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Jamming transition of randomly pinned systems

Carolina Brito,*a Giorgio Parisib and Francesco Zamponic

We consider a system of hard spheres close to jamming, where the translation invariance is broken by

pinning a randomly chosen set of particles. By using two different protocols, we generate two kinds of

packing at the jamming point, isostatic and hyperstatic packing. In the case where the packing is

isostatic, the jamming transition is not affected by random pinning: the jamming density is only slightly

reduced, a generalized isostaticity condition holds, the system is marginally rigid over the entire glass

phase, and the typical structural signatures of jamming are unchanged. Besides, random pinning does

not have an effect on the vibrational modes of the amorphous system, at least on the time and length

scale that we are able to probe. For packing that is hyperstatic at jamming, the microscopic properties

of the system are strongly affected by the random pinning; the frozen degrees of freedom introduce an

excess of constraints that drive the system far from the mechanical marginality conditions and stabilize

the low frequency modes of the system, shifting them to higher frequencies. The distance from the

isostatic point seems to be the only relevant parameter in the system in both cases. These two cases are

in contrast with the behavior of the plane waves of a crystal; the whole spectrum in this case is shifted

to higher frequencies as soon as some particles are pinned.
I Introduction

At low enough temperature, all the information on the linear
elasticity of a system is contained in its vibrational modes. In a
continuous isotropic elastic medium, the translation invariance
implies that the vibrational modes are plane waves and the
density of vibrational modes D(u) follows the Debye law D(u) �
ud�1, where d is the space dimension.1 By contrast, amorphous
materials exhibit an excess of low-frequency vibrational modes
compared to the Debye behavior,2,3 oen called the Boson peak.
There is no consensus about the origin and nature of these
modes in more realistic systems,4–7 but some progress has been
made for a class of simple amorphous materials, made either by
hard spheres or by elastic particles that only interact through a
nite-range repulsive potential. These systems present a well-
dened jamming transition at which the pressure becomes
innite (for hard spheres), or the overlaps between particles
vanish (for elastic particles). It has been shown that the distance
to this point governs many properties of the system: scaling
laws characterize the microscopic structure,8–10 elastic8,9,11 and
transport12 properties, and relaxation in shear ows.13 The
critical regime can be approached equivalently from the hard
sphere or the elastic sphere side.14 An interesting property of
these systems close to the jamming point is the presence of the
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Boson peak, which has been shown to be a consequence of the
fact that the system lies close to the limit of marginal stability,
as expressed by the isostatic condition that the number of
mechanical constraints equals the number of degrees of
freedom in the system. The somodes associated with the peak
are characterized by a length scale l* that diverges near the
critical point.9

Besides all this progress, there is still some work to be done
to understand fully the property of these modes. In particular, it
is not clear whether the so modes are related to the trans-
lational symmetry of the Hamiltonian and the associated low
frequency phonon modes,4,5 or if they could also exist in a
system where the translational invariance is explicitly broken.
In this paper, we investigate this issue by considering a system
where the translational invariance is broken by “pinning” a
randomly chosen fraction of particles f (see ref. 15 for a related
study). We use two kinds of congurations to study the glass
phase near the jamming transition, isostatic and hyperstatic
packing, that can be produced using different pinning
protocols.

We rst show that the introduction of pinned particles does
not change dramatically the physics of the system if the initial
packing is isostatic; a jamming transition is still observed and
its properties are governed by the distance to the marginally
stable isostatic limit, which is now generalized to take into
account the frozen degrees of freedom associated with the
pinned particles. Moreover, the peculiar structural properties
associated with the transition, and in particular the divergence
of the pair correlation function close to the contact, are not
affected by the pinning. Concerning the vibrational properties,
This journal is ª The Royal Society of Chemistry 2013
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Fig. 1 Summary of the procedure to generate isostatic configurations with
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it is observed that the so modes of the system are not strongly
affected by the random pinning. Next, we show that, as soon as
hyperstatic packing is used, the entire glass phase is overcon-
strained. As a consequence, the vibrational modes of low
frequency are stabilized and remain at nite frequency, which is
a length scale directly associated with the distance to the
generalized isostatic limit. We compare this behavior with that
of plane waves in a crystal and verify that the consequence of
pinning some particles is very different in this case; because
plane waves are a direct consequence of the translational
invariance of the system, we nd that the vibrational spectrum
of the crystal is modied in the presence of pinning. We
therefore conclude that, at least on the time and length scales
we can probe, the so modes of jammed packing is not directly
associated with the translational invariance of the system, but
rather with its isostaticity, as predicted in ref. 9.
pinned particles and to study its microscopic structure at different pressures. (a)
Pressure versus packing fraction for different f. Each line corresponds to an initial
condition. Inset: zoomed view of the region p � 1012. (b) Pressure versus
computational time for one particular isostatic condition, the sj of which were
reduced to generate configurations at different p. (c) Schematic phase diagram
when a fraction f of particles are pinned. Jamming and glass transitions occur at
smaller f when f is increased. Red circles indicate the location of the isostatic
configurations generated by the procedure shown in (a), and arrows indicate the
location of the configurations generated by reducing sj, as exemplified in (b).
II Numerical methods

