Karin Wittmann Wilsmann ${ }^{1}$, Leandro Ymai ${ }^{2}$, Daniel S. Grün ${ }^{1}$, Arlei P. Tonel ${ }^{2}$, Jon Links ${ }^{3}$, Angela Foerster ${ }^{1}$
${ }^{1}$ Instituto de Física da UFRGS, Brazil, ${ }^{2}$ Universidade Federal do Pampa, Brazil, ${ }^{3}$ School of Mathematics and Physics, The University of Queensland, Australia

Integrable Multi-Well Hamiltonian [1]

A bipartite model obtained through the Quantum Inverse Scattering Method
$H_{n, m}=U\left(N_{A}-N_{B}\right)^{2}+\mu\left(N_{A}-N_{B}\right)+\sum_{i=1}^{n} \sum_{i=1}^{m} t_{i, j}\left(a_{i} b_{j}^{\dagger}+a_{i}^{\dagger} b_{j}\right)$

Some multi-well geometric models $\left(N_{A}, N_{B}\right)$:

$(2,1)$
$(3,1)$
$(2,2)$
$(4,2)$
$(5,1)$

$$
\text { Switching Device: } 2+1 \text { modes }[2,3]
$$

$$
H_{0}=U\left(N_{1}-N_{2}+N_{3}\right)^{2}+J_{1}\left(a_{1}^{\dagger} a_{2}+a_{1} a_{2}^{\dagger}\right)+J_{3}\left(a_{2}^{\dagger} a_{3}+a_{2} a_{3}^{\dagger}\right)
$$

$[\mathrm{H}, \mathrm{N}]=[\mathrm{H}, \mathrm{Q}]=[\mathrm{N}, \mathrm{Q}]=0, \quad \mathrm{Q}=\mathrm{J}_{1}^{2} \mathrm{~N}_{3}+\mathrm{J}_{3}^{2} \mathrm{~N}_{1}-\mathrm{J}_{1} \mathrm{~J}_{3}\left(\mathrm{a}_{1}^{\dagger} \mathrm{a}_{3}+\mathrm{a}_{3}^{\dagger} \mathrm{a}_{1}\right)$
The additional conserved quantity Q provides an $\mathrm{H}_{\text {eff }}$ which, in the resonant regime, yield analytical frequency and amplitude equations.

By applying an external field, $\varepsilon\left(N_{3}-N_{1}\right)$, the second-order tunneling amplitude between wells 1 and 3 can be controlled while N_{2} remains constant.

Abstract: The precise control of quantum systems will play a major role in the realization of atomtronic devices. Here we study models of dipolar bosons confined to three and four wells. The analysis considers both integrable and non-integrable regimes within the models. Through variation of the external field, we demonstrate how the triple well system can be controlled between various "switched-on" and "switched-off" configurations and how the four well system can be controlled to encode a phase into a NOON state

NOON states: $2+2$ modes $[4,5]$

Integrable Extended Bose-Hubbard

$$
\begin{equation*}
H=\frac{u_{0}}{2} \sum_{i=1}^{4} N_{i}\left(N_{i}-1\right)+\sum_{i=1}^{4} \sum_{j=1, j \neq i}^{4} \frac{u_{i j}}{2} N_{i} N_{j}-\frac{J}{2} \sum_{i=1}\left(a_{i}^{\dagger} a_{i+1}+a_{i+1}^{\dagger} a_{i}\right) \tag{2}
\end{equation*}
$$

where $a_{j}, a_{j}^{\dagger}: j=1,2,3,4$. Eq.(1) could be derived from EBHM as long as it complies with the integrability condition $\mathrm{U}_{0}=\mathrm{U}_{13}=\mathrm{U}_{24}$, which provides four conserved quantities, $[H, N]=\left[H, Q_{k}\right]=\left[N, Q_{k}\right]=0, k=1,2$, as many as number modes.

NOON Protocol

Below, we describe two protocols that enable the generation of NOON states. For Protocol I the outcomes are probabilistic while Protocol II are deterministic.

