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Introduction

There has been a large amount of work devoted to the description and understanding
of quantum chromodynamics (QCD) in the high energy limit corresponding to
saturation

Theory: non-linear QCD equations describing the evolution of scattering
amplitudes towards saturation

Phenomenology: discovery of geometric scaling in DIS at HERA

The Balitsky-Kovchegov (BK) nonlinear equation describes the evolution in rapidity of
the scattering amplitude of a dipole off a given target; assuming an independence on
the impact parameter, the BK equation has been shown to lie in the same universality
class as the Fisher-Kolmogorov-Petrovsky-Piscounov (FKPP) equation

Geometric scaling has a natural explanation in terms of the so-called traveling wave
solutions of BK equation

The evolution at low energy is well understood and is described by a linear equation;
the deep saturation regime can also be evaluated in some models

However, the transition between these two regimes is still a challenge
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Geometric Scaling and BK equation

Geometric scaling is a phenomenological feature of high energy deep inelastic
scattering (DIS) which has been observed in the HERA data on inclusive γ∗ − p

scattering, which is expressed as a scaling property of the virtual photon-proton cross
section

σγ∗p(Y,Q) = σγ∗p (τ) , τ =
Q2

Q2
s(Y )

where Q is the virtuality of the photon,
Y = log 1/x is the total rapidity and
Qs(Y ) is an increasing function of Y
called saturation scale
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Dipole frame

It is convenient to work within the QCD dipole frame of DIS

γ* γ*

p

z

1-z
r

p

In the LLA of perturbative QCD (pQCD), the cross section factorizes as

σγ∗p(Y,Q) =

Z ∞

0
r dr

Z 1

0
dz |ψ(z, r, Q)|2 σγ∗p

dip
(Y, r) (1)

σγ∗p
dip

(Y, r) is the dipole-proton cross section, taken to be proportional to the forward
scattering amplitude N(Y, r) through the relation

σγ∗p
dip

(Y, r) = 2πR2
pN(r, Y ) (2)
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BK equation in momentum space

We define the forward scattering amplitude in momentum space N (Y, k)

N (Y, k) =

Z ∞

0

dr

r
J0(kr)N(Y, r) (3)

and in this picture geometric scaling property reads

N (Y, k) = N

„

k

Qs(Y )

«

(4)

N obeys the Balitsky-Kovchegov (BK) equation

∂Y N = ᾱχ(−∂L)N − ᾱN 2, ᾱ =
αsNc

π
(5)
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BK equation in momentum space

In this equation

χ(γ) = 2ψ(1) − ψ(γ) − ψ(1 − γ) (6)

is the characteristic function of the well known Balitsky-Fadin-Kuraev-Lipatov (BFKL)
kernel, and L = log

`

k2/k2
0

´

, where k0 is some fixed low momentum scale

The kernel χ is an integro-differential operator which may be defined with the help of
the formal series expansion

χ(−∂L) = χ(γ0)1 + χ′(γ0)(−∂L − γ01) +
1

2
χ′′(γ0)(−∂L − γ01)2

+
1

6
χ(3)(γ0)(−∂L − γ01)3 + . . . (7)

for some γ0 between 0 and 1, i.e. for the principal branch of the function χ
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BK and FKPP equations

The Fisher and Kolmogorov-Petrovsky-Piscounov (FKPP) equation is a famous
equation in non-equilibrium statistical physics, whose dynamics is called
reaction-diffusion dynamics,

∂tu(x, t) = ∂2
xu(x, t) + u− u2, (8)

where t is time and x is the coordinate.

It has been shown that, after the change of variables

t ∼ ᾱY, x ∼ log(k2/k2
0), u ∼ N (9)

BK equation reduces to FKPP equation, when its kernel is approximated by the first
three terms of the expansion, the so-called diffusive approximation or saddle point
approximation
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Traveling wave solutions

The FKPP evolution equation admits the so-called traveling wave solutions

For a traveling wave solution one can define the position of a wave front
x(t) = v(t), irrespective of the details of the nonlinear effects

At larges times, the shape of a traveling wave is preserved during its propagation,
and the solution becomes only a function of the scaling variable x− vt

In the language of saturation physics the position of the wave front is nothing but the
saturation scale

x(t) ∼ lnQ2
s(Y )

and the scaling corresponds to the geometric scaling

x− vt ∼ ln k2/Q2
s(Y )
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Traveling wave solutions

The linear part of the BK equation is solved by

N (k, Y ) =

Z

dγ

2πi
N 0(γ) exp(−γL+ ᾱχ(γ)Y ) (10)

The velocity of the front is given by

v = vg = min
γ
ᾱ
χ(γ)

γ
= ᾱ

χ(γc)

γc

= ᾱχ′(γc) (11)

where γc is the saddle point of the exponential phase factor

This fixes, for the BFKL kernel,

γc = 0.6275..., v = 4.88ᾱ (12)
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Scattering amplitude

In terms of QCD variables, the dipole forward scattering amplitude in momentum space
near the wave front reads

N (τ, Y ) ∝

s

2

ᾱχ′′(γc)
log

„

k2

Q2
s(Y )

« „

k2

Q2
s(Y )

«−γc

exp

0

@−
log2

“

k2

Q2
s
(Y )

”

2ᾱχ′′(γc)Y

1

A (13)

The saturation scale is defined as

Q2
s(Y ) = Q2

0 exp

„

ᾱ
χ(γc)

γc

Y −
3

2γc

log Y

«

. (14)

Q0 absorbs undetermined constants but remains of order k0.
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Connecting to Saturation

We are studying the connection between of the traveling wave solution with the
saturation region

These different domains can be parametrized as

N (τ, Y ) = c− log

„

k

Qs(Y )

«

when, k < 2Qs(Y ), and

N (k, Y ) ∝

s

2

ᾱχ′′(γc)

„

k2

Q2
s(Y )

«−γc

log

„

k2

Q2
s(Y )

«

exp

8

<

:

−
log2

“

k2

Q2
s
(Y )

”

2ᾱχ′′(γc)Y

9

=

;

when, k > 2Qs(Y )
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Connecting to Saturation

The first attempt was to perform a matching between the two regions
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N(k,Y) k/Qs<2
N(k,Y) k/Qs>2

However, a matching procedure does not necessarily imply a positive Fourier transform
of the scattering amplitude. Then, a better way to obtain the connection between the
two regions which satisfies this condition would be an interpolation
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Next

In order to obtain an interpolation model to connect the regions of interest we intend to
build the saturation domain from the dilute one in the following way:

N =
1

1 + 1
Ndil

(15)

This expression guarantees the correct asymptotic behaviors of the forward scattering
amplitude N . Indeed,

when Ndil ≪ 1

N ≈ Ndil (16)

when Ndil ≫ 1

N ≈ 1. (17)
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