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The study of the jamming transition of granular and colloidal systems, has lead to a proliferation of

theoretical and numerical results formulated in the language of the eigenspectrum of the dynamical

matrix for these disordered systems. Only recently however, have these modes been accessed

experimentally in colloidal and granular media, by computing the eigenmodes of the covariance matrix

of the particle positions. At the same time, new conceptual and methodological questions regarding the

interpretation of these results have appeared. In the present paper, we first give an overview of the

theoretical framework which is appropriate to interpret the eigenmodes and eigenvalues of the

correlation matrix in terms of the vibrational properties of these systems. We then illustrate several

aspects of the statistical and data analysis techniques necessary to extract reliable results from

experimental data. Concentrating on the cases of hard sphere simulations, colloidal and granular

experiments, we discuss how to test, in turn, for the existence of a metastable state and the statistical

independence of the sampling, the effect of experimental resolution, and the harmonic hypothesis

underlying the approach; highlighting both the promises and limitations of this approach.
I. Introduction

Amorphous systems such as structural glasses, colloids, emul-

sions or granular matter still lack a satisfying description. This is

particularly apparent when one considers the low temperature

properties of glasses1,2 or the sometime intriguing rheological

properties of athermal amorphous systems, such as foams3,4 or

granular matter.5,6 Of particular importance is understanding

what guarantees the mechanical stability of such systems.7,8

Information about the rigidity of a solid toward collective

particle motion is contained in the density of vibrational modes:

a system is stable—at least to linear order—if there are no

unstable modes. In a continuous isotropic elastic medium,

translation invariance implies that the vibrational modes are

plane waves, and that the density of vibrational modes follows

the Debye law D(u) � ud � 1,9 where u is the mode frequency and

d is the spatial dimension. By contrast, disordered solids exhibit

a set of common low-frequency vibrational properties that are

completely unlike those of crystals, among which an excess of

low vibrational modes, the so-called ‘‘boson peak’’.10–13 Several

empirical facts suggest that the presence of these excess modes is

related to many of the original properties of amorphous

solids.2,14,15

The jamming transition of frictionless granular materials lies

at the threshold of mechanical stability, also known as the
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isostatic point. As a result of this equivalence, an excess of low-

frequency vibrational modes arises at low frequencies.16 The

similarity with the case of thermal amorphous systems suggests

that the zero-temperature jamming transition may provide

a framework for understanding at least some of the properties of

amorphous solids. This remark has triggered an extensive theo-

retical and experimental effort towards the study of the vibra-

tional properties of various amorphous systems close to

jamming.

The vibrational modes of a system of interacting particles are

obtained by diagonalizing the Hessian Kij ¼ v2V

vrivrj
, defined as the

matrix of the second derivatives of the pair interaction potential

V({ri}) with respect to the particles’ displacements around

a given metastable state {ri
0}. Above the jamming transition, it

has been shown that the onset frequency u* of the anomalous

modes scales linearly with the distance from isostaticity, and that

it is related to the existence of a diverging length scale in the

response to external perturbation.17,18 Beyond the frictionless,

non-dissipative case, the density of states has also been studied

for non-spherical19–21 and for frictional22,23 soft particles. Below

jamming, for purely repulsive particles whether they are hard or

soft, one introduces an effective potential derived from the

transfer of momentum during collisions, and then applies the

same procedure.24

At thermal equilibrium, the density of states of molecular and

colloidal solids is traditionally accessed through light scattering

techniques2,25,26 or by computing the Fourier transform of the

velocity autocorrelation function.27 This last method, which is

straightforward to implement, has also been used in thermal soft
This journal is ª The Royal Society of Chemistry 2012
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sphere simulations28 and in some granular experiments.29

However, such methods do not give access to the spatial struc-

ture of the vibrational modes and in principle only apply to

thermally equilibrated systems.

