

Dipole scattering amplitude in momentum space: investigating fluctuations at HERA

João Thiago de Santana Amaral

thiago.amaral@ufrgs.br

High Energy Phenomenology Group – Instituto de Física

Universidade Federal do Rio Grande do Sul – Porto Alegre, Brazil

GFPAE - UFRGS

http://www.if.ufrgs.br/gfpae

Based on work done with M. B. Gay Ducati, E. Basso and E. G. Oliveira

- Deep Inelastic Scattering and QCD at high energies
- The Dipole Frame
- Evolution of Scattering Amplitudes
- Stochasticity in High energy QCD
- Description of DIS data: possible effects of fluctuations
- Analysis in Momentum Space

Deep Inelastic Scattering (DIS)

The total energy squared of the photon-nucleon system

 $s = (P+q)^2$

Photon virtuality

$$q^2 = (p - p')^2 = -Q^2 < 0$$

The Bjorken variable

$$x \equiv x_{Bj} = \frac{Q^2}{2P \cdot q} = \frac{Q^2}{Q^2 + s}$$

The high energy limit:

$$s \to \infty, \quad x \approx \frac{Q^2}{s} \to 0$$

The rapidity variable

 $Y \equiv \ln(1/x)$

QCD at high energies

- As energy increases (with Q fixed) the gluon density grows fast and so does the cross sections for hadronic interactions
 - This is still a challenge in Quantum Chromodynamics
- At this regime gluon recombination and multiple scattering might be important to restore unitarity

- $Q_s(Y)$ is the so called saturation scale
- The nonlinear saturation effects are important for all $Q \leq Q_S(Y)$, which is known as saturation region

In a frame where the proton carries most of the total energy one can consider that the photon fluctuates into a $q\bar{q}$ pair

$$\sigma_{T,L}^{\gamma^* p}(Y,Q) = \int d^2r \int_0^1 dz \, \left| \Psi_{T,L}(\mathbf{r},z;Q^2) \right|^2 \sigma_{dip}^{\gamma^* p}(\mathbf{r},Y), \tag{1}$$

 $\sigma_{dip}^{\gamma^* p}(Y, \mathbf{r})$ is the dipole-proton cross section, *z* is the fraction of photon's momentum carried by the quark, **r** is the transverse size of the dipole and **b** is the impact parameter

$$\sigma_{dip}^{\gamma^* p}(\mathbf{r}, Y) = 2 \int d^2 \mathbf{b} \, \left\langle T(\mathbf{r}, \mathbf{b}) \right\rangle_Y \tag{2}$$

where $\langle T(\mathbf{r}, \mathbf{b}) \rangle_Y$ is the scattering amplitude for the dipole-proton scattering at a given impact parameter **b**

Large N_c limit: the gluons emitted can be replaced by quark-anti-quark pairs, which interact with the target via two gluon exchanges

Evolution of the scattering amplitude

Multiple scattering

- Splitting probability

$$\mathcal{M}(\mathbf{x}, \mathbf{y}, \mathbf{z}) = \frac{(\mathbf{x} - \mathbf{y})^2}{(\mathbf{x} - \mathbf{z})^2 (\mathbf{z} - \mathbf{y})^2}$$

Evolution equation for $\langle T(\mathbf{x}, \mathbf{y}) \rangle_Y$ [Balitsky, 1996]

$$\partial_Y \langle T(\mathbf{x}, \mathbf{y}) \rangle_Y = \bar{\alpha} \int d^2 z \, \mathcal{M}(\mathbf{x}, \mathbf{y}, \mathbf{z}) \langle T(\mathbf{x}, \mathbf{z}) + T(\mathbf{z}, \mathbf{y}) - T(\mathbf{x}, \mathbf{z}) T(\mathbf{z}, \mathbf{y}) \rangle_Y$$

- First equation of the infinite Balitsky-JIMWLK hierarchy
- Mean field approximation $\langle T(\mathbf{x}, \mathbf{z})T(\mathbf{z}, \mathbf{y}) \rangle \approx \langle T(\mathbf{x}, \mathbf{z}) \rangle \langle T(\mathbf{z}, \mathbf{y}) \rangle \rightarrow$ Balitsky-Kovchegov (BK) equation [Kovchegov, 1999, 2000]

$$\partial_Y \langle T_{\mathbf{x}\mathbf{y}} \rangle_Y = \bar{\alpha} \int d^2 z \,\mathcal{M}(\mathbf{x}, \mathbf{y}, \mathbf{z}) \left[\langle T_{\mathbf{x}\mathbf{z}} \rangle_Y + \langle T_{\mathbf{z}\mathbf{y}} \rangle_Y - \langle T_{\mathbf{x}\mathbf{y}} \rangle_Y - \langle T_{\mathbf{x}\mathbf{z}} \rangle \, \langle T_{\mathbf{z}\mathbf{y}} \rangle_Y \right] \quad (3)$$

