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Abstract

The dilepton production is investigated in proton-nucleus collisions in the forward region using

the Color Glass Condensate approach. The transverse momentum distribution (pT ), more precisely

the low pT region where the saturation effects are expected to increase, is analyzed. The ratio

between proton-nucleus and proton-proton differential cross section for RHIC and LHC energies is

evaluated, showing the effects of saturation at small pT , and presenting a suppression of the Cronin

type peak at moderate pT . These features indicate the dilepton as a most suitable probe to study

the properties of the saturated regime and the Cronin effect.
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I. INTRODUCTION

At high energies, the linear evolution equations, based in the standard perturbative QCD,

predict a high gluon density, requiring that the growth of the parton density has to have

a limit [1] - otherwise violation of the Froissart-Martin bound occurs - and expected to

saturate at a scale Qs, forming a color glass condensate (CGC)[2–5]. In this context, the

search for signatures of a CGC description of the saturated regime is an outstanding aspect

of investigation in heavy ion colliders. The first results of Relativistic Heavy Ion Collider

(RHIC), on charged hadron multiplicity in Au−Au collisions, were treated considering that

the CGC formulation gives a natural qualitative explanation of the data[6]. However, there

are several issues to be clarified, before conclude that the dynamical of the partonic system

should be described by a CGC already at RHIC energies. Particularly the current data are

reasonably described by other models based on different assumptions [7, 8]. However, the

charged multiplicity distribution in pseudo-rapidity for deuteron-gold collision is estimated

within the CGC formalism at the deuteron fragmentation region, and pointed out as a

probable signature of the saturated regime [9]. For a review of the CGC signatures see Refs.

[10, 11].

In order to investigate the high energy limit of the partonic interactions, the proton-

nucleus scattering was proposed as an ideal experiment to give evidences of the saturation

effects described by the CGC in the proton fragmentation region [12–14]. Furthermore,

the dilepton production was shown to be a sensitive probe of the perturbative shadowing

and saturation dynamics in proton-proton, proton-nucleus and nucleus-nucleus scattering

[15–23] in the forward kinematical region. It is an interesting observable since it is a clean

process in which there is no strong interaction with the nuclear medium final state.

In this work we investigate quantitative features of the dilepton production in the forward

region of proton-nucleus collisions in the context of the color glass condensate. In particular,

the transverse momentum (pT ) distribution is studied focusing attention to the small pT

region, where the saturation effects are expected to be more significant. The main goal

of this work is to show the effects of saturation at small pT described by the CGC. Their

presence at small pT should be considered as a possible signature of the saturation effects

when contrasted with proton-proton results. This comparison is performed evaluating the

ratio between proton-nucleus and proton-proton cross section. This ratio shows two diferent
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behaviors; it presents Cronin type peak (if a local Gaussian for the correlator function is

used) and a large suppression (if a non-local Gaussian is used), being a most suitable probe

of the status of the Cronin effect as a final or initial state effect. This work is organized

as follows. In the next section one presents a brief discussion on Color Glass Condensate

formalism. In Sec. 3 the dilepton production cross section within the CGC formalism is

presented. The Sec. 4 is devoted to the study on the color field correlator, which is a

fundamental factor in the CGC approach. The numerical results are given and discussed in

the last section where our conclusions are also presented.

II. THE COLOR GLASS CONDENSATE

The Color Glass Condensate picture holds in a frame in which the hadron propagates

at the speed of light and, by Lorentz contraction, appears as an infinitesimally thin two-

dimensional sheet located at the light cone. The formalism supporting this picture is in

terms of a classical effective theory valid at small x region (large gluon density), and was

originally proposed to describe the gluons in large nuclei [2].

At small x and/or large A one expects the transition of the regime described by the stan-

dard perturbative QCD (Dokshitzer-Gribov-Lipatov-Altarelli-Parisi (DGLAP), Balitsky-

Fadin-Kuraev-Lipatov (BFKL)) to a new regime where the processes like recombination

of partons should be important in the parton cascade [1]. In this regime, the growth of the

parton distribution is expected to saturate below a specific scale Qs, forming a Color Glass

Condensate [2–5]. This saturated field, meaning the dominant field or gluons, has a large

occupation number and allows the use of semi-classical methods. These methods provide the

description of the small x gluons as being radiated from fast moving color sources (parton

with higher values of x), being described by a color source density ρa, with internal dynamics

frozen by Lorentz time dilatation, thus forming a color glass. The small x gluons saturate

at a value of order xG(x,Q2) ∼ 1/αs >> 1 for Q2 . Q2
s, corresponding to a multi-particle

Bose condensate state. The color fields are driven by the classical Yang-Mills equation of

motion with the sources given by the large x partons. The large x partons move nearly at

the speed of light in the positive z direction.