For a-thermal systems, such as granular media, foams and

suspensions of large colloidal particles, recent advances in

experimental techniques now allow tracking the real space

dynamics of the individual particles.30 In principle, one should

thus be able to follow the same procedure as in simulations,

namely average the particle positions in order to obtain

a reference state, {ri
0}, and then diagonalize the Hessian

around this state. However, the interaction potential V({ri}) is

usually unknown: for granular systems or foams, the elastic

part of the interaction is well understood but the pairwise

dissipation, either static friction or viscous damping, does not

derive from a potential; in colloidal suspensions, the presence

of hydrodynamic interactions prevents the derivation of

a simple two-body interaction rule. Also, experimental resolu-

tion may as well be a limiting factor in performing such an

analysis.

An alternative approach is to record the dynamics and

perform a Principal Component Analysis (PCA) of the covari-

ance matrix of the positions around the reference state of

interest. This technique extracts the dominant components of the

fluctuations, dominant in the sense that they concentrate most of

the correlated motion. PCA has been applied successfully in

a range of fields, from the pathways of protein folding31,32 to

financial mathematics.33 Whatever the underlying dynamics is,

PCA acts as a filter which separates the correlated significant part

of the fluctuations from the uncorrelated noise.

For systems at thermal equilibrium and as long as the

dynamics around the metastable states remains harmonic, the

eigenmodes of the covariance matrix of the positions are iden-

tical to those of the Hessian, and the associated eigenvalues are

closely related. Following this line, several teams have recently

attempted to extract the density of states from various experi-

mental systems such as hard-sphere colloids35–38 and vibrated

granular materials.39 While contributing to this effort,24,35,39 the

authors of the present paper have realized that both the inter-

pretation of the PCA analysis and its practical implementation

require some attention. As already noted in the context of

granular simulations,34 the conditions of the underlying equiva-

lence at the root of the approach are often not fulfilled by the

system of interest.

The aim of this article is to provide the theoretical background

and a practical guideline for extracting vibrational modes from

the spatial fluctuations of the dynamics. We first discuss both the

promise and the limitations of the approach, as well as the set of

hypotheses it depends on and the interpretation one can give to

the experimental results. We pay particular attention to the

influence of the real dynamics on the interpretation of the modes,

and also point out the fundamental differences between equi-

librium and non-equilibrium systems. We discuss the differences

between the idealized spring network to which the eigen-

frequencies refer to and the actual physical system by developing

the concept of shadow system, first introduced in ref. 35. We

illustrate the discussion with simulations of jammed soft spheres

obeying over-damped Langevin dynamics. On the way, we will

see that:
This journal is ª The Royal Society of Chemistry 2012
� (i) the eigenspectrum of the covariance matrix of the position

provides access to the density of state only in the long time limit

and if equipartition of energy holds;

� (ii) the low frequency modes of the covariance matrix of the

position matches those of the Hessian in almost all circum-

stances, except very close to jamming where non linearities

dominate the dynamics;

� (iii) in all cases, the covariance matrix of the positions is in

itself a rich source of information regarding the local rigidity

properties of the system.

We then provide some practical guidelines, which we hope will

spare some time to those who would like to follow the above

approach. We again illustrate our purpose with several systems

of interest. First, we use hard sphere simulations to address

statistical issues, while experiments with granular systems close

to jamming illustrate the possible anharmonicity of the

dynamics. Finally, two experiments with colloidal suspen-

sions13,35 illustrate convergence and resolution issues, in partic-

ular the problems that arise from an insufficient number of

samplings.35

At this point, let us state that the present paper is written in

a pedagogical spirit. We aim to propose a reasonably complete

and coherent treatment of the conceptual and practical issues

surrounding the use of PCA in analyzing vibrational properties.