Beyond the Balitsky hierarchy

PAE

Balitsky-JIMWLK hierarchy is not complete: it misses **gluon number fluctuations** [lancu, Triantafyllopoulos, 2005]

Pomeron Loop Equations: $\langle T^{(k)} \rangle$ depends on $\langle T^{(k)} \rangle$, $\langle T^{(k+1)} \rangle$ and $\langle T^{(k-1)} \rangle$

$$\frac{\partial}{\partial Y} \langle T \rangle_Y \propto \alpha_s \left[\langle T \rangle_Y - \langle TT \rangle_Y \right] \tag{4}$$

$$\frac{\partial}{\partial Y} \langle TT \rangle_Y \propto \alpha_s \left[\langle TT \rangle_Y - \langle TTT \rangle_Y + \alpha_s^2 \langle T \rangle_Y \right]$$
(5)

The "mean field" BK equation is not consistent with fluctuations, related to discreteness in small-x evolution

BK equation in momentum space

- If one neglects the dependence on the impact parameter \rightarrow equation for $\langle T(r, Y) \rangle \equiv T_Y(r)$, where $r = |\mathbf{r}| = |\mathbf{x} \mathbf{y}|$
- After performing the Fourier transform

$$\tilde{T}_{Y}(k) = \frac{1}{2\pi} \int \frac{d^{2}r}{r^{2}} e^{i\mathbf{k}\cdot\mathbf{r}} T(r,Y) = \int_{0}^{\infty} \frac{dr}{r} J_{0}(kr) T_{Y}(r),$$
(6)

the amplitude $\widetilde{T}_Y(k)$ obeys the BK equation in momentum space

$$\partial_Y \tilde{T}_Y(k) = \frac{\bar{\alpha}}{\pi} \int \frac{dp^2}{p^2} \left[\frac{p^2 \tilde{T}_Y(p) - k^2 \tilde{T}_Y(k)}{|k^2 - p^2|} + \frac{k^2 \tilde{T}_Y(k)}{\sqrt{4p^4 + k^4}} \right] - \bar{\alpha} \tilde{T}_Y^2(k) \tag{7}$$

or

$$\partial_Y \tilde{T} = \bar{\alpha} \chi (-\partial_L) \tilde{T} - \bar{\alpha} \tilde{T}^2 \tag{8}$$

where

$$\chi(\gamma) = 2\psi(1) - \psi(\gamma) - \psi(1 - \gamma) \tag{9}$$

and $L = \log(k^2/k_0^2)$, with k_0 some fixed soft scale.

BK and FKPP equations

- $\chi(\gamma)$ is the characteristic function of the Balitsky-Fadin-Kuraev-Lipatov (BFKL) kernel
- After an approximation in the kernel and the change of variables [Munier and Peshcanski, 2003]

$$t \sim \bar{\alpha}Y, \quad x \sim \log(k^2/k_0^2), \quad u \sim \tilde{T}$$
 (10)

BK equation reduces to Fisher and Kolmogorov-Petrovsky-Piscounov (FKPP) equation \rightarrow reaction-diffusion dynamics,

$$\partial_t u(x,t) = \partial_x^2 u(x,t) + u - u^2, \tag{11}$$

It admits the so-called traveling wave solutions: at large times, the shape of a traveling wave is preserved during its propagation: function of the scaling variable $x - v_c t$

Traveling waves and saturation

At asymptotic rapidities, $\tilde{T}(k, Y)$ depends only on the scaling variable $k^2/Q_s^2(Y)$: Geometric Scaling

$$\sigma^{\gamma^* p}(Y, Q) = \sigma^{\gamma^* p}(\tau), \quad \tau = \frac{Q^2}{Q_s^2(Y)}$$

The position of the front, for which $\tilde{T} = \mathcal{O}(1)$ is given by

 $\log(Q_s^2(Y)/k_0^2) = \lambda Y$

$$\tilde{T}_{Y}(k) \overset{k \gg Q_{s}}{\approx} \left(\frac{k^{2}}{Q_{s}^{2}(Y)}\right)^{-\gamma_{c}} \log\left(\frac{k^{2}}{Q_{s}^{2}(Y)}\right) \exp\left[-\frac{\log^{2}\left(k^{2}/Q_{s}^{2}(Y)\right)}{2\bar{\alpha}\chi^{\prime\prime}(\gamma_{c})Y}\right]$$
(12)

Geometric scaling window: $\log \left(k^2/Q_s^2(Y)\right) \lesssim \sqrt{2\chi''(\gamma_c)\bar{lpha}Y}$

Stochasticity in high energy QCD (I)