In the CGC approach the light cone variables are employed, where, xµ ≡ (x+, x−, x⊥),

with x± ≡ 1/
√

2(x0 ± x3) and x⊥ ≡ (x1, x2), and xµpµ = x+p− + x−p+ − x⊥ · p⊥. The
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variable x+ is the time light cone, and p− its variable conjugated identified with the energy

as p− =
(m2+p2

⊥)

2p+ . The large x partons (fast) have momentum p+, emitting (or absorbing) soft

gluons with momentum k+ << p+, generating a color current only with the + component

J+
a = δ(x−)ρa. In this framework, the nucleus is situated at x− ≈ 0, with an uncertainty

∆x− . 1/k+, and there is a separation between fast and soft partons, implying that the

former have large lifetime while soft partons have a short lifetime. These features assure

that the color source density ρa should be considered time independent, since for the emitted

soft gluons (small x gluons) the source is frozen in time. However, after a time interval of

order 1/εp (εp being the energy of the source in the light-cone) the configuration of the

source is different. In order to have a gauge-invariant formulation, the source ρa must be

treated as a stochastic variable with zero expectation value. For these reason, an average

over all configurations is required and it is performed through a weight function WΛ+[ρ],

which depends upon the dynamics of the fast modes, and upon the intermediate scale Λ+,

which defines fast (p+ > Λ+) and soft (p+ < Λ+) modes. The classical fields obey the

Yang-Mills equation of motion,

DνF
νµ
a (x) = δµ+ρa(x

−, x⊥), (1)

and a physical observable is obtained by averaging the solution to this equation over all

configurations of ρa, with the gauge-invariant weight function WΛ+[ρ].

The effective theory is valid only at soft momenta of order Λ+. Indeed, going to a much

softer scale, there are large radiative corrections which invalidate the classical approximation.

The modifications to the effective classical theory is governed by a functional, nonlinear,

evolution equation, originally derived by Jalilian-Marian, Kovner, Leonidov and Weigert

(JIMWLK) [3, 4] for the statistical weight function WΛ+[ρ] associated with the random

variable ρa(x).

The solution for such functional evolution equation is not well determined yet and in order

to make predictions or comparison with data, some phenomenological treatment should

be given to the weight function. In this work an approximation to the weight function

which is reasonable when we have large nuclei is used and consists in taking a Gaussian

form [14, 24, 25]. As a consequence, most calculations in the CGC should be done quasi-

analytically. In Ref. [24] it is shown that a Gaussian weight function can accommodate both

the BFKL evolution of the gluon distribution at high transverse momenta, and the gluon
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saturation phenomenon at low transverse momenta. A non-local Gaussian distribution of

color sources has been predicted in Ref. [26] as a mean-field asymptotic solution for the

JIMWLK equation and provides some modifications concerning phenomenological properties

of the observables [27]. The local Gaussian weight function assures that the color sources

are correlated locally, on the other side, the non-local Gaussian allows correlations over

large distances. In the following sections the phenomenological consequences of the choice

of a local or non-local Gaussian type for the weight function are investigated concerning the

transverse momentum of the dileptons.

III. DILEPTON PRODUCTION IN THE CGC APPROACH

At high energies, the dilepton production in hadronic collisions looks like a

bremsstrahlung of a virtual photon with momentum p decaying into a lepton pair, which can

occur before and after the interaction of the quark (momentum k) with the dense saturated

gluonic field (momentum q) of the target, in our case the nucleus A. We consider only the

diagrams where the photon emission occurs before and after before the interaction with the

nucleus, since the emission considering before and after the interaction vanishes [28]. The

dilepton production can be summarized in Figure 1 [16, 17, 21],

FIG. 1: Dilepton production in the CGC.