In particular we do not dwell on the appropriateness of the

vibrational properties to the real nonlinear dynamics of the

systems presented here.
II. Theoretical background

In this section, we present rigorous derivations of the link

between the covariance matrix of the positions and the Hessian

matrix. Let’s consider a system of N particles following trajec-

tories |r(t)i and let’s assume one can define a statistical reference

state |r0i ¼ h|r(t)ii during a time interval s, where h$i denotes the
average over time. One then introduces the displacement vector

|dr(t)i ¼ |r(t)i � |r0i, the Hessian matrix Kij ¼ v2V

vrivrj
, defined as

the matrix of the second derivatives of the pair interaction

potential V(|ri) with respect to the particles’ displacements

around the reference state |r0i, and the covariance matrix of these

displacements:

Cp ¼ h|dr(t)i hdr(t)|i. (1)

Although the displacement vector |dr(t)i depends on t, we will

hereafter omit this dependence to simplify the notation. Cp is the

empirical correlation matrix (i.e. on a given realization of the

trajectories), that one must not confuse with the true correlation

matrix of the underlying statistical process. While in this first part

we will assume thatNs, the number of independent samples taken

during s, is much larger thanN ensuring the equivalence between

time and ensemble averages and thereby the equality between the

empirical and the true correlations, we shall see later that this is

usually not the case in practical situations. Note that ensemble

average here refers to the statistical average over the thermal

fluctuations around a given glassy state. We will then have to

refer to the Mar�cenko–Pastur theorem40 and its generalizations
Soft Matter, 2012, 8, 6092–6109 | 6093
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to discuss the convergence properties of the spectrum ofCp to the

one of the true correlation matrix.

Cp is a real symmetric matrix that can always be diagonalized.

We will see now how to relate its modes and eigenvalues to those

of the Hessian, depending on the underlying microscopic

dynamics. We first discuss two important classes of equilibrium

dynamics, namely inertial Newtonian and fully over-damped

Langevin dynamics. The generalization to inertial and partially

damped dynamics in the presence of colored noise will allow us

to discuss the case of athermal and mechanically excited systems.

A. Equilibrium systems

For systems in thermal equilibrium, statistical physics tells us

that for equal-time correlation properties, one can forget the

dynamics and replace it by Gibbs statistics. One defines the

partition function Z f
Ð
exp(�bV)d|dri and in the harmonic

approximation V ¼ hdr|K|dri/2, so that it is straightforward to

compute the correlation functions from the partition function. In

particular, the correlation of the displacements reads

Cp ¼ kBTK
�1. (2)

Hence for equilibrium dynamics, the eigenvectors of Cp are

simultaneous eigenvectors of K, while their eigenvalues are

simply inversely proportional. We will now illustrate how one

can recover the above relationship in the cases of Newtonian

dynamics and over-damped Langevin dynamics. The goal of this

calculation is twofold. First, it will highlight the underlying

hypothesis satisfied by equilibrium dynamics. Second, it will

provide a simple sketch of the more intricate calculation which

we perform for the case of non equilibrium mechanically excited

systems.

1. Newtonian dynamics. In the harmonic approximation, that

is linearizing the dynamics around the reference state |r0i, one has
for non-dissipative dynamics

jdr€i þ K

m
jdri ¼ 0: (3)

This is the first and crucial approximation underlying the whole

approach. Since the reference state is supposed to be mechan-

ically stable, the eigenvalues kq of K are positive. Now introduce

D ¼ K/m, also called the dynamical matrix, where for simplicity

we have supposed that all particles have a same mass m. The

eigenmodes ofD, also called the vibrational modes of the system,

are then defined by D|lqi ¼ u2
q|lqi, where uq ¼

ffiffiffiffiffiffiffiffiffiffiffi
kq=m

p
are the

vibrational frequencies.

The solution of eqn (3) is given by:

jdri ¼ e�i
ffiffiffi
D

p
tjdrð0Þi; (4)

where |dr(0)i is the displacement field at time zero. Placing this

solution in eqn (1) and writing |dr(0)i in the eigenbasis of

D, {|lqi}, one easily shows (see Appendix VII A for derivation)

that in the long time limit

Cp|lqi ¼ a2
q|lqi. (5)