After a coarse-graining approximation [lancu, Triantafyllopoulos 2005], one can Fourier transform the Pomeron Loop Equations : the resulting hierarchy becomes equivalent to the Langevin equation

$$\partial_Y \tilde{T}(L) = \bar{\alpha} \left[\chi(-\partial_L) \tilde{T}(L) - \tilde{T}^2(L) + \sqrt{\kappa \alpha_s^2 \tilde{T}(L)} \eta(L, Y) \right], \tag{13}$$

where η is a Gaussian noise satisfying the following commutation relations:

$$\langle \eta(L,Y) \rangle = 0,$$

$$\langle \eta(L_1,Y_1)\eta(L_2,Y_2) \rangle = \frac{4}{\bar{\alpha}}\delta(L_1-L_2)\delta(Y_1-Y_2)$$
(14)

- Stochastic equation describing an event-by-event picture
- Formally equivalent to BK equation with an additional noise term
- Each realization of the noise corresponds to a particular evolution of the target
- Diffusive approximation: same universality class as the stochastic FKPP equation

Stochasticity in high energy QCD (II)

- The stochastic evolution generates an ensemble of fronts which differ by the saturation momentum $\rho_s \equiv \ln \left(Q_s^2(Y)/Q_0^2\right)$
- Each individual event is a traveling wave with a speed smaller than the one predicted from BK equation

$$\lambda^* \simeq \lambda - \frac{\pi^2 \gamma_c \chi''(\gamma_c)}{2\ln^2(1/\alpha_s^2)}$$
(15)

 ho_s is a random variable

$$\langle \rho_s \rangle = \ln \left(\bar{Q}_s^2(Y) / Q_0^2 \right) = \lambda^* Y \tag{16}$$

and dispersion

$$\sigma^2 \equiv \left\langle \rho_s^2 \right\rangle - \left\langle \rho_s \right\rangle^2 = \bar{\alpha} DY \tag{17}$$

The probability distribution of ρ_s is, to a good approximation [Marquet, Soyez, Xiao 2006], a Gaussian

$$P_Y(\rho_s) \simeq \frac{1}{\sqrt{\pi\sigma^2}} \exp\left[-\frac{(\rho_s - \langle \rho_s \rangle)^2}{\sigma^2}\right]$$
 (18)

Diffusive scaling

- Single event amplitude: $T(
 ho,
 ho_s)$, where $ho\equiv \ln(1/r^2Q_0^2)$
- Average (physical) amplitude:

PAE

$$\mathcal{T}(\rho, \langle \rho_s \rangle) \equiv \langle T(\rho, \rho_s) \rangle = \int_{-\infty}^{+\infty} d\rho_s \, P_Y(\rho_s) T(\rho, \rho_s) \tag{19}$$

At very high energies, $\sigma \gg 1$, geometric scaling is washed out and replaced by the diffusive scaling

$$\mathcal{T}(\rho, \langle \rho_s \rangle, Y) = \mathcal{T}\left(\frac{\rho - \langle \rho_s \rangle}{\sqrt{DY}}\right)$$
(20)

Amplitudes and description of data

The F_2 proton structure function can be written in terms of the $\sigma^{\gamma^* p}$ cross section

$$F_{2}(x,Q^{2}) = \frac{Q^{2}}{4\pi^{2}\alpha_{em}}\sigma^{\gamma^{*}p}(x,Q^{2})$$

$$= \frac{Q^{2}}{4\pi^{2}\alpha_{em}}\int d^{2}r \int_{0}^{1} dz \left[\left| \Psi_{T}(r,z;Q^{2}) \right|^{2} + \left| \Psi_{L}(r,z;Q^{2}) \right|^{2} \right] \sigma_{dip}^{\gamma^{*}p}(r,Y)$$

If one treats the proton as an homogeneous disk of radius R_p , one can write the dipole-proton cross section in terms of the dipole-proton scattering amplitude T(r, Y)

$$\sigma_{dip}^{\gamma^*p}(r,Y) = 2\pi R_p^2 T(r,Y)$$

We are left with teh parametrization of T(r, Y): different approaches have already been proven successful, giving good description of the data

Dipole models: coordinate space

GBW [Golec-Biernat, Wusthoff 1999] model

$$T^{\text{GBW}}(r,x) = 1 - \exp\left[-\frac{r^2 Q_s^2(x)}{4}\right]$$
, (21)

