

k_{\perp} -factorization and heavy quark production

M. B. Gay Ducati

gay@if.ufrgs.br

GFPAE Group, Institute of Physics, Rio Grande do Sul U., Brazil http://www.if.ufrgs.br/gfpae

Based on C. Brenner Mariotto, M. B. Gay Ducati, M. Machado, hep-ph/0208155

Workshop on Low x Physics. Antwerpen, Belgium, 16-19 Sept. 2002 - p.1

- Heavy quark photoproduction in k_{\perp} -factorization approach
- Unintegrated gluon distributions

Results

Conclusions

Workshop on Low x Physics. Antwerpen, Belgium, 16-19 Sept. 2002 - p.2

Parton model (collinear approach)

- NLO calculations
- on-shell matrix elements, initial transverse momenta neglected

- Parton model (collinear approach)
 - NLO calculations
 - on-shell matrix elements, initial transverse momenta neglected
 - intrinsic ${m k}_\perp$ put by hand: too high values needed

- Parton model (collinear approach)
 - NLO calculations
 - on-shell matrix elements, initial transverse momenta neglected
 - intrinsic ${m k}_\perp$ put by hand: too high values needed
 - bottom production at Tevatron: NLO calculation below data, factor 2-3

- Parton model (collinear approach)
 - NLO calculations
 - on-shell matrix elements, initial transverse momenta neglected
 - intrinsic ${m k}_\perp$ put by hand: too high values needed
 - bottom production at Tevatron: NLO calculation below data, factor 2-3
- **9** k_{\perp} -factorization approach (semihard interactions)
 - off-shell matrix elements
 - transverse momenta of incident partons included perturbatively
 - unintegrated parton distributions:

 $xg(x,\mu^2) \simeq \int_0^{\mu^2} dk_{\perp}^2 x \mathcal{A}(x,k_{\perp}^2,\mu^2)$: BFKL in asymptotic energy limit

Workshop on Low x Physics. Antwerpen, Belgium, 16-19 Sept. 2002 – p.3

- Parton model (collinear approach)
 - NLO calculations
 - on-shell matrix elements, initial transverse momenta neglected
 - intrinsic ${m k}_\perp$ put by hand: too high values needed
 - bottom production at Tevatron: NLO calculation below data, factor 2-3
- **9** k_{\perp} -factorization approach (semihard interactions)
 - off-shell matrix elements
 - transverse momenta of incident partons included perturbatively
 - unintegrated parton distributions:

 $xg(x,\mu^2) \simeq \int_0^{\mu^2} dk_{\perp}^2 x \mathcal{A}(x,k_{\perp}^2,\mu^2)$: BFKL in asymptotic energy limit

- NLO and some NNLO contributions on collinear approach

already included in LO matrix elements

- infrared sector and saturation effects

- Using Sudakov variables
 - $p_1 = \alpha_1 P_1 + \beta_1 P_2 + \boldsymbol{p}_{1\perp}$
 - $p_2 = \alpha_2 P_1 + \beta_2 P_2 + \boldsymbol{p}_{2\perp}$
 - $q = x_1 P_1 + \boldsymbol{q}_\perp$
 - $k = x_2 P_2 + \boldsymbol{k}_\perp$

Workshop on Low x Physics. Antwerpen, Belgium, 16-19 Sept. 2002 - p.4

- Using Sudakov variables
 - $p_1 = \alpha_1 P_1 + \beta_1 P_2 + \boldsymbol{p}_{1\perp}$

$$p_2 = \alpha_2 P_1 + \beta_2 P_2 + \boldsymbol{p}_{2\perp}$$

- $q = x_1 P_1 + \boldsymbol{q}_\perp$
- $k = x_2 P_2 + \boldsymbol{k}_\perp$

• in terms of transverse masses $m_{1,2\,\perp}^2=m_Q^2+m{p}_{1,2\,\perp}^2$ and heavy-quark rapidities $y_{1,2}^*$,

$$\alpha_1 = \frac{m_{1\perp}}{\sqrt{s}} \exp(y_1^*) \qquad \beta_1 = \frac{m_{1\perp}}{\sqrt{s}} \exp(-y_1^*) \qquad x_1 = \alpha_1 + \alpha_2$$

$$\alpha_2 = \frac{m_{2\perp}}{\sqrt{s}} \exp(y_2^*) \qquad \beta_2 = \frac{m_{2\perp}}{\sqrt{s}} \exp(-y_2^*) \qquad x_2 = \beta_1 + \beta_2$$

