

¹Instituto de Física da UFRGS, Brazil, ²Universidade Federal do Pampa, Brazil, ³School of Mathematics and Physics, The University of Queensland, Australia

Integrable Multi-Well Hamiltonian [1]

A bipartite model obtained through the Quantum Inverse Scattering Method

Switching Device: 2+1 modes [2, 3]

$$H_0 = U(N_1 - N_2 + N_3)^2 + J_1(a_1^{\dagger}a_2 + a_1a_2^{\dagger}) + J_3(a_2^{\dagger}a_3 - a_1a_2)^{\dagger} +$$

 $[H, N] = [H, Q] = [N, Q] = 0, \quad Q = J_1^2 N_3 + J_3^2 N_1 - J_1 J_3 (a_1^{\dagger} a_3 + a_3^{\dagger} a_1)$ The additional conserved quantity Q provides an H_{eff} which, in the resonant regime, yield analytical frequency and amplitude equations.

By applying an external field, $\varepsilon(N_3 - N_1)$, the second-order tunneling amplitude between wells 1 and 3 can be controlled while N_2 remains constant.

Integrable models in atomtronics: Atomtronic toolbox

<u>Karin Wittmann Wilsmann¹, Leandro Ymai², Daniel S. Grün¹, Arlei P. Tonel², Jon Links³, Angela Foerster¹</u>

 $+ a_2 a_3^{\dagger})$

Abstract: The precise control of quantum systems will play a major role in the realization of atomtronic devices. Here we study models of dipolar bosons confined to three and four wells. The analysis considers both integrable and non-integrable regimes within the models. Through variation of the external field, we demonstrate how the triple well system can be controlled between various "switched-on" and "switched-off" configurations and how the four well system can be controlled to encode a phase into a NOON state

NOON states: 2+2 modes [4, 5]

Integrable Extended Bose-Hubbard

$$H = \frac{U_0}{2} \sum_{i=1}^{4} N_i (N_i - 1) + \sum_{i=1}^{4} \sum_{j=1, j \neq i}^{4} \frac{U_{ij}}{2} N_i N_j - \frac{J}{2} \sum_{i=1}^{4} (a_i^{\dagger} a_{i+1} + a_{i+1}^{\dagger} a_i).$$
(2)

where a_j , a_j^{\dagger} : j = 1, 2, 3, 4. Eq.(1) could be derived from EBHM as long as it complies with the integrability condition $U_0 = U_{13} = U_{24}$, which provides four conserved quantities, $[H, N] = [H, Q_k] = [N, Q_k] = 0$, k = 1, 2, as many as number modes.

NOON Protocol

Below, we describe two protocols that enable the generation of NOON states. For Protocol I the outcomes are probabilistic while Protocol II are deterministic.

Protocol I

Considering $\mathcal{U}(t, \mu, \nu) = \exp\left(-\frac{\mathrm{i}t}{\hbar}[H + \mu(N_2 - N_4) + \nu(N_1 - N_3)]\right)$, here we employ breaking of integrability through an applied field $\mu(N_4 - N_2)$ to subsystem $B = \{2, 4\}$ and a measurement process \mathcal{M} : (i) $|\Psi_1^{\mathsf{I}}\rangle = \mathcal{U}(\mathsf{t}_{\mathsf{m}} - \mathsf{t}_{\mathsf{\mu}}, 0, 0) |\Psi_0\rangle;$

(ii)
$$|\Psi_2^{\mathsf{I}}\rangle = \mathcal{U}(\mathsf{t}_{\mu}, \mu, 0) |\Psi_1^{\mathsf{I}}\rangle;$$

(iii)
$$|\Psi_3^{\mathsf{I}}\rangle = \mathcal{M} |\Psi_2^{\mathsf{I}}\rangle$$
,

where $t_m = \hbar \pi / (2\Omega)$ and $\mathcal{M} = 0, \mathcal{M}$ represents a projective measurement of the number of bosons at site 3 which heralds a high-fidelity NOON state in subs. B.