IIM [lancu, Itakura, Munier 2004] model

$$T^{\text{IIM}}(r,x) = \begin{cases} 1 - \exp\left[-a\ln^2(b\,r\,Q_s(x))\right] &, r\,Q_s(x) > 2\\ \\ T_0\left(\frac{r\,Q_s(x)}{2}\right)^{2\left(\gamma_c + \frac{\ln(2/r\,Q_s(x))}{\kappa\,\lambda\,Y}\right)} &, r\,Q_s(x) < 2 , \end{cases}$$
(22)

where the saturation scale is given by

$$Q_s^2(x) = \left(\frac{x_0}{x}\right)^{\lambda} \tag{23}$$

Good agreement with HERA data with contributions from light and heavy quarks

Effects of fluctuations

- Recent investigation [Kozlov, Shoshi, Xlang 2007] of effect of fluctuations in DIS data: GBW and IIM models as event-by-event amplitudes
- FLuctuations: average over all the events

model/parameters	χ^2	$\chi^2/{ m d.o.f}$	x_0 (×10 ⁻⁴)	λ	R(fm)	D
T^{GBW}	266.22	1.74	4.11	0.285	0.594	0
$\langle T^{\rm GBW} \rangle$	173.39	1.14	0.0546	0.225	0.712	0.397

model/parameters	χ^2	$\chi^2/{ m d.o.f}$	x_0 (×10 ⁻⁴)	λ	R(fm)	D
T^{IIM}	150.45	0.983	0.5379	0.252	0.709	0
$\langle T^{\rm IIM} \rangle$	122.62	0.807	0.0095	0.198	0.812	0.325

- GBW: large improvement after including fluctuations, fitting parameters reasonable
- IIM: not so large improvement, already contains geometric scaling vilations via BK-diffusion
- Diffusion coefficient: values similar to those found in numerical simulations [Soyez 2007, Iancu, De Santana Amaral, Soyez, Triantafyllopoulos 2007]

Dipole model in momentum space (I)

[De Santana Amaral, Gay Ducati, Betemps, Soyez 2007]

 $\gamma^* p$ cross section in terms of the scattering amplitude in momentum space, $ilde{T}(k,Y)$, through the Fourier transform

$$\tilde{T}_Y(k) = \int_0^\infty \frac{dr}{r} J_0(kr) T_Y(r)$$
(24)

After a bit of algebra one obtains

$$F_2(x,Q^2) = \frac{Q^2 R_p^2 N_c}{4\pi^2} \int_0^\infty \frac{dk}{k} \int_0^1 dz \, |\tilde{\Psi}(k,z;Q^2)|^2 \tilde{T}_Y(k) \tag{25}$$

where the photon wavefunction is now expressed in momentum space

- The scattering amplitude $\tilde{T}_Y(k)$ obeys the BK equation in momentum space
- The asymptotic behaviours of the solutions to BK equation are naturally expressed in momentum space

Dipole model in momentum space (II)

Analytical interpolation between the saturated and the traveling wave regimes predicted from BK equation

$$\tilde{T}_Y^{\text{AGBS}}(k) = \left[\log\left(\frac{k}{Q_s} + \frac{Q_s}{k}\right) + 1 \right] \left(1 - e^{-T_{\text{dil}}}\right)$$
(26)

where

$$T_{\mathsf{dil}} = \exp\left[-\gamma_c \log\left(\frac{k^2}{Q_s^2(Y)}\right) - \frac{L_{\mathsf{red}}^2 - \log^2(2)}{2\bar{\alpha}\chi''(\gamma_c)Y}\right]$$

and

$$L_{\rm red} = \log\left[1 + \frac{k^2}{Q_s^2(Y)}\right] \qquad Q_s^2(Y) = k_0^2 e^{\lambda Y}$$

 $\mathbf{P}_{-\gamma_c}$ fixed at its LO value $\gamma_c=0.6275$

- Good descrition of the data with light and heavy quarks included
- Decrease of the saturation exponent λ with respect to its predicted (NLO BFKL) value $\lambda \sim 0.3$
 - Positive Fourier transform

Investigating fluctuations

Evaluation of the average amplitude ($\rho \equiv \ln(k^2/k_0^2)$)

$$\left\langle \tilde{T}_{Y}^{\text{AGBS}}(\rho,\rho_{s}) \right\rangle = \int_{-\infty}^{+\infty} d\rho_{s} P_{Y}(\rho_{s}) \tilde{T}_{Y}^{\text{AGBS}}(\rho,\rho_{s})$$
 (27)

Some tests describing the last HERA data

Model	$k_0^2 \ (10^{-3} \ { m GeV}^2)$	λ	χ_c''	R_p (GeV $^{-1}$)	χ^2 /nop	D
$ ilde{T}_Y^{ m AGBS}$	7.155 ± 0.624	0.193 ± 0.003	2.196 ± 0.161	3.215 ± 0.065	0.988	0
$\left< \tilde{T}_Y^{\text{AGBS}} \right>$	6.431 ± 0.709	0.166 ± 0.004	1.766 ± 0.186	3.417 ± 0.088	1.097	fixed 1.3

- Effects of fluctuations at LHC energies: geometric or diffusive scaling
- Running coupling + fluctuations [Dumitru, Iancu, Portugal, Soyez, Triantafyllopoulos 2007] are fluctuations really important?