Workshop on Low x Physics. Antwerpen, Belgium, 16-19 Sept. 2002 - p.4

- Using Sudakov variables
 - $p_1 = \alpha_1 P_1 + \beta_1 P_2 + \boldsymbol{p}_{1\perp}$

$$p_2 = \alpha_2 P_1 + \beta_2 P_2 + \boldsymbol{p}_{2\perp}$$

$$q = x_1 P_1 + \boldsymbol{q}_\perp$$

 $k = x_2 P_2 + \boldsymbol{k}_\perp$

• in terms of transverse masses $m_{1,2\perp}^2 = m_Q^2 + p_{1,2\perp}^2$ and heavy-quark rapidities $y_{1,2}^*$,

$$\alpha_1 = \frac{m_{1\perp}}{\sqrt{s}} \exp(y_1^*) \qquad \beta_1 = \frac{m_{1\perp}}{\sqrt{s}} \exp(-y_1^*) \qquad x_1 = \alpha_1 + \alpha_2$$

$$\alpha_2 = \frac{m_{2\perp}}{\sqrt{s}} \exp(y_2^*) \qquad \beta_2 = \frac{m_{2\perp}}{\sqrt{s}} \exp(-y_2^*) \qquad x_2 = \beta_1 + \beta_2$$

• photoproduction: $q = P_1$, $x_1 = 1$, $\alpha_1 \equiv z$, $\alpha_2 \equiv 1 - z$

• z, (1-z): longitudinal momentum fraction carried by the heavy-quark having $p_{1\perp}$, $p_{2\perp}$

Workshop on Low x Physics. Antwerpen, Belgium, 16-19 Sept. 2002 - p.4

direct interaction: (resolved component not included)

$$\sigma_{tot}^{phot} = rac{lpha_e m \, e_Q^2}{\pi} \int dz \; d^2 oldsymbol{p}_{1\perp} \, d^2 oldsymbol{k}_\perp$$

direct interaction: (resolved component not included)

$$\sigma_{tot}^{phot} = \frac{\alpha_e m \, e_Q^2}{\pi} \int dz \, d^2 \boldsymbol{p}_{1\perp} \, d^2 \boldsymbol{k}_\perp \, \frac{\alpha_s(\mu^2) \, \mathcal{F}(\boldsymbol{x}_2, \boldsymbol{k}_\perp^2; \mu^2)}{\boldsymbol{k}_\perp^4}$$

direct interaction: (resolved component not included)

$$\begin{split} \sigma_{tot}^{phot} &= \frac{\alpha_e m \, e_Q^2}{\pi} \int dz \, d^2 \boldsymbol{p}_{1\perp} \, d^2 \boldsymbol{k}_\perp \, \frac{\alpha_s(\mu^2) \, \mathcal{F}(\boldsymbol{x}_2, \boldsymbol{k}_\perp^2; \mu^2)}{\boldsymbol{k}_\perp^4} \\ &\times \left\{ [z^2 + (1-z)^2] \, \left(\frac{\boldsymbol{p}_{1\perp}}{D_1} + \frac{(\boldsymbol{k}_\perp - \boldsymbol{p}_{1\perp})}{D_2} \right)^2 + m_Q^2 \, \left(\frac{1}{D_1} + \frac{1}{D_2} \right)^2 \right\} \end{split}$$

where $D_1 \equiv p_{1\perp}^2 + m_Q^2$ and $D_2 \equiv (\mathbf{k}_\perp - \mathbf{p}_{1\perp})^2 + m_Q^2$.

Workshop on Low x Physics. Antwerpen, Belgium, 16-19 Sept. 2002 - p.5

direct interaction:

$$\sigma_{tot}^{phot} = \frac{\alpha_e m \, e_Q^2}{\pi} \int dz \, d^2 p_{1\perp} \, d^2 \mathbf{k}_\perp \, \frac{\alpha_s(\mu^2) \, \mathcal{F}(\mathbf{x}_2, \mathbf{k}_\perp^2; \mu^2)}{\mathbf{k}_\perp^4} \\ \times \left\{ [z^2 + (1-z)^2] \, \left(\frac{\mathbf{p}_{1\perp}}{D_1} + \frac{(\mathbf{k}_\perp - \mathbf{p}_{1\perp})}{D_2} \right)^2 + m_Q^2 \, \left(\frac{1}{D_1} + \frac{1}{D_2} \right)^2 \right\}$$

where $D_1 \equiv p_{1\perp}^2 + m_Q^2$ and $D_2 \equiv (\mathbf{k}_\perp - \mathbf{p}_{1\perp})^2 + m_Q^2$.