Considering the Fig. 1, the differential cross section for the dilepton production in the

CGC approach, for a collinear quark (kT = 0), is written as [21],
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dσqA→ql
+l−X

incl

dzd2pTd logM2
= πR2

Af
2
q

2α2
em

3π

∫
d2lT
(2π)4

C(lT )

{[
1 + (1− z)2

z

]

× z2l2T
[p2
T +M2(1− z)][(pT − zlT )2 +M2(1− z)]

− z(1− z)M 2

[
1

[p2
T +M2(1− z)] −

1

[(pT − zlT )2 +M2(1− z)]

]2
}
, (2)

where fq represents the fraction of the electron charge carried by the quark q. The squared

quark charge is e2
q = f 2

q e
2 and the charge e2 from e2

q was incorporated in the α2
em in the

expression. RA is the nuclear radius, z ≡ p−/k− is the energy fraction of the proton carried

by the virtual photon, pT and M2 are the transverse momentum and the squared invariant

mass of the lepton pair, respectively; lT = qT +pT is the total transverse momentum transfer

between the nucleus and the quark. The function C(lT ) is the field correlator function and

defined by [25],

C(lT ) ≡
∫
d2x⊥e

ilT ·x⊥〈U(0)U †(x⊥)〉ρ, (3)

with the averaged term representing the average over all configurations of the color fields in

the nucleus, U(x⊥) is a matrix in the SU(N) fundamental representation which represents

the interactions of the quark with the classical color field. The correlator considers the

two diagrams, being the interaction at two transverse locations, and all the information

about the nature of the medium crossed by the quark is contained in the function C(lT ). In

particular, it determines the dependence on the saturation scale Qs (and on energy).

In order to obtain a hadronic cross section, the validity of the collinear factorization in

the fragmentation region is assumed and the expression in Eq. (2) is convoluted with the

partonic distribution function in the proton (deuteron or nucleus), as was done in [17, 23]

and the cross section reads as,

dσpA→ql
+l−X

dp2
T dM dxF

=
4π2

M
R2
A

α2
em

3π

1

x1 + x2

×
∫

dlT
(2π)3

lT W (pT , lT , x1)C(lT , x2, A), (4)

where xF is the longitudinal momentum fraction given by xF = x1 − x2, and x1 and x2 are

the momentum fraction carried by the quark from the proton and by the gluonic field from
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the nucleus, respectively. The expression (4) is valid in the forward region, which means

positive xF , or positive rapidities y, and the variables x1 and x2 are defined by,

x(1
2)

=
1

2

{√
xF + 4

M2
T

s
(±) xF

}
, (5)

or

x(1
2)

=

√
M2

T

s
e±y, (6)

where M2
T = M2 + p2

T is the squared dilepton transverse mass and s is the squared center of

mass energy. Here, using the structure function F2(x,Q2) =
∑

i e
2
qi
x[qi(x,Q

2) + q̄i(x,Q
2)],

the weight function W (pT , lT , x1) can be written as,

W (pT , lT , x1) =

∫ 1

x1

dz zF2(x1/z,M
2)

×
{

(1 + (1− z)2)z2l2T
[p2
T +M2(1− z)][(pT − zlT )2 +M2(1− z)]

− z(1− z)M 2

[
1

[p2
T +M2(1− z)]

− 1

[(pT − zlT )2 +M2(1− z)]

]2
}
. (7)

In our calculations the CTEQ6L parametrization [29] was used for the structure function,

and the lepton pair mass gives the scale for the projectile quark distribution. The function

W (pT , lT , x1) plays the role of a weight function, selecting the regions of dominance on lT

contributing to the cross section.

In Eq. (4) the correlator function appears with an energy dependence (dependence on

x2), which is not included in the original McLerran-Venugopalan model. One includes such

dependence in the field correlator function only in the saturation scale Qs,A → Qs,A(x) to

simulate a low x evolution, as was done in the Ref. [27], in order to investigate the effects

of the x evolution in the dilepton pT spectra. The x dependence is parametrized in the form

proposed by Golec-Biernat and Wüsthoff (GBW) [30] (Q2
s = (x0/x)λ), with the parameters

taken from the dipole cross section extracted from the fit procedure by GBW [30] and CGCfit

[31] parametrizations, which will be discussed later.

In Fig. 2, we plot the weight function for an specified lepton pair mass M = 3 GeV, in

the forward region (positive xF ), with a positive value of the rapidity y = 2.2, considering

the center of mass energy
√
s = 350 GeV (RHIC). In such figure the results for three
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FIG. 2: Weight function for lepton pair mass M = 3 GeV and rapidity y = 2.2 versus lT .

representative values of pT are presented, where a peak at lT ≈ pT and a suppression at

lT < pT are in order. These characteristics assure that the weight function selects the values

of lT larger than pT . Moreover, one verifies that larger values of pT provide a reduction

in the normalization of the weight function at large values of lT , when compared with the

normalization at pT = 0 GeV. This pT behavior of the weight function is essential in order to

determine the spectrum. As will be verified in the Sec. V, the pT distribution is suppressed

for large values.

