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Integrable Multi-Well Hamiltonian [1]
A bipartite model obtained through the Quantum Inverse Scattering Method
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Some multi-well geometric models (NA, NB):
(2,1) (3,1) (2,2) (4,2) (5,1)

Switching Device: 2+1 modes [2, 3]
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[H,N] = [H,Q] = [N,Q] = 0, Q = J21N3 + J
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The additional conserved quantity Q provides an Heff which, in the resonant regime,
yield analytical frequency and amplitude equations.
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By applying an external field, ε(N3 − N1), the second-order tunneling amplitude
between wells 1 and 3 can be controlled while N2 remains constant.

Abstract: The precise control of quantum systems will play a major role in the
realization of atomtronic devices. Here we study models of dipolar bosons confined
to three and four wells. The analysis considers both integrable and non-integrable
regimes within the models. Through variation of the external field, we demonstrate
how the triple well system can be controlled between various “switched-on” and
“switched-off” configurations and how the four well system can be controlled to
encode a phase into a NOON state

NOON states: 2+2 modes [4, 5]

Integrable Extended Bose-Hubbard
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where aj, a†
j : j = 1, 2, 3, 4. Eq.(1) could be derived from EBHM as long as it com-

plies with the integrability condition U0 = U13 = U24, which provides four conserved
quantities, [H,N] = [H,Qk] = [N,Qk] = 0, k = 1, 2, as many as number modes.

NOON Protocol
Below, we describe two protocols that enable the generation of NOON states. For
Protocol I the outcomes are probabilistic while Protocol II are deterministic.

Protocol I
Considering U(t, µ, ν) = exp

−it
h̄
[H+ µ(N2 −N4) + ν(N1 −N3)]

,
here we employ breaking of integrability through an applied field µ(N4 − N2) to
subsystem B = {2, 4} and a measurement process M:
(i) |ΨI

1〉 = U(tm − tµ, 0, 0) |Ψ0〉;
(ii) |ΨI

2〉 = U(tµ, µ, 0) |Ψ
I
1〉;

(iii) |ΨI
3〉 = M |ΨI

2〉,
where tm = h̄π/(2Ω) and M = 0,M represents a projective measurement of the
number of bosons at site 3 which heralds a high-fidelity NOON state in subs. B.

In an idealized limit, with β = (−1)(N+1)/2 and the initial state |Ψ0〉 = |M,P, 0, 0〉,

|ΨI
3〉 =


1√
2

β |M,P, 0, 0〉 + eiPθ |M,0, 0, P〉
 , r = 0,
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|0, P,M, 0〉 − βeiPθ |0, 0,M, P〉
 , r =M,
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These states are recognized as products of a NOON state for subsystem B with Fock
basis states for subsystem A = {1, 3}.

Protocol II
Employing the same initial state |Ψ0〉, the following sequence of steps are implemented
to arrive at a NOON state in subsystem B and deterministic state in A:
(i) |ΨII

1〉 = U(tm − tν, 0, 0) |Ψ0〉;
(ii) |ΨII

2〉 = U(tν, 0, ν) |Ψ
II
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(iv) |ΨII
4〉 = U(tµ, µ, 0) |Ψ

II
3〉.

where ν represent the breaking of integrability through an applied field ν(N3 −N1)
to subsystem A = {1, 3} . In an idealized limit, with Υ = β exp(i(Pθ− π/2)),
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 |M,P, 0, 0〉 + Υ |M,0, 0, P〉
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Fidelity and Probability
The fidelities are computed for Pθ ranging from 0 to π, achieved by varying tµ.

FI = | 〈ΨI
3|Φ

I
3〉 | > 0.9 FII = | 〈ΨII
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where |Ψ〉 denotes the analytical states and |Φ〉 the numerically state
obtained by EBHM (2) time evolution. For physically realistic settings,
with M=4 and P=11, the NOON state fidelities for Pθ ε [0, π] are
greater than 0.9 with probabilities varying as:
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