We consider a system of N ¼ 4096 bidisperse hard disks (d ¼ 2)
enclosed in a volume V with periodic boundary conditions. All
particles have equal mass m; half of them have the diameter s1,
and the others have s2 ¼ 1.4s1. The packing fraction is
f ¼ p(s1

2 + s2
2)N/(8V). We approach the jamming transition

from lower density by using the Lubachevsky–Stillinger16 algo-
rithm, which is based on event-driven molecular dynamics:17

particles travel in a free ight until they collide elastically. They
start with tiny diameters sj

0 which are inated along the time as
sj(t) ¼ sj

0(1 + Gt), where G is the ination rate. In the following,
dimensional quantities will be plotted for given congurations,
and we will choose the corresponding s1, kBT and

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ms12=kBT

p

as units of length, energy and time respectively.
A Protocols to generate isostatic and hyperstatic packing
with frozen particles at the jamming point

To generate isostatic packing with pinned particles, we let the
system evolve until it reaches a packing fraction f(p)¼ 0.7 andwe
then chose randomly a set of Nf particles and froze their posi-
tions. At this point, their diameters sj stop increasing, while the
rest of the systemfollows itsnormaldynamics. The reasonwhywe
do not inate the pinned particles is that close-by pinned parti-
cles might overlap when inated. We varied f(p) and veried that
the precise choice of this parameter does not affect our results,
provided that the pinning is done while the system is still at
equilibrium. Along the simulation, reduced pressure p ¼ bVP/N
and f both increase, and G is varied: G ¼ 10�3 up to p ¼ 103,
G ¼ 10�4 up to p ¼ 105 and G ¼ 10�5 up to p ¼ 1012, when the
simulation stops and the system is considered as jammed at
f¼fJ

f.16Thisprocedure is exemplied inFig. 1awherep is shown
as a function of f for different values of f and various initial
conditions. One observes that fJ

f decreases on increasing f,
consistent with the results of ref. 15. Moreover, the glass transi-
tion point f f

G where the curve p(f) becomes different from the
liquid equation of state also decreases with increasing f.18

We then check if the nal congurations at pressure p¼ 1012

are indeed isostatic (see below). Although this is always the case
This journal is ª The Royal Society of Chemistry 2013
when f is small, when f$ 5% sometimes a subset of the system,
surrounded by pinned particles, becomes jammed before the
whole system is jammed; these congurations are not used in
this work.

To generate hyperstatic packing, the procedure is slightly
different. We do not x any particle until the system reaches the
jammingpoint, atpressurep¼1012.Only at this packing fraction,
denoted by fJ

f¼0 and where the system is isostatic,8,9 a random
set of Nf particles has their positions and diameters frozen.
B Protocol to generate packing at lower pressure

These fully jammed congurations at fJ
f, both isostatic and

hyperstatic, are used as initial conditions to study the system at
different pressures in the glass phase, as indicated by the
arrows in Fig. 1c. To do so, we reduce the diameters of all
particles by a fraction 3, so that f ¼ fJ

f(1 � 3)2. We assign
random velocities to the mobile particles, keep the pinned
particles xed, and launch the event-driven simulations with
G¼ 0. To compare the behavior under pinning of an amorphous
system with that of a crystal, we also considered a perfectly
hexagonal network of monodisperse particles at the maximum
packing fraction fmax

cryst z 0.9. We pinned Nf randomly chosen
particles, and we repeated the procedure above to obtain pinned
crystalline congurations at different pressures. In the amor-
phous case, for each f we averaged the data over �30 indepen-
dent isostatic congurations at fJ

f. We observe that during the
G ¼ 0 runs there is no rearrangement of particles in the system,
and the pressure p remains stable (Fig. 1b), indicating that the
metastable amorphous glass states we produce have a very long
lifetime (see ref. 16, 19 and 20).
Soft Matter, 2013, 9, 8540–8546 | 8541
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C Measure of the vibrational modes of the system