All high density effects on the nucleus are encoded in the field correlator function. It

is well known that the saturation effects in the correlator function C(lT , x, A) are present

below the saturation scale, meaning the small lT region (In the next section one observes

this feature in the Fig. 3). Such behavior determines that only at small pT the effects of

saturation in the function C(lT , x, A) should be measurable, once the weight function selects

the values of lT larger than pT .

To make a quantitative prediction to the dilepton production, the correlator function

C(lT , x, A) has to be determined. It plays an important role in the Color Glass Condensate

formalism and should be compared with the dipole cross section. It is related to dipole

Fourier transform and in the following, the function C(lT , x2, A) will be discussed, through

the analyses of some phenomenological models.

8



IV. THE COLOR FIELD CORRELATOR C(lT , x, A)

The function C(lT ) is considered a fundamental quantity in the CGC formalism, since

it contains all the information on high density effects. It can be related to the Fourier

transform (F.T.) of the dipole cross section in the following way [22, 32, 33],

C(lT )=
1

σ0

∫
d2x⊥e

ilT ·x⊥[σdip(x⊥ →∞)− σdip(x⊥)], (8)

where σ0 is the normalization of the dipole cross section at the saturation region (x⊥ →
∞). Considering the GBW model for the dipole cross section σdip(x⊥, x) = σ0[1 −
exp(−Q2

s(x)x2
⊥/4)] [30] the correlator function can be written as [22, 33],

C(lT , x, A)GBW =
4π

Q2
s(x,A)

e
− l2T
Q2
s(x,A) , (9)

where a simple dependence on energy (x) and atomic number (A) was taken into the satu-

ration scale. Namely, the nuclear saturation scale was considered as Q2
s(x,A) = A1/3Q2

s(x)

with Q2
s(x) being the proton saturation scale parametrized of the form proposed by GBW

Q2
s = (x0/x)λ [30], where the parameters x0 = 3.10−4 and λ = 0.288 were determined from

the fit to the Hadron Electron Ring Accelerator (HERA) data. This ansatz to the nuclear

dependence of the saturation scale was studied in the Ref. [34] concerning the eA data, and

was shown to be a consistent approximation for large nuclei and moderate energies.

However, the GBW F.T. (Eq. (9)) does not recover the perturbative behavior at large

pT , since it presents an exponential tail, as we show in the Fig. 3.

Considering the McLerran-Venugopalan (MV) model, the function C(lT ) has no energy

dependence and should be computed by taking the MV dipole cross section [22],

σdipole(r⊥) = πR2

[
1− e

„
−Q

2
s
π

R dp

p3
(1−J0(pr⊥))

«]
. (10)

The Fourier transform can be numerically computed in the form [25],

C(lT )MV ≡
∫
d2x⊥e

ilT ·x⊥e
−Q

2
s
π

R dp

p3
(1−J0(px⊥))

, (11)

where the value of Q2
s is fixed depending on the energy. However, no x evolution is presented

in the MV model and the energy dependence is introduced in the correlator by fixing the

value of the saturation scale. Following the equation (11), we propose to introduce the

9



dependence on the energy and nuclei into the saturation scale in the form,

CMVmod(lT , x, A) =

∫
d2x⊥e

ilT ·x⊥

× e
−Q

2
s(x,A)

π

R dp

p3
(1−J0(px⊥))

. (12)

The nuclear saturation scale is parametrized in the form presented previously, where the x

dependence in the saturation scale Q2
s(x) is considered from the parameters extracted from

the fit to HERA data and should be taken from GBW saturation model [30], or from a

dipole cross section based on the CGC approach [31]. Here it should be interesting to point

out that in the recent work of Ref. [27], the Cronin effect was studied in the MV model, and

the same energy dependence for the saturation scale was considered. Such a simple inclusion

of the quantum corrections results in a disagreement with the RHIC d−Au data at forward

rapidities concerning the Cronin effect [35, 36]. In that work [27], a non-local Gaussian

distribution for 〈U †(0)U(x⊥)〉 was introduced and the shape of the curves agrees with the

Broad Range Hadron Magnetic Spectrometer (BRAHMS) data at large rapidities, however

presents large suppression at central rapidity. This disagreement shows that the dynamics

of the CGC is a subject which deserves more comprehensive studies. Here we point out that

the dilepton transverse momentum analyzed with local and non-local Gaussian correlator is

a good observable to investigated such dynamics.