Here aq ¼ hlq|dr(0)i is the amplitude of the projection of the

initial condition on mode |lqi.
6094 | Soft Matter, 2012, 8, 6092–6109
The third and final key ingredient is: at equilibrium, the initial

condition is thermalized and the energy is uniformely distributed

among the modes. Each mode of frequency uq and amplitude aq
carries a kinetic energy ma2

qu
2
q/2 ¼ kBT/2. Hence the eigenvalues

lq of Cp and the vibrational frequencies uq of the dynamical

matrix are related through

lq ¼ a2
q ¼

kBT

mu2
q

; uq ¼
ffiffiffiffiffiffiffiffiffi
kBT

mlq

s
: (6)

In summary, for Newtonian dynamics at equilibrium, the

diagonalization of Cp does provide the vibrational modes of the

system, the frequencies of which are proportional to the square

root of the inverse of the eigenvalues of Cp. The largest eigen-

values of Cp, that is the most coherent motion, correspond to the

softest modes of the system.

2. Overdamped Langevin dynamics. Again, in the harmonic

approximation, one obtains the following Langevin equation for

over-damped dynamics:

��d _rðtÞ� ¼ �K

m
jdri þ 1

m
jhðtÞi: (7)

Here m is the viscous damping coefficient and |h(t)i is a white

noise of variance hh(t0)|h(t0 0)i ¼ Gd(t0 � t0 0), with G¼ 2mkBT since

we consider equilibrium dynamics, for which the fluctuation–

dissipation relation holds.

To discuss this case, we introduce the operator L ¼ K/m whose

eigenvalue equation is L |lqi ¼ kq/m|lqi. The eigenvalues have the
dimension of inverse time, which we interpret as the relaxation

time sq ¼ m/kq ¼ m/(mu2
q) of the system along the eigenmode |lqi.

The solution of eqn (7) can be written as

jdri ¼ e�L tjdrð0Þi þ 1

m

ðt
0

e�L ðt�t0Þjhðt0Þidt0 (8)

Following the same path as for the Newtonian dynamics, we

show in Appendix VII B that Cp is diagonal in the eigenbasis

of L :

Cp

��lq� ¼
��

a2
q �

Gsq
2m2

�
e�2t=sq þ Gsq

2m2

���lq�; (9)

where aq ¼ hlq|dr(0)i is the amplitude of the initial condition

projected on the mode |lqi. To derive the above relation, we

assume that the initial conditions as well as the noise components

on the modes are both uncorrelated. Note that under such

assumptions, Cp is diagonal in the basis of L , even for finite time.

However it is only in the long time limit t [ sq for the largest sq
that one recovers the simpler expression

lq ¼ Gsq
2m2

¼ kBT

mu2
q

; (10)

where we have used the fluctuation–dissipation theorem

G ¼ 2mkBT.

We conclude that for overdamped Langevin dynamics, the

diagonalization of Cp again allows us to compute the vibrational

modes of the system. The eigenvalues lq are related to the

relaxation time sq of the dynamics in each mode, which are

themselves related to the oscillating frequencies uq of the

undamped system.
This journal is ª The Royal Society of Chemistry 2012
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B. Athermal systems

For many systems of interest, such as grains, foams or suspen-

sions of large particles, the thermal fluctuations are orders of

magnitude too weak to drive the dynamics. Such systems are thus

generically out of equilibrium; the interactions lead to dissipation

and some external forcing must be provided to drive the

dynamics. The central thermal equilibrium relation eqn (2) is

based on assuming both ergodicity of the fluctuations around the

reference state during the observation period, and an underlying

thermal canonical ensemble. Both assumptions are a priori

violated in a non-equilibrium system. Also, we have seen above

that several hypotheses are necessary to derive a relation between

the eigenvalues of Cp and those of the Hessian. Most of these

hypotheses are related to the correlation properties of the noise

and these could, in principle, be extended to non equilibrium

situations. However, one key assumption is equipartition of the

energy on the modes and this property is very specific to equi-

librium. It is well known that for out of equilibrium situations

driven by a macroscopic forcing, the energy is in general not

equidistributed. On the contrary, the generic situation is that

non-linearities drive an energy cascade from the largest scale to

the dissipative scale. For most out of equilibrium systems, the

steady-state spectrum of the energy fluctuations is not even

known theoretically.