To measure the spectrum of vibrations of the hard sphere
system we dene a contact force network within an interval of
timeDt (ref. 16, 21 and 22) which we x toDt¼ 1000N collisions.
Two particles are said to be in contact if they collide with each
other during Dt; we dene hij as the average (over Dt) gap
between two particles and the contact force fij as the average
momentum they exchange per unit of time. In a metastable
state, it is possible to dene an effective potential
Veff ¼ �kBT log hij that allows computation of a dynamical
matrix M that describes the linear response of the average
displacement of the particles to an external force.19,21

The square roots of the eigenvalues ofM are a measure of the
frequency content of the vibrational response. The distributions
of frequencies give the density of states D(u). Note that the
choice Dt ¼ 1000N is non-trivial, because choosing a smaller Dt
would affect our results. Instead, choosing a larger Dt does not
seem to affect the results and we therefore believe that
Dt ¼ 1000N is large enough to obtain a proper averaging of the
contact force network.

It is important to stress that the procedure to measure the
density of states D(u) is not completely free of ambiguities
because hard spheres are not, of course, a simple harmonic
system. Alternative procedures have been used in the literature
both for hard and so spheres, see ref. 14 and 23 for a detailed
discussion. Still, the procedure we described above has been
shown to give robust and consistent results for hard spheres19–21

and therefore we stick to that one for simplicity.
III Results

Let us analyze the jammed congurations at fJ
f. The total

number of contacts isNc¼Nz/2 and z is the average connectivity
of a particle. A global mechanical stability criterion is that the
number Nc of independent contact force components has to
exceed the number of degrees of freedom for the packing to be
mechanically stable.24 For a system inwhich particles are pinned
while the system is still at equilibirum, the latter is Nd(1 � f ),
leading to the generalized isostatic condition zJ ¼ 2d(1 � f ).

In the case where particles are pinned at the jamming point,
the counting of the number of contacts and the number of
degrees of freedom goes as following: at fJ

f¼0, the packing is
isostatic and this implies that zJ ¼ 2d and the total number of
contacts in the packing isNz/2¼Nd. When particles are pinned,
the total number of degrees of freedom is Nd(1 � f ), but the
number of contacts does not change, leading to a situation
where the total number of contacts is higher than the degrees of
freedom: Nz/2 ¼ Nd > Nd(1 � f ), which denes a hyperstatic
packing.
Fig. 2 Integrated pair correlation Z(d) (ref. 16) for isostatic packing and several f,
at pressure p ¼ 1012. Here rattlers have been removed (see text). It shows a
plateau at the isostatic value (a) and a power-law growth beyond it (b).
A Structural signatures of jamming in pinned packing

To investigate if the pinned particles have an inuence on the
microscopic structure of the packing at the jamming point, we
compute the integrated pair correlation function Z(d)16 that is
dened as follows. For each pair hiji of particles in contact
(including also the pinned particles) we compute the
8542 | Soft Matter, 2013, 9, 8540–8546
normalized gap dij ¼ (2rij � si � sj)/(si + sj), where rij is the
distance between the two particles' centers. Then

ZðdÞ ¼ 2

N

X

hiji
q
�
dij\d

� ¼ 1

N

X

isj

q
�
dij\d

�
; (1)

where hiji represents the particle pairs, and q(x) is the Heaviside
step function. In other words, Z(d) represents the average
number of particles that lie at a normalized distance smaller
than d with respect to a reference particle.