In the large lT (lT >> Qs) limit, the correlator function should recover the perturbative

behavior (1/l4T ), and considering the MV model the correlator function can be expanded

and written in a simple analytic expression [25],

CMVmod(lT , x, A)|lT>>Qs = 2
Q2
s(x,A)

l4T

×
(

1 +
4Q2

s(x,A)

πl2T

[
ln

(
lT

ΛQCD

)
− 1

])
, (13)

which emphasizes the large saturation effects in the small lT region, as in the Fig. (3).

In a recent work, Ref. [31] it has been analyzed the structure function F2(x,Q2) for

x < 10−2 and 0.045 ≤ Q2 ≤ 45 GeV2, within the dipole picture, taking an expression to

the dipole cross section which interpolates the BFKL solution at r << 1/Qs(x) and the

saturated behavior at r >> 1/Qs(x), where the scattering amplitude saturates at one. The
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parametrized dipole cross section can be written as σdip(x, r) = 2πR2N (rQs, x) with [31],

N (rQs, Y ) = N0

(
rQs

2

)2(γs+ ln(2/rQs)
κλY )

to rQs ≤ 2

N (rQs, Y ) = 1− e−a ln2(brQs) to rQs ≥ 2,
(14)

where Y = ln(1/x). There are three free parameters: the proton radius R, the value x0

of x at which the saturation scale has to be equal to 1, and the parameter which controls

the energy dependence of the saturation scale λ. The parameters a and b are determined

to assure that N is continuous at rQs = 2 (at least at first derivative). From the fit to

the HERA data for the inclusive structure function F2(x,Q2) the parameters depend on the

quark mass mq.

Following this dipole cross section, we construct a function C(lT , x2, A) taking the Eq.

(8), that will be called CGCfit, and obtain the following expression,

C(lT , x, A)CGC = 2π

(∫ 2/Qs

0

rdrJ0(lT r)

(
1−N0 exp

{
2 ln

(
rQs

2

)[
γs +

ln(2/rQs)

κλ ln 1/x

]})

+

∫ ∞

2/Qs

rdrJ0(lT r)e
−a ln2(brQs)

)
. (15)

The energy and nuclear dependences are introduced with Q2
s(x,A) = A1/3

(
x0

x

)λ
.

Considering the two models for the dipole cross section (GBW and CGCfit) there is a set

of parameters which determine the saturation scale, where the ones used in this work are

presented in the Table I ( the set of parameters are identified as fit1, fit2 and fit3), where

the value of the saturation scale was calculated at x = 10−3 for gold. It is shown that the

recent CGC fit parameters provide a small value for the saturation scale, and this behavior

should affect the dilepton production, as we will see in the next section. The nuclear radius

is taken from the Woods-Saxon parametrization of the form, RA = 1.2A1/3fm, while the

proton radius is taken from the fits and presented in the Table I.

In the Figure 3 the function C(lT , x2, A) is shown for the models discussed here and one

verifies the large saturation effects at small lT when we compare the functions obtained from

the GBW and CGCfit with the asymptotic behavior of the correlator function. At this point

it is interesting to emphasize some features of the functions C(lT , x2, A) extracted from the

Fourier transform of GBW dipole cross section and the Fourier transform of the CGCfit.

Considering the GBW F.T. (dashed-line) the function C(lT , x2, A)GBW depends on e−l
2
T and
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Parameter GBW CGC fit mq = 10 MeV CGC fit mq = 140 MeV

(fit1) (fit2) (fit3)

x0 3× 10−4 1.06 × 10−4 0.267 × 10−4

λ 0.288 0.285 0.253

Q2
s (x = 10−3, A = 197) 4.114 GeV2 3.069 GeV2 2.327 GeV2

Rp (Proton radius) 0.6055 fm 0.566 fm 0.641 fm

TABLE I: Parameters of saturation scale from GBW and CGCfit.

is suppressed at large lT (this behavior is shown in the inner plot on Fig. 3). It results in an

unrealistic suppression of the observable cross section at large pT , as emphasized in the Refs.