Integrable models in atomtronics: Atomtronic toolbox

$$|\Psi_{3}^{\mathsf{I}}\rangle = \begin{cases} rac{1}{\sqrt{2}} (\beta | \mathcal{M}, \mathcal{P}, \ rac{1}{\sqrt{2}} (|0, \mathcal{P}, \mathcal{M}, \ \mathbb{N}, \ \mathbb{N}) \end{cases}$$

basis states for subsystem $A = \{1, 3\}$.

Protocol II

- (i) $|\Psi_1^{\parallel}\rangle = \mathcal{U}(\mathbf{t}_{\mathsf{m}} \mathbf{t}_{\mathsf{v}}, \mathbf{0}, \mathbf{0}) |\Psi_0\rangle;$
- (ii) $|\Psi_2^{\parallel}\rangle = \mathcal{U}(\mathbf{t}_{\nu}, \mathbf{0}, \nu) |\Psi_1^{\parallel}\rangle;$
- (iii) $|\Psi_3^{\parallel}\rangle = \mathcal{U}(\mathbf{t}_{\mathsf{m}} \mathbf{t}_{\mu}, \mathbf{0}, \mathbf{0}) |\Psi_2^{\parallel}\rangle;$
- (iv) $|\Psi_4^{\parallel}\rangle = \mathcal{U}(t_{\mu}, \mu, 0) |\Psi_3^{\parallel}\rangle.$

where ν represent the breaking of integrability through an applied field $\nu(N_3 - N_1)$ to subsystem $A = \{1, 3\}$. In an idealized limit, with $\Upsilon = \beta \exp(i(P\theta - \pi/2))$, $|\Psi_4^{\mathsf{II}}\rangle = \frac{1}{\sqrt{2}} \left(|\mathsf{M},\mathsf{P},\mathsf{0},\mathsf{0}\rangle + \Upsilon |\mathsf{M},\mathsf{0},\mathsf{0},\mathsf{P}\rangle \right)$ (4)

Fidelity and Probability

The fidelities are computed for P θ ranging from 0 to π , achieved by varying t_{μ} .

 $F_{I} = |\langle \Psi_{3}^{I} | \Phi_{3}^{I} \rangle| > 0.9$ $F_{II} = |\langle \Psi_{4}^{II} | \Phi_{4}^{II} \rangle| > 0.9$

greater than 0.9 with probabilities varying as:

References

- [1] Leandro H. Ymai, et al. J. Phys. A, 50, 2017.
- [2] Karin Wittmann W., et al. Communications Physics, 1(1), 2018.
- [3] Arlei P. Tonel, et al. SciPost Phys. Core 2(003) (2020).
- [4] Daniel S. Grun, et al. arXiv preprint arXiv:2004.11987 (2020).

In an idealized limit, with $\beta = (-1)^{(N+1)/2}$ and the initial state $|\Psi_0\rangle = |M, P, 0, 0\rangle$,

 $P, 0, 0 \rangle + e^{iP\theta} | M, 0, 0, P \rangle$, r = 0, P(3)

 $\langle 0, 0 \rangle - \beta e^{iP\theta} | 0, 0, M, P \rangle$, r = M,

These states are recognized as products of a NOON state for subsystem B with Fock

Employing the same initial state $|\Psi_0\rangle$, the following sequence of steps are implemented to arrive at a NOON state in subsystem B and deterministic state in A:

where $|\Psi\rangle$ denotes the analytical states and $|\Phi\rangle$ the numerically state obtained by EBHM (2) time evolution. For physically realistic settings, with M=4 and P=11, the NOON state fidelities for P $\theta \in [0, \pi]$ are

[5] Daniel S. Grun, Karin Wittmann W., et al. arXiv preprint arXiv:2102.02944 (2021).