 \checkmark input: $\mathcal{F}(x_2, \boldsymbol{k}_{\perp}^2; \mu^2)$

Workshop on Low x Physics. Antwerpen, Belgium, 16-19 Sept. 2002 - p.5

GBW - Saturation Model

$${\cal F}(x,m{k}_{ot}^2) = rac{3\,\sigma_0}{4\,\pi^2lpha_s}\,R_0^2(x)\,m{k}_{ot}^4\exp\left(-R_0^2(x)\,m{k}_{ot}^2
ight)$$

 $\sigma_0 = 29.12 \text{ mb}, \alpha_s = 0.2, R_0(x) = \frac{1}{Q_0} \left(\frac{x}{x_0}\right)^{\lambda/2}$, parameterization including charm: $Q_0 = 1 \text{ GeV}, \lambda = 0.277 \text{ and } x_0 = 0.41 \cdot 10^{-4}$

Workshop on Low x Physics. Antwerpen, Belgium, 16-19 Sept. 2002 - p.6

GBW - Saturation Model supplemented by threshold factor

$${\cal F}(x,m{k}_{\perp}^2) = rac{3\,\sigma_0}{4\,\pi^2lpha_s}\,R_0^2(x)\,m{k}_{\perp}^4\exp\left(-R_0^2(x)\,m{k}_{\perp}^2
ight)(1-x)^7$$

 $\sigma_0 = 29.12 \text{ mb}, \alpha_s = 0.2, R_0(x) = \frac{1}{Q_0} \left(\frac{x}{x_0}\right)^{\lambda/2}$, parameterization including charm: $Q_0 = 1 \text{ GeV}, \lambda = 0.277 \text{ and } x_0 = 0.41 \cdot 10^{-4}$

Workshop on Low x Physics. Antwerpen, Belgium, 16-19 Sept. 2002 - p.6

GBW - Saturation Model supplemented by threshold factor

$${\cal F}(x,m{k}_{\perp}^2) = rac{3\,\sigma_0}{4\,\pi^2lpha_s}\,R_0^2(x)\,m{k}_{\perp}^4\exp\left(-R_0^2(x)\,m{k}_{\perp}^2
ight)(1-x)^7$$

 $\sigma_0 = 29.12 \text{ mb}, \alpha_s = 0.2, R_0(x) = \frac{1}{Q_0} \left(\frac{x}{x_0}\right)^{\lambda/2}$, parameterization including charm: $Q_0 = 1 \text{ GeV}, \lambda = 0.277 \text{ and } x_0 = 0.41 \cdot 10^{-4}$

Derivative of integrated gluon density (d-Gluon)

 $\mathcal{G}(x, \boldsymbol{k}_{\perp}^2) =$

$$+\frac{\partial \left[x G(x, \boldsymbol{k}_{\perp}^{2}) \right]}{\partial \ln \boldsymbol{k}_{\perp}^{2}} \Theta(\boldsymbol{k}_{\perp}^{2} - Q_{0}^{2})$$

 $xG(x,\mu^2)$: GRV98 LO, $Q_0^2 = 0.8 GeV^2$

GBW - Saturation Model supplemented by threshold factor

$${\cal F}(x,m{k}_{\perp}^2) = rac{3\,\sigma_0}{4\,\pi^2lpha_s}\,R_0^2(x)\,m{k}_{\perp}^4\exp\left(-R_0^2(x)\,m{k}_{\perp}^2
ight)(1-x)^7$$

 $\sigma_0 = 29.12 \text{ mb}, \alpha_s = 0.2, R_0(x) = \frac{1}{Q_0} \left(\frac{x}{x_0}\right)^{\lambda/2}$, parameterization including charm: $Q_0 = 1 \text{ GeV}, \lambda = 0.277 \text{ and } x_0 = 0.41 \cdot 10^{-4}$

Derivative of integrated gluon density (d-Gluon)

$$\begin{aligned} \boldsymbol{\mathcal{G}}(\boldsymbol{x}, \boldsymbol{k}_{\perp}^{2}) &= \boldsymbol{k}_{\perp}^{2} \left. \frac{\partial \left[\boldsymbol{x} \, \boldsymbol{G}(\boldsymbol{x}, \boldsymbol{k}_{\perp}^{2}) \right]}{\partial \, \boldsymbol{k}_{\perp}^{2}} \right|_{\boldsymbol{k}_{\perp}^{2} = Q_{0}^{2}} \Theta(Q_{0}^{2} - \boldsymbol{k}_{\perp}^{2}) \qquad \text{(prescription)} \\ &+ \frac{\partial \left[\boldsymbol{x} \, \boldsymbol{G}(\boldsymbol{x}, \boldsymbol{k}_{\perp}^{2}) \right]}{\partial \ln \boldsymbol{k}_{\perp}^{2}} \Theta(\boldsymbol{k}_{\perp}^{2} - Q_{0}^{2}) \qquad \qquad \text{(pQCD)} \end{aligned}$$