[22, 33]. Considering the results from CGC fit (solid-line), the function C(lT , x2, A) presents

negative values at moderate lT (as can be seen in the Figure 3) and this behavior should be

due to the continuity only at first derivative or by the approximations in the construction of

the dipole cross section model [31]. Having those aspects in mind, the function C(lT , x2, A)

based on the McLerran-Venugopalan model, including an energy and nuclear dependence

in the saturation scale, is employed here. The parameters to the saturation scale are taken

from the fit1 (triangle-up-line) and fit2 (circle-line) and one verifies in the Fig. 3 that the

value of the saturation scale provides a small difference in the correlator obtained from the

MVmod model at small lT .
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FIG. 3: Correlator C(lT , x, A) as a function of lT .
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The correlator function is suppressed at large lT , and the weight function suppress the

values of lT smaller than pT , the behavior of the cross section coming from the balance be-

tween these two quantities. In such balance, the small pT dileptons clearly are the dominant

contribution for the cross section and provide a physical probe for the CGC and for the

models to the color field correlator function.

The field correlator function presented up to here in MV model is obtained considering a

local Gaussian function for the weight function WΛ+[ρ]. The correlator function is defined

by

C(lT ) ≡
∫
d2x⊥e

ilT ·x⊥〈U(0)U †(x⊥)〉ρ, (16)

and the local Gaussian enters in the calculation of the averaged term 〈U(0)U †(x⊥)〉ρ. The

consideration of a non-local Gaussian function modifies the correlator in such way that it is

written as [24, 27]

C(lT , x, A) ≡
∫
d2x⊥e

ilT ·x⊥eχ(x,x⊥,A), (17)

with

χ(x, x⊥, A) ≡ − 2

γc

∫
dp

p
(1− J0(x⊥p))

× ln

(
1 +

(
Q2

2(x,A)

p2

)γ)
, (18)

where, γ is the anomalous dimension (γ ≈ 0.64 for BFKL) and c ≈ 4.84 [24, 27]. This non-

local field correlator function is plotted in the Figure 4 in contrast with the same correlator

obtained with the local Gaussian weight functional.

The physical effect of the nonlocal Gaussian weight function is that the gluon sources

are no longer correlated locally, as in the local Gaussian, but correlate over larger distances.

This implies in a more drastic reduction of the gluon density, as can be seen at small lT

in the Fig. 4, where the solid line represents the correlator function with a local Gaussian

weight function and the long-dashed line represents the non-local Gaussian weight function.

The effect of the local or non-local Gaussian weight function in the pT dilepton spectra will

be discussed in the next section in the context of the defined ratio RpA.

Having addressed all the fundamental aspects to develop the calculation of the dilepton

transverse momentum in the CGC formalism, one presents in the next section the numerical

predictions using such approach and the discussions.

13



0 1 2 3 4 5 6 7 8 9 10
lT (GeV)

0

1

2

3

4

5

6

C
(l T,

x,
A

) (
G

eV
−2

)

C(lT,x,A) (MVmod  local)
C(lT,x,A) (MVmod non−local)

A=197
x=10−3

FIG. 4: Field correlator function with local and non-local Gaussian weight function.

V. RESULTS AND DISCUSSIONS

In what follows, the numerical results on the dilepton transverse momentum distribution

in CGC are addressed and discussed. We consider pA collisions at RHIC (
√
s = 350 GeV)

and LHC energies (
√
s = 8.8 TeV) in the proton fragmentation region (positive rapidities).

The calculations are performed fixing values of rapidities (or xF ) and lepton pair mass

M . We use the function C(lT , x2) based on the McLerran-Venugopalan model, however an

x dependence through the saturation scale is introduced, taking the parameters from the

HERA data fit procedure GBW (fit1) [30] and CGCfit (fit2) [31]. For sake of comparison,

the same differential cross section using the original McLerran-Venugopalan model, fixing a

value to the saturation scale is evaluated.

In Fig. 5 we present the transverse momentum distribution for RHIC energies (
√
s = 350

GeV) in pA collisions, for a lepton pair mass M = 3 GeV and as in the Ref. [23] at

rapidity y = 2.2. The proton structure function is taken from the CTEQ6L parametrization

[29]. The solid line is the calculation with the McLerran-Venugopalan model, with the x

dependence on the saturation scale, taking the parameters from the fit2; the dashed-line is

the same calculation with the saturation scale taken from the fit1 and the dot-dashed line

is the calculation with the asymptotic behavior of the MV correlator function. Considering

the transverse momentum distribution at fixed mass and rapidities, the effects of quantum

evolution are not too relevant in the range of transverse momentum investigated here, once

14



the parametrization of the saturation scale assures that it is almost fixed in the region treated

in this case, changing only weakly with the transverse momentum (x2 =

√
M2+p2

T

s
e−y). Such

behavior can be seen in the Figs. 5 and 6, where the line-diamond represents the calculation

with the MV model, fixing the saturation scale at a value Q2
s = 3.2 GeV 2 and Q2

s = 8 GeV2,

respectively. The x evolution provides a small suppression of the large pT dilepton, in both

cases.