Here we conduct the same kind of analysis as above for

a homogeneously driven dissipative system. Vibrated grain

experiments are typical realizations of this situation. To gener-

alize from the two equilibrium cases of Newtonian dynamics and

Langevin dynamics, we now consider a non-equilibrium system

with both inertia and damping and a colored noise spectrum. We

choose to stick to a Langevin type description of the dynamics,

where the damping is linear and single particle, as appropriate for

particles in a newtonian fluid bath, but not necessarily for a large

scale mechanical excitation. The generic equations of motion for

the linearized dynamics around a reference state |r0i are then:
m
��dr€ðtÞ�þ m

��d _rðtÞ� ¼ �K
��drðtÞ�þ ��hðtÞ� (11)

where m is the viscous damping coefficient and |h(t)i is a colored

noise defined in the basis of the modes as��hðtÞ� ¼ P
q

hqðtÞ
��lq�

with
	
hqðtÞhkðt0Þ

� ¼ Gqdqkdðt� t0Þ:
(12)

We assume that the noise correlations are fully described by

their first and second moments, i.e. a normal distribution. Here

Gq is the amount of energy which flows into the system through

non-equilibrium processes along this mode. It should be

emphasized that in general this function is unknown and difficult

to determine.

Solving the dynamics projected on the modes of K, using the

same notation as for the Langevin case, K|lqi ¼ kq|lqi (see

Appendix VII C), we find that Cp is diagonal in the eigenbasis of

K. At finite time one obtains complicated eigenvalues where the

damping and the oscillatory component of the dynamics inter-

play and one must distinguish the weak ((m/m)2 < 4kq/m) versus

the strong ((m/m)2 > 4kq/m)) damping limits (eqn (40) and (41) of

the Appendix). We have also assumed that noise and initial

conditions do not cross-correlate, and that in ensemble-average,
This journal is ª The Royal Society of Chemistry 2012
the initial conditions of different modes are independent of each

other. These conditions are in principle not so easy to satisfy if

the noise is produced by a regular external excitation with a well-

defined coupling to the modes. Fortunately, in the long time limit

the system loses memory of its initial conditions and one recovers

an expression similar to that of the equilibrium result

Cp

��lq� ¼ Gq

2mkq

��lq�: (13)

However, one does not get rid of the violation of equipartition.

The eigenvalues of Cp are the ratio of two amplitudes: one is the

amount of energy the external forcing has put on the mode, the

other is proportional to the mode stiffness. Hence the eigenvalues

of Cp do not give access to the density of states of the system.
III. Interpretation

We have seen in the above section that for systems in thermal

equilibrium and in linear response, one can in principle safely use

the covariance matrix Cp of the positions around an equilibrium

state in order to obtain the stiffness matrix K, or equivalently the

dynamical matrixD, and the eigenfrequencies of the system using

the relations:

K ¼ kBT Cp
�1 (14)

u2
q ¼

kBT

mlq
: (15)

However, real systems can be vastly more complicated than

the idealized Newtonian or Langevin equilibrium systems

described above. Even a model system of jammed harmonic

frictionless soft spheres obeying either Newtonian dynamics or

treated with a conjugate gradient algorithm exhibits strong

nonlinearities when approaching the jamming transition.41,42

The description of purely repulsive soft or hard spheres below

jamming requires the introduction of an effective potential as

defined by the transfer of momentum among the particles.24 In

colloidal systems, electrostatic charges and the effect of solvent

can significantly alter the pair interaction potential including

the development of long range interactions. Finally, we have

seen that for out of equilibrium systems the possible violation

of the equipartition relation prevents us from using relations

(14) and (15).

It is thus of primary importance to clarify the physical inter-

pretation one can give to the eigenmodes and eigenvalues of Cp.

As we shall see below, there are two strategies. One may intro-

duces a ‘‘shadow system’’, which is by definition the thermally

equilibrated system of which kBTCp
�1 is the rigidity matrix. As

long as the hypothesis underlying relations (14) and (15) remain

reasonable for the system of interest, this shadow system should

in principle have the same eigenspectrum as the real one.