 $xG(x,\mu^2)$: GRV98 LO, $Q_0^2 = 0.8 GeV^2$

GBW peaked at $k_{\perp}^2 = 2 Q_s^2(x)$

Workshop on Low x Physics. Antwerpen, Belgium, 16-19 Sept. 2002 – p.7

GBW peaked at $k_{\perp}^2 = 2 Q_s^2(x)$

J d-Gluon broader in k_{\perp}^2

Total cross section, GBW

Sensitivity to energy scale and gluon momentum fraction

- $\alpha_s = 0.2, x_2 = x_{Bj}$ reproduces results of dipole approach (Szczurek)
- More conservative choice $\mu^2 = p_{\perp}^2 + m_Q^2$, $x_2 = 2 x_{Bj}$

Workshop on Low x Physics. Antwerpen, Belgium, 16-19 Sept. 2002 - p.8

 $W(x, \boldsymbol{k}_{\perp}^2) \rightarrow \boldsymbol{k}_{\perp}$ profile, charm

fixed target energies ($x = 10^{-2}$), high energies ($x = 10^{-4}$)

Saturation Model: Dipole approximation (fixed α_s and $x_2 = x_{Bj}$) Semihard approach ($\alpha_s(\mathbf{p}_{\perp}^2 + m_Q^2), x_2 = 2x_{Bj}$): larger normalization

Workshop on Low x Physics. Antwerpen, Belgium, 16-19 Sept. 2002 - p.9

 $W(x, \boldsymbol{k}_{\perp}^2) \rightarrow \boldsymbol{k}_{\perp}$ profile, charm

fixed target energies ($x = 10^{-2}$), high energies ($x = 10^{-4}$)

Saturation Model: Dipole approximation (fixed α_s and $x_2 = x_{Bj}$) Semihard approach ($\alpha_s(\mathbf{p}_{\perp}^2 + m_Q^2), x_2 = 2x_{Bj}$): larger normalization

d-Gluon: somewhat broader ${m k}_\perp$ profile, suppressed for high $x\sim 10^-2$

Workshop on Low x Physics. Antwerpen, Belgium, 16-19 Sept. 2002 - p.9

 $W(x, \boldsymbol{k}_{\perp}^2) \rightarrow \boldsymbol{k}_{\perp}$ profile, charm

fixed target energies ($x = 10^{-2}$), high energies ($x = 10^{-4}$)

Saturation Model: Dipole approximation (fixed α_s and $x_2 = x_{Bj}$) Semihard approach ($\alpha_s(\mathbf{p}_{\perp}^2 + m_Q^2), x_2 = 2x_{Bj}$): larger normalization

- **d**-Gluon: somewhat broader \mathbf{k}_{\perp} profile, suppressed for high $x \sim 10^{-2}$
- dominance of small ${m k}_{\perp}^2$ region, infrared region under control

 $W(x, \mathbf{k}_{\perp}^2) \rightarrow \mathbf{k}_{\perp}$ profile, bottom:

Saturation Model: dipole X semihard approaches: more similar results (large m_b at the scale $\mu^2 = p_{\perp}^2 + m_Q^2$)

Workshop on Low x Physics. Antwerpen, Belgium, 16-19 Sept. 2002 - p.10

 $W(x, \mathbf{k}_{\perp}^2) \rightarrow \mathbf{k}_{\perp}$ profile, bottom:

Saturation Model: dipole X semihard approaches: more similar results (large m_b at the scale $\mu^2 = p_{\perp}^2 + m_Q^2$)

Interpretent description of the second s

 $W(x, \mathbf{k}_{\perp}^2) \rightarrow \mathbf{k}_{\perp}$ profile, bottom:

Saturation Model: dipole X semihard approaches: more similar results (large m_b at the scale $\mu^2 = p_{\perp}^2 + m_Q^2$)

- d-Gluon: broader k_{\perp} profile
- dominance of small k_{\perp}^2 region, infrared region under control

σ_{TOT} , Saturation Model x d-Gluon:

- Saturation Model: somewhat below high energy data (lack of QCD evolution)
- d-Gluon: better description of high energy data lower energies: lack of non-singlet (valence) content, $\rightarrow dG < 0$

p_T distributions

 $W = 200 \, GeV$, saturation model X d-Gluon

usual fall off at large transverse momentum

finite and well-controled behavior at $p_T = 0$

Conclusions

- **\checkmark** k_T factorization: NLO and NNLO collinear diagrams in LO
- Several parameterizations for *F* in the market:
 Derivative of integrated gluon density: DGLAP
 GBW: consistent with small-x DIS and diffraction
- smooth connection between soft and hard regimes
- profile function: important below saturation scale
- fixed $\alpha_s = 0.2$ and $\bar{x} = x_{Bj}$ underestimates high energy data (consistent with dipole approach)
- more conservative choice $\alpha_s(p_T^2 + m_Q^2)$, $\bar{x} = 2x_{Bj}$ improves slightly the description
- p_T spectrum finite at $p_T \rightarrow 0$