0 1 2 3 4 5 6 7
pT (GeV)
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100
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M
dx

Fd
p T2  (µ

b/
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)

MVmod (Qs CGCfit mq=10 MeV)
MVmod (Q GBW)
MVmod asymp. (Qs CGCfit mq=10 MeV)
MV (Qs

2= 3.2 GeV2)

s1/2=350 GeV

A=197

FIG. 5: Dilepton production at RHIC energies (
√
s = 350 GeV) in pA collisions, considering

rapidity y = 2.2 and lepton pair mass M = 3 GeV.

In the Figure 5 the large saturation effects presented at pT . 2 GeV are verified if one

compares the asymptotic behavior of the correlator function with the MVmod prediction. As

was shown in the last section, the asymptotic behavior of the correlator function (lT >> Qs)

depends on the Q2
s/l

4
T , then an increase of the saturation scale provides an increase in the

differential cross section at large pT , as can be seen in the Figure 5. As a most interesting

feature, only at large pT the effects of the choice of saturation scale affect the cross section,

and the difference between the predictions being a factor of 2 considering the smallest value

of the saturation scale, which is taken from the fit3, in contrast with the GBW ones.

In Figure 6 the dilepton transverse momentum distribution at LHC energies is shown,

taking the same value of rapidity y = 2.2 to assure the forward region and to make a

comparison with RHIC energies. The same behavior concerning the saturation effects is

verified, although such effects start to be significant for pT . 4 GeV. The estimative with

the MV model was performed and the suppression at large pT when the energy dependence

is introduced in the saturation scale can be seen. The pT spectra is enlarged at large pT if
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the saturation scale is large, as was verified for RHIC energies.
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FIG. 6: Dilepton production at LHC energies (
√
s = 8.8 TeV) in pA collisions, considering rapidity

y = 2.2 and lepton pair mass M = 3 GeV.

In order to avoid any ambiguity with normalization, the ratio between the proton-nucleus

and proton-proton differential cross section for RHIC and LHC is defined,

RpA =

dσ(pA)

πR2
AdMdxF dp

2
t

A1/3 dσ(pp)

πR2
pdMdxF dp

2
t

. (19)

Some attention should be given to the uncertainty in the determination of the nuclear radius,

then each cross section is divided by the nuclear or proton radius. The factor A1/3 was used

in the denominator to guarantee a ratio RpA about 1 at large pT .

The expression to the ratio RpA in the dilepton production defined here should be written

of the form,

RpA (y, pT ) =∫
d2lTW (pT , lT , x1)CA(lT , x2, A)

A1/3
∫
d2lTW (pT , lT , x1)Cp(lT , x2)

, (20)

where CA is the nuclear correlator function and Cp is the proton correlator function. The

ratio in the Eq. (20) is similar to the one obtained in the Ref. [27] to investigate the Cronin

effect (Eq. (113) in the Ref. [27]).

The Cronin effect was discovered in the late’s 70s [37] and is related to the enhancement

of the hadron transverse momentum spectra at moderated pT (2-5 GeV) in comparison

with the proton-proton collisions (the ratio between pA and pp present a peak at moderate
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pT ). The effect should be interpreted as being originated by the multiple scatterings of the

partons from the proton propagating through the nucleus, resulting in a broadening of the

transverse momentum of the initial partons. This indicates the Cronin effect as an initial

state effect. The Cronin effect was measured by the RHIC experiments, in Au − Au and

d − Au collisions, however, the theoretical approaches cannot describe the effect in all the

range of rapidity measured by the collaborations [38]. Although the Cronin effect concerns

the hadron transverse momentum spectra, it is also expected in the dilepton transverse

momentum spectra, since the effect of multiple scatterings is an initial state effect. Moreover,

the ratio obtained in this work is similear to that is used to investigate the Cronin effect

[27].

