q2

4π2αem

h
σγ
∗p
T (x,Q2) + σγ

∗p
L (x,Q2)

i
.

We can express the γ∗p cross section in terms of T (k, Y ). After a bit of algebra one
obtains

F2(x,Q2) =
Q2R2

pNc

4π2

Z ∞

0

dk

k

Z 1

0
dz |Ψ̃(k2, z;Q2)|2T (k, Y ),

where the wavefunction is now expressed in momentum space

|Ψ̃(k2, z;Q2)|2 =
X

q

 
4Q̄2

q

k2 + 4Q̄2
q

!2

e2q

8
><
>:
ˆ
z2 + (1− z)2

˜
2
64

4(k2 + Q̄2
q)

q
k2(k2 + 4Q̄2

q)
arcsinh

„
k

2Q̄q

«

+
k2 − 2Q̄2

q

2Q̄2
q

#
+

4Q2z2(1− z)2 +m2
q

Q̄2
q

2
64
k2 + Q̄2

q

Q̄2
q

−
4Q̄4

q + 2Q̄2
qk

2 + k4

Q̄2
q

q
k2(k2 + 4Q̄2

q)
arcsinh

„
k

2Q̄q

«
3
75

9
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Fitting procedure
We fit the HERA (H1 and ZEUS) data in the kinematic range

0.045 ≤ Q2 ≤ 150GeV2, x ≤ 0.01

and the fixed parameters are γc = 0.6275 , ᾱ = 0.2 and A = 1.0

The values of light quark masses used were mq = 50, 140 MeV

The charm mass value used here mc = 50 MeV and mc = 1.3 GeV.

279 datapoints.

We have allowed for a 5% renormalisation uncertainty on the H1 data.

Results: 5

Masses k2

0 (10−3 GeV2) vc χ′′

c Rp (GeV−2) χ2/nop

mq = 50 MeV, mc = 50 MeV 3.782 ± 0.293 1.065 ± 0.018 4.691 ± 0.221 2.770 ± 0.045 0.960

mq = 50 MeV, mc = 1.3 GeV 7.155 ± 0.624 0.965 ± 0.017 2.196 ± 0.161 3.215 ± 0.065 0.988

mq = 140 MeV, mc = 1.3 GeV 3.917 ± 0.577 0.807 ± 0.025 2.960 ± 0.279 4.142 ± 0.167 1.071

TABLE I: Results from the fit to the F2 data. We indicate the values for the parameters with their errors, together with the
χ2 per data point.

with

Lred = log

[

1 +
k2

Q2
s(Y )

]

and Q2

s(Y ) = k2

0
eᾱvcY . (19)

We then unitarise this result à la Glauber-Mueller i.e. Tunit = 1 − exp(−Tdil). We finally need to reinsert both
logarithmic behaviours in the infrared and in the ultraviolet. We found that the following choice gives good results:

T (k;Y ) =

[

log

(

k

Qs

+
Qs

k

)

+ 1

]

(

1− e−Tdil

)

. (20)

B. Dataset

We fit all the last HERA measurements of the proton structure function from H1 [15], ZEUS [16]. We restrict our
analysis to the following kinematic range

{

x ≤ 0.01,

0.045 ≤ Q2 ≤ 150GeV2.
(21)

The first limit comes from the fact that our approach is meant to describe the high-energy amplitudes i.e. the small
x behaviour. The second cut prevents to reach too high values of Q2 for which DGLAP corrections need to be
included properly. This gives a total amount of 279 datapoints. In addition, we have allowed for a 5% renormalisation
uncertainty on the H1 data.

Concerning the parameters, we have kept γc = 0.6275 and ᾱ = 0.2 fixed although a particular choice for αs only
result in a renormalisation of the other parameters. The value of A has been simply fixed to 1. For the convolution
with the photon wavefunction, we have assumed different situations for the quarks masses: the light-quarks mass have
mq been set to 50 or 140 MeV while, we have used mc = mq or mc = 1.3 GeV for the charm mass. This leaves vc,
χ′′

c , k2
0 and Rp as free parameters.

C. Results

The parameters obtained from the fit are shown together with the χ2 per point in Table I. We have also plotted
the comparison with the experimental data for F p

2
on figure 2 as well as the charm structure function F c

2 on figure 3.
For both cases, the curve correspond to mq = 50 MeV and mc = 1.3 GeV.

V. CONCLUSIONS AND DISCUSSIONS

In this work we have investigated the matching between saturation and travelling wave solutions of the BK equation
which describe the forward scattering amplitude at high energies in the virtual photon-proton scattering. As this
matching procedure does not necessarily imply a positive Fourier transform of the amplitude, we concluded that the
best way to connect both solutions is through an interpolation model. An expression for the amplitude in momentum
space (see eqs. (18), (19) and (20)) has been proposed and has been tested. This expression was inserted in the proton
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Results
σγ
∗p = 4παem

Q2 F2(x,Q2)
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Predictions to FC
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Conclusions...

We have proposed a parametrization for the dipole cross section, based on the
solutions of BK equation in the context of the traveling waves solutions of the FKPP
equation.

We have obtained a parametrization in the momentum space, with a positive Fourier
transform.

The χ2/nop reach very good results (including charm mass).

Good predictions for the FC2 .

Perform some investigations with other observables.
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