If these hypotheses are not valid, in particular if the harmonic

approximation or the equipartition are strongly violated, one

should alternatively stick to Principal Component Analysis

without expecting to relate the eigenvalues of Cp to the vibra-

tional properties. Note that the comparison with thermal systems

of reference can still be done, but by computing the spectrum of

Cp from the density of states of the thermal system instead of

trying to compute the density of states of the athermal system
Soft Matter, 2012, 8, 6092–6109 | 6095
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from Cp. It can also be of interest, as we will illustrate below, to

define, on the basis of the experimental data, a system of refer-

ence, the correlations of which have been suppressed.
Fig. 1 Top left: shadow system for a brownian system composed of soft

harmonic spheres slightly above jamming at f¼ 0.86 and kBT¼ 10�8. The

contacts are plotted with widths proportional to their effective stiffness

keff, red with positive keff and blue with negative keff. The representation

has been cut off at the nearest neighbor level. Top right: cross-correlation

coefficientbetween themodesof the dynamicalmatrix and themodesofCp

for the same system.Bottom left: dependence of the effective stiffnesseskeff
on the interparticle gap for different temperatures kBT and f ¼ 0.86;

compared to the step function for the harmonic potential set in the

simulation. Bottom right: density of states D(u) computed from the

eigenspectrum of Cp for the same range of temperatures, compared to the

one derived from the Hessian of the soft sphere potential.
A. The ‘‘shadow system’’: vibrational modes and density of

states

Let us define the shadow system explicitly. Assume an experi-

mental system of colloidal particles fluctuating around a meta-

stable configuration |r0i. We first compute the effective spring

constants keff
ij between particles from the empirical inverse stiff-

ness matrix Keff ¼ kBTCp
�1. The shadow system is then defined as

the Hamiltonian system of harmonic springs with stiffnesses keff
ij ,

strung between particles of mass m occupying the metastable

configuration |r0i. Note that there is a distinction between the

shadow system and the idealized model system the scientist has in

mind when discussing observations of the experimental system.

In the present case, despite possible complicated electrostatic and

hydrodynamic interactions, the colloidal system is considered

a good experimental realization of a model system: over-damped

soft spheres in a thermal bath. Whereas here the model system

obeys over-damped dynamics, the abstract shadow system obeys

the Hamiltonian dynamics of perfectly harmonic springs.

For thermal systems at equilibrium, the spectrum of Cp can be

interpreted as the vibrational modes of the shadow system and

both the shadow system and the model system share the same

density of states. However, one must remember that the vibra-

tional properties of the model system are still different from those

of the shadow system. First, even in the linear regime, it is well

known that resonance frequencies of a system of springs are

shifted by damping and eventually completely eliminated in the

over-damped limit. Second, the model system may well escape

the linear regime. This is what happens for frictionless disks close

to jamming, because of the vanishing range of linear response, as

was shown in ref. 34,42. In the following we illustrate this last

remark with two computational ‘‘experimental systems’’. The

first system consists of the poly-disperse packing of thermal

frictionless soft spheres interacting through a harmonic poten-

tial, and simulated with over-damped Langevin dynamics43 close

to the jamming transition. The second one consists of thermal

hard sphere packing simulated with event-driven Newtonian

molecular dynamics just below the jamming transition. For this

system, initial states are obtained by shrinking simulated packing

at jamming by a factor d ˛ [10�6–10�2] which controls the

distance from jamming.24

Fig. 1 (top left) displays the effective stiffnesses obtained for

the soft sphere simulations slightly above jamming, at a very low

temperature. Temperature here is measured as kBT in units of the

interparticle harmonic potential. We find effective stiffnesses

consistent with the original connectivity and the original stiff-

ness, which is a constant, here set to 1 for the harmonic potential.