In the Fig. (7) one presents the results for the ratio RpA to RHIC and LHC energies

considering a correlator field function C(lT , x, A) obtained from a local Gaussian distribution

for the weight function WΛ+[ρ]. For RHIC energies the solid line represents the calculation

for rapidity y = 2.2 and the dashed line for rapidity y = 3.2. For LHC energies the

long-dashed line represents the calculation for rapidity y = 2.2 and the dot-dashed line for

rapidity y = 3.2. It is verified that at moderate pT the calculations show a Cronin type

peak for RHIC and for LHC (there is a suppression of the dilepton production at RHIC

and LHC energies comparing with the proton-proton collisions at small pT , at intermediate

pT the ratio is larger than 1, and there is a suppression at large pT up to get the value 1).

Such peak increases and is shifted to larger pT at larger rapidities, due to the fact that the

saturation scale grows with the rapidity and no evolution is taking into account.

Concerning the Cronin effect, such peak is enlarged at large rapidities if the local Gaussian

correlator function with the same energy dependence implemented here is used [27], in

complete disagreement with the BRAHMS experiment at forward rapidities [35, 36]. In the

same Ref. [27] the Cronin effect was studied using a non-local Gaussian distribution for the

weight function and the Cronin peak suppression is reached. However, there is a suppression

on the normalization at centrality region, which is not consistent with the RHIC data in

central rapidity [35, 36], emphasizing that the the non-local Gaussian weight function should

be the right physics at forward rapidities.

On the dilepton side, the behavior of the ratio RpA, shows the same features of the Cronin

peak at forward rapidities when investigated with the local Gaussian (the peak is enlarged

and shifted to high pT at large rapidities). However, the ratio RpA was also investigated
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FIG. 7: Ratio between proton-nucleus and proton-proton at RHIC and LHC energies by the CGC

approach at distincts rapidities with local Gaussian distribution for the weight function W [ρ].

with the correlator function obtained from a non-local Gaussian weight function WΛ+[ρ],

and is presented in the Fig. 8. The suppression of the ratio RpA is verified showing exactly

the same features presented in the Cronin effect [27], being a possible clean observable to

study this property. Although, the Cronin effect was considered as a final state one in

the Ref. [39], in our analysis, the dilepton production seems to clarify this aspect. It was

obtained that the Cronin type peak (or the suppression of the Cronin peak) in the dilepton

pT distribution appears as an initial state effect. In the Fig. (8) the solid line represents the

calculation for rapidity y = 2.2 and the dashed line for rapidity y = 3.2 at RHIC energies.

For LHC energies the long-dashed line represents the calculation for rapidity y = 2.2 and

the dot-dashed line for rapidity y = 3.2.

At RHIC energies, the effect of suppression appears if the nonlocal Gaussian in the

correlator color field is used, sugesting the measurement of such suppression, although the

detectors should not be able to measure such behavior [40]. On the other hand, at LHC

energies, the suppression of the ratio RpA reach large values of pT and such suppression

increases with the rapidity. It is interesting to address that at LHC the experimental facilities

provide a detection of dileptons in the forward region with transverse momentum above 1.5

GeV, depending on the rate of the signal of the observable and on the signal from physics and

machine sources [41]. This feature assures that at LHC energies such suppression behavior

should be detectable too.
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VI. CONCLUSIONS

In this work the large saturation effects described by the Color Glass Condensate in

the dilepton production at small pT region and the dependence of the large pT spectra

on the saturation scale value are verified. Although at RHIC, the transverse momentum

distribution of the dilepton should not be measurable in the very small pT , at intermediate

pT , the comparison between pp and pA cross section, provides a tool to study the Cronin

effect and the dynamics of the Color Glass Condensate.

Particularly, the dilepton transverse momentum distribution presents the suppression of

the Cronin type peak, as observed in the inclusive observables, if a non-local Gaussian is

used. Such behavior is observed in the Fig. (8). At the LHC energies, at forward rapidities,

the effect of suppression increases (Fig. (8)). Such large suppression at high energies gives

an indication that dilepton transverse momentum provides a clear probe of the Color Glass

Condensate description of the high energy hadronic interactions in the forward rapidity

region. Moreover, the dilepton pT spectra should be used to investigate the properties of the

Cronin effects and indicates it as an initial state effect. Our results confirm the studies of

Refs. [17, 18, 20] concerning the saturation effects. In addition to this analysis, in a recent

work [19], the high pT and low mass region in the dilepton production in perturbative QCD

with all-order resummation was pointed as a good probe of the gluon distribution, as was
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indicated in the Refs. [15] considering the dipole approach. Also, the mass distributions

of the dileptons investigated in the CGC should identify effects of saturation at small mass

region [23]. The ensemble of these features shows that dilepton production is an observable

that deserves to be measured, once it carries information about the high density nuclear

system.
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