Fig. 2 shows Z(d) for isostatic packing. Note that here
“rattlers” (i.e. particles that do not contribute to the jammed
structure and rattle freely inside their cage) have been removed
following the procedure of ref. 16; at the highest pressure
p ¼ 1012, we identify the particle pairs as “contacts” that have
gaps d # 10�8, and we then remove recursively from the
calculation of Z(d) those particles that have strictly less than
three contacts. Note also that because here particles are pinned
at very low pressures, the gap between pairs of pinned particles
is typically very large so these contacts do not contribute to Z(d)
at small d. We nd that Z(d) exhibits the same behavior as for
unpinned jammed packing: it rst grows on a scale �1/p ¼
10�12 to a plateau that gives the average number of contacts.16

The continuous line in the inset of the gure shows the theo-
retical prediction for the value of zJ, indicating that it is
consistent with the generalized isostatic condition. Then, Z(d)
grows as da with a� 0.6, which is also a signature of jamming.16

We found that the exponent a is not affected by
random pinning.

Fig. 3 shows Z(d) for hyperstatic packing. Note that even at
small pressures some particles are found at d � 10�10; these are
obviously the pair of particles that have been pinned at high
pressure and are therefore kept their very small distances. Here,
rattlers have not been removed because our focus is not on the
isostatic condition which we know can be violated. We focus
instead on the growth of Z(d) above the plateau, at d [ 1/p.
In this regime we found that Z(d) is independent of pinning.
This is interesting because in the absence of pinning, in this
This journal is ª The Royal Society of Chemistry 2013
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Fig. 3 Integrated pair correlation Z(d) (ref. 16) for hyperstatic packing and
several f. The power-law growth beyond the plateau is more difficult to see (b).
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regime Z(d) grows roughly as da, as previously discussed.
Although this power-law regime is barely visible in Fig. 3(b),
because of the uncertainty in the determination of the plateau
in the presence of rattlers, the fact that Z(d) is independent of f
is enough to show that the power-law growth is not affected by
pinning, even for hyperstatic packing. This is interesting
because the power-law growth of Z(d) has been connected to
isostaticity,9 while our data suggest that this is not the case
(although it is not clear that the argument in ref. 9 can be
applied in the presence of random pinning). A better under-
standing of the relationship between the power-law growth of
Z(d) and isostaticity and the marginality would be useful to
clarify the origin of this discrepancy.
Fig. 4 dz ¼ z � zJ versus p for different f, and both isostatic and hyperstatic
packing. The dashed line shows the marginal stability in eqn (2), dz ¼ Ap�1/2.
Open symbols refer to hyperstatic initial configurations, and closed symbols
correspond to isostatic initial configurations. Inset: dzsat versus f, where dzsat is the
value of dz measured at p ¼ 106, which is the maximum value of pressure
simulated. The dashed line corresponds to dz ¼ 2df, the value of the coordination
of hyperstatic packing at p ¼ 1012, by construction.
B Mechanical stability condition and the microscopic
structure

Independently of the protocol to generate jammed packing, it
has been shown that, for f ¼ 0, many mechanical properties of
the system are governed by the distance to the jamming zJ,
dz ¼ z � zJ.8,9,11,19,25,26

As it was explained above, the global mechanical stability
criterion requires that the total number of independent contact
force components should be bigger than the number of degrees
of freedom for the packing to be mechanically stable.24 This
translates in a condition that the coordination number of the
packing z has to be z $ 2d for the packing to be mechanically
stable. At the jamming point, it can be shown theoretically that
z ¼ 2d and it was measured numerically that this is the case.8

This means that the packing at the jamming point is marginally
stable; if any contact is broken, then the system is not rigid
anymore.9

If the system is driven far from jamming – even above or
below fJ – it is under a nite compression and the criterion of
rigidity is more demanding. It was derived for so packing that
whenever a pressure p appears in the system, the coordination
number z has to increase in order to maintain rigidity in the
packing.26 This criterion was later extended for hard sphere
This journal is ª The Royal Society of Chemistry 2013
systems at nite pressure.19 Packing of hard spheres at nite
pressure has to obey the following relationship in order to be
rigid:

dz$A
ffiffiffiffiffiffiffiffi
1=p

p
: (2)