The only exceptions are occasional weak interactions with cage

neighbors which are not contacts. We have cut off the visual

representation in Fig. 1 (top left) at the nearest neighbor level for

clarity, but any longer range interactions are at the noise level. In

Fig. 1 (top right), we show the correlations between the modes of

the dynamical matrix and the modes of Cp for the same system.

The nearly diagonal correlations show that, especially for the low

energy modes, the correlation between the hessian and Cp is
6096 | Soft Matter, 2012, 8, 6092–6109
nearly perfect. Please also see Fig. 9 for a similar analysis of the

hard sphere case. Fig. 1 bottom right displays the stiffness as

a function of overlap and was obtained by binning the individual

keff
ij by interparticle gap hij and then performing an average. At

low temperatures, the stiffness as a function of overlap remains

close to the T ¼ 0 step function: the shadow system is reasonably

close to the ‘‘experimental’’ one and the density of states D(u)

computed from the Hessian matrix and the one computed from

the spectrum of Cp closely match (see Fig. 1, bottom right).

When the temperature is increased, still remaining deeply within

the glassy regime, we find that the stiffness as a function of the

overlap broadens away from the T ¼ 0 step function, see Fig. 1

(bottom left). Equally, we find that the density of states obtained

from Cp begins to differ substantially from the Hessian density of

states. The larger temperatures allow the system to explore the

potential beyond the range of linear response.

The differences between the shadow system and the model

system become strongly apparent if we cross the jamming tran-

sition at finite temperature. Fig. 2 shows different aspects of the

shadow system as a function of packing fraction f at finite (low)

temperature kBT ¼ 10�6. From the plot of the shadow system at

f ¼ 0.835, it is clear that the stiffness now deviates significantly

from a step function. The gap distribution (top right) moves from

distributions with only negative gaps (overlaps) above jamming,

to a situation with only positive gaps below jamming. Around

jamming, we find both over- and underlaps within the same

packing, and both contribute to the effective stiffness. Even

though the stiffness-gap function has only slightly broadened

from a step function, the different packing fractions sample
This journal is ª The Royal Society of Chemistry 2012
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Fig. 2 Top Left: shadow system for a packing of thermal soft sphere just

below jamming at f ¼ 0.835 and kBT ¼ 10�6. The contacts are plotted

with widths proportional to their effective stiffness keff, red with positive

keff and blue with negative keff. Top right: interparticle gap distribution

for a range of packing fractions; with a negative mean gap above

jamming and a positive gap below jamming. Bottom left: dependence of

the effective stiffnesses keff on the interparticle gap for different f; the

different densities sample different regions of the stiffness curve. Bottom

right: density of states D(u) computed from the eigenspectrum of Cp

compared to the one derived from the Hessian of the soft sphere potential

with an added log-potential (inset; see text). All curves for kBT ¼ 10�6.

Fig. 3 Top: shadow system for a packing of N ¼ 256 thermal hard

spheres just below jamming (f¼ 0.83878, fJ¼ 0.83894). The contacts are

plotted with widths proportional to their effective stiffness keff, red with

positive keff and blue with negative keff. Bottom Left: effective stiffnesses

as a function of the gaps separating the particles: in black the effective

stiffnesses derived from the effective logarithmic potential; in red those

extracted from the inversion of Cp. Bottom right: density of states D(u)

computed from the eigenspectrum of Cp compared to the one derived

from the Hessian of the effective potential.
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different parts of the curve (bottom left), and the resulting

shadow system is significantly different from the model system.

At high densities, we do recover a shadow system density of

states which resembles the Hessian of the soft sphere potential

(bottom right, compare to inset). At lower densities, the simi-

larity breaks down, most clearly below jamming, where the soft

sphere density of states has a large number of zero modes, and it

is mechanically unstable, unlike the shadow system one.

In the inset to the bottom right figure, we compare the shadow

system density of states to the simplest effective model for

thermal soft spheres: Veff ¼ Vharm + kBTVlog, that is we have

added an effective logarithmic potential for hard spheres to the

soft sphere potential (see below for a discussion of the log-

potential). While Veff captures part of the shift of the density of

states to lower frequencies below jamming, it is not a good fit: all

the shadow system density of states have a peak at intermediate

frequencies, unlike the density of states obtained through Veff.