Protocol I

Considering $\mathcal{U}(\mathrm{t}, \mu, \nu)=\exp \left(-\frac{i t}{\hbar}\left[\mathrm{H}+\mu\left(\mathrm{N}_{2}-\mathrm{N}_{4}\right)+\nu\left(\mathrm{N}_{1}-\mathrm{N}_{3}\right)\right]\right)$,
here we employ breaking of integrability through an applied field $\mu\left(N_{4}-N_{2}\right)$ to subsystem $B=\{2,4\}$ and a measurement process \mathcal{M} :
(i) $\left|\Psi_{1}^{\prime}\right\rangle=\mathcal{U}\left(\mathrm{t}_{\mathrm{m}}-\mathrm{t}_{\mu}, 0,0\right)\left|\Psi_{0}\right\rangle$;
(ii) $\left|\Psi_{2}^{\prime}\right\rangle=\mathcal{U}\left(\mathrm{t}_{\mu}, \mu, 0\right)\left|\Psi_{1}^{\prime}\right\rangle$;
(iii) $\left|\Psi_{3}^{\prime}\right\rangle=\mathcal{M}\left|\Psi_{2}^{\prime}\right\rangle$,
where $\mathrm{t}_{\mathrm{m}}=\hbar \pi /(2 \Omega)$ and $\mathcal{M}=0, M$ represents a projective measurement of the number of bosons at site 3 which heralds a high-fidelity NOON state in subs. B.

In an idealized limit, with $\beta=(-1)^{(N+1) / 2}$ and the initial state $\left|\Psi_{0}\right\rangle=|M, P, 0,0\rangle$,

$$
\left|\Psi_{3}^{\prime}\right\rangle=\left\{\begin{array}{l}
\frac{1}{\sqrt{2}}\left(\beta|M, P, 0,0\rangle+e^{i P \theta}|M, 0,0, P\rangle\right), r=0 \tag{3}\\
\frac{1}{\sqrt{2}}\left(|0, P, M, 0\rangle-\beta e^{i P \theta}|0,0, M, P\rangle\right), r=M
\end{array}\right.
$$

These states are recognized as products of a NOON state for subsystem B with Fock basis states for subsystem $A=\{1,3\}$.

Protocol II

Employing the same initial state $\left|\Psi_{0}\right\rangle$, the following sequence of steps are implemented to arrive at a NOON state in subsystem B and deterministic state in A :
(i) $\left|\Psi_{1}^{\|}\right\rangle=\mathcal{U}\left(\mathrm{t}_{\mathrm{m}}-\mathrm{t}_{v}, 0,0\right)\left|\Psi_{0}\right\rangle$;
(ii) $\left|\Psi_{2}^{\prime \prime}\right\rangle=\mathcal{U}\left(\mathrm{t}_{v}, 0, v\right)\left|\Psi_{1}^{\prime \prime}\right\rangle$;
(iii) $\left|\Psi_{3}^{\prime \prime}\right\rangle=\mathcal{U}\left(\mathrm{t}_{\mathrm{m}}-\mathrm{t}_{\mu}, 0,0\right)\left|\Psi_{2}^{\prime \prime}\right\rangle$;
(iv) $\left|\Psi_{4}^{\|}\right\rangle=\mathcal{U}\left(\mathrm{t}_{\mu}, \mu, 0\right)\left|\Psi_{3}^{\|}\right\rangle$.
where v represent the breaking of integrability through an applied field $v\left(N_{3}-N_{1}\right)$ to subsystem $A=\{1,3\}$. In an idealized limit, with $\Upsilon=\beta \exp (\mathfrak{i}(P \theta-\pi / 2))$,

$$
\begin{equation*}
\left|\Psi_{4}^{\prime \prime}\right\rangle=\frac{1}{\sqrt{2}}(|M, P, 0,0\rangle+\Upsilon|M, 0,0, P\rangle) \tag{4}
\end{equation*}
$$

Fidelity and Probability

The fidelities are computed for $\mathrm{P} \mathrm{\theta}$ ranging from 0 to π, achieved by varying t_{μ}.

$$
\mathrm{F}_{1}=\left|\left\langle\Psi_{3}^{\prime} \mid \Phi_{3}^{\prime}\right\rangle\right|>0.9 \quad \mathrm{~F}_{I I}=\left|\left\langle\Psi_{4}^{\prime \prime} \mid \Phi_{4}^{\prime \prime}\right\rangle\right|>0.9
$$

where $|\Psi\rangle$ denotes the analytical states and $|\Phi\rangle$ the numerically state obtained by EBHM (2) time evolution. For physically realistic settings, with $\mathrm{M}=4$ and $\mathrm{P}=11$, the NOON state fidelities for $\mathrm{P} \theta \in[0, \pi]$ are greater than 0.9 with probabilities varying as:

References

[1] Leandro H. Ymai, et al. J. Phys. A, 50, 2017.
[2] Karin Wittmann W., et al. Communications Physics, 1(1), 2018
[3] Arlei P. Tonel, et al. SciPost Phys. Core 2(003) (2020).
[4] Daniel S. Grun, et al. arXiv preprint arXiv:2004.11987 (2020).
[5] Daniel S. Grun, Karin Wittmann W., et al. arXiv preprint arXiv:2102.02944 (2021).