This relationship has been tested numerically for systems
with f ¼ 0 and it was observed that hard spheres obey it
marginally, i.e. with the equality, in the entire glass phase,21

exactly the way the jammed system does at p / N.
We now test this relationship for isostatic and hyperstatic

packing generated using the protocols explained in Section II.
In Fig. 4 we plot a diagram of mechanical stability, where dz is
plotted versus p for several f and the 2 kinds of packing. For
packing that was isostatic at the jamming point, we observe
that, as for f ¼ 0, the curves for f > 0 are compatible with the
equality in eqn (2) at all pressures, indicating that the system
remains marginally stable in the presence of random pinning.
In the case of the packing that was hyperstatic at the jamming
point, the system remains much more coordinated that is
required to be rigid even when the pressure is nite. This
packing only approaches the marginal stability line when the
pressure becomes relatively small. We note that, by construc-
tion of our packing, at p ¼ 1012, the coordination has to be
z ¼ 2df (represented by the horizonal lines in the gure). We
also observe that the hexagonal crystals we considered have
dz z 2 for any value of pressure, hence they are much more
coordinated than any of the amorphous packing considered
here.

This diagram of rigidity has important implications in the
microscopic dynamics of the system, which are discussed in the
next section.
Soft Matter, 2013, 9, 8540–8546 | 8543
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Fig. 6 D(u) of a glass at different f and different pressures p for (a) isostatic initial
configurations, (b) hyperstatic initial configurations at relatively small pressures
and (c) hyperstatic initial configurations at high pressures.
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C Microscopic dynamics

There is a direct relationship between the mechanical stability
of packing and its vibrational modes; a rigid system cannot have
unstable modes.1 Then, if a system is just marginally rigid, this
implies that it will have modes of very low frequency, which are
on the verge of becoming unstable. These so modes19,25 are
revealed by measures of D(u) shown in Fig. 5 and 6. A
comparison of a typical D(u) in the crystal phase with two
amorphous states at different pressures for f ¼ 0 is reported in
Fig. 5a. The crystal displays the Debye behavior at small
frequencies (D(u) � u) while the amorphous congurations
present a strong excess of low-frequency modes. For the crystal,
as soon as a fraction f of particles is pinned, the whole spectrum
is shied to higher frequencies, Fig. 5b, indicating that plane-
waves with the smallest frequencies disappear, like the soest
standing wave in a string that is pinned at half of its length.

For the amorphous system with isostatic initial conditions,
one observes that the pinning does not affect the spectrum
strongly, as can be seen in Fig. 6a for different values of f and
different pressures. Note that for all pressures the spectrum is
roughly the same for all values of f we studied. However, in the
amorphous case with hyperstatic initial conditions, the result is
different depending on the pressure. Fig. 6b shows the spec-
trum of vibrations for relatively small pressures, p z 102 and
pz 104; in this range of pressure, pinning has a small effect on
the vibrations. The picture is different in the case of high
pressure, shown in Fig. 6c. In this case the curves at the same
value of f and different pressures are the same, and pinning has
a strong effect and suppresses the low frequency part of the
spectrum. This means that, above a certain pressure, the modes
of very low frequency are suppressed.

The so modes of the glass have a characteristic frequency
u*, and if the marginal stability in eqn (2) is assumed
throughout the glass phase, one expects that u*/p � p�1/2.19 We
Fig. 5 (a) Comparison of the density of states D(u) of a crystal and glass at two
different p and f¼ 0. (b)D(u) of a crystal with 5 different f, showing that the whole
spectrum is shifted to higher frequencies when f increases. All frequencies are
rescaled by p because the characteristic frequency is inversely proportional to p.19

8544 | Soft Matter, 2013, 9, 8540–8546
dene u* as the value such that D(u) is equal to half of its
maximum (as marked by a horizontal dashed line in Fig. 6b to
exemplify in the case for the smallest pressure), and we plot this
u* in Fig. 7. In the case of the amorphous system with isostatic
initial conditions, for all values of f, we observe a nice agree-
ment between the data and the theoretical curve, evidencing the
marginal character of the glass phase and indicating that the
presence of some frozen particles in the system does not
prevent the development of low-frequency modes. For the
amorphous case with hyperstatic initial conditions one
observes that u*/p follows the theoretical line until p z 104,
when the characteristic frequency saturates. In the inset of
Fig. 7 Plot of u*/p versus p, for several f and both isostatic and hyperstatic
packing. The black dashed line corresponds to u*/p � p�1/2. Open symbols refer
to hyperstatic initial configurations and closed symbols refer to isostatic initial
configurations. Inset: (u*/p)sat versus f. The black dashed line corresponds to
(u*/p)sat � 2df.