The effective log-potential we just used was first introduced for

hard spheres slightly below jamming where the situation is again

not so clear: the hard spheres potential is singular and, as for the

soft spheres case, the system is a priori not mechanically stable

any more. On one hand one can derive an effective pair potential

and effective stiffnesses by computing the forces amongst the

particles via the exchange of momentum during the collisions.24

This potential scales like the logarithm of the interparticle gap.

On the other hand, one can compute the effective stiffnesses

derived from the inversion of Cp. Fig. 3 compares both effective

stiffnesses for a system ofN¼ 256 hard disks just below jamming

(f ¼ 0.83878, fJ ¼ 0.83894). We indeed find an effective

connectivity of the packing even though in their mean positions,

the particles are not touching. We also find keff � 1/h2, where h is
This journal is ª The Royal Society of Chemistry 2012
the interparticle gap, consistent with a logarithmic potential.

Hence the shadow system remains a good approximation in this

case too. As a consequence one can again compare the density of

states D(u) computed from Cp and the one derived from the

Hessian of the effective potential. One observes on Fig. 3 that

they match pretty well. Given the singular character of the hard

sphere potential and the fact that the reference state is only

a metastable state, this is a non trivial result which validates in

a self consistent way both the approach in terms of an effective

potential introduced in ref. 24 and the use of Cp as a tool for

extracting the density of states for slightly unjammed systems.

Before ending this section, let us mention that we have fol-

lowed the same analysis in the case of a real experimental system

composed of NIPA colloidal particles at densitites above

jamming.13 Conceptually, the NIPA system is very similar to the

soft sphere simulation we have just discussed. However, as was

already mentioned, the presence of a solvent and electrostatic

interactions could alter the description in terms of a simple

repulsive pair potential. We found that the effective stiffness far

exceeds the noise only for adjacent particles. This tells us that

elastic interactions between neighboring particles dominate the

data, as they should. Furthermore, the effective stiffnesses as

a function of the interparticle separation could be measured and

was found to be compatible with harmonic or Hertzian interac-

tions. We find that the shadow system captures the essence of the
Soft Matter, 2012, 8, 6092–6109 | 6097
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vibrational properties of the real system under consideration here

as well. We refer the reader interested by this experimental study

to the original paper.13
Fig. 4 Eigenvalues of Cp for jammed grains under horizontal vibration

above jamming. Top-left: probability density of the rms displacement of

each grain around it average position in the metastable state. Top-right:

positive eigenvalues sorted in decreasing order. Bottom: probability

density of the positive eigenvalues. On the center and right plots the black

dots correspond to the real dynamics and the red square to the RMs

model; the dotted lines correspond to the expected distribution for

a crystal according to the Debye law.
B. Principal component analysis

So far we have discussed how to interpret the eigenmodes and

eigenvalues of Cp for thermally equilibrated systems. We have

seen in Section II B that for non-equilibrium systems, the

distribution of the energy on each mode must be known before

extracting the density of states, and in general this is not the case.

However, the spectrum of Cp and the associated modes still

convey a lot of information about the dominant modes of

relaxations.

Such a path has been followed in analyzing different systems

for which the underlying microscopic dynamics is unknown. In

ref. 33, the price fluctuations in financial markets are analyzed by

comparing the spectrum of eigenvalues of the covariance matrix

with the results from randommatrix theory. The deviations from

the purely random case contain the true information about the

prices. In ref. 31 the protein near-native motion is characterized.

Although molecular dynamics simulations based on an all-atom

potential allows the identification of a protein functional motion

on a wide range of timescales, the very large time scales are not

easily accessible in simulations. A way to bypass this problem is

to study the correlations of the fluctuations of the deviation of

the protein backbone from its native configuration. The principal

components of this matrix correspond to the collective modes of

the protein which happen on larger time scales.

Two of the present authors have used a similar approach in the

case of vibrated granular media.39 The experimental system

consists of