This journal is ª The Royal Society of Chemistry 2013
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Fig. 7, we plot the frequency at which the curve saturates,
named (u*/p)sat as a function of f. The dashed line is a t of the
theoretical prediction u*/p � dz � 2df,9,25 which is in a very nice
agreement with our simulations.
IV Discussion and conclusion

This work has three main conclusions: (i) pinned particles do
not change the jamming transition provided that congura-
tions are isostatic, in the generalized sense dened above, (ii)
the low frequency modes in a crystal behave differently from
the modes of the amorphous solid under pinning, and (iii) the
only relevant parameter in the system is the distance to the
isostatic point. We now discuss each of these conclusions in
more detail.

The presence of pinned particles is taken into account by
considering that some degrees of freedom are frozen, leading to
a generalization to the concept of isostaticity, zJ ¼ 2d(1 � f ).
Using the protocol in which we pin particles while the system is
still at equilibrium, we generated congurations that numeri-
cally satisfy with extremely good accuracy the condition of iso-
staticity at the jamming point, p ¼ 1012 (Fig. 2). When these
isostatic congurations are used as initial conditions to study
the glass phase at smaller pressure, they generate congura-
tions that are marginally stable, with dz ¼ z � zJ ¼ A

ffiffiffiffiffiffiffiffi
1=p

p
,

which is also very well satised by numerical data (Fig. 4). This
marginal stability condition implies that the system has an
excess of low frequency modes, with so modes characterized
by a characteristic frequency u*/p � dz,9,25 which are not
affected by pinning (Fig. 7). Moreover, near contacts are char-
acterized by a power-law growth of Z(d) that is not affected by
the pinning of particles as well. All this together allows us to
conclude that the jamming transition remains qualitatively
similar in the presence of randomly pinned particles provided
that the notion of generalized isostaticity holds.

Given that pinning of some particles breaks the translational
symmetry, the fact that pinning does not affect the properties of
jamming implies that the translational symmetry does not play
a role in the properties of nearly jammed systems. Note that this
represents a deep difference between crystals and amorphous
system in what concerns the nature of their vibrational modes;
in crystals, plane waves are a consequence of the (spontaneously
broken) translational symmetry and then the pinning of parti-
cles does change their modes, shiing them to higher
frequencies (Fig. 5).

In the case where hyperstatic congurations are used to
study the glass phase, simulations show that even when the
system is away from the jamming point, it remains being
overconstrained (Fig. 4). Then, since the system has more
coordination than it is necessary to maintain rigidity, the so
modes of low frequency are stabilized: the modes with zero
frequency are shied to higher frequency (Fig. 7). The excess of
coordination with respect to the isostatic value is dz ¼ 2df and
this implies that u*/p � dz � 2df, which is in agreement with
our simulations (inset of Fig. 7).

It has been shown that the characteristic frequency of the
modes is related to a length scale that is inversely proportional
This journal is ª The Royal Society of Chemistry 2013
to the distance to the isostatic point l*� p/u*� 1/dz.9,25 Because
our data are in agreement with all the predictions derived from
the existence of this length scale, this suggests that l* is the only
important length scale in the problem; this length seems to
dominate the physics of vibrations in the amorphous system.
Note that the pinning of some particles introduces a new length
that is the average distance between randomly distributed xed
particles, lf � f�1/d. Then, one could expect that for a certain
value of f > 0 and at big values of p, l* is so big that l* > lf and
then the soest modes of the system would be stabilized
because of that. However, this is not observed when considering
isostatic congurations, the presence of pinning does not
change the frequency of the natural vibrations. Then it seems
that lf is really not important for the vibrations. There are two
possible explanations for this fact. First, it might be a possibility
that the somodes change in nature in the presence of pinning
in order to adapt to the pinned geometry while maintaining
their low energy. This is possible due to their amorphous
nature. The other possibility is that our simulations are always
in a limit of “weak pinning”18 and l* < lf always. Given however
that we explored quite large pinning fractions and very high
pressures, this second possibility seems less likely, and we
therefore conclude that pinning particles and the associated
breaking of translational invariance do not have a strong impact
on the physics of the jamming transition if the congurations
are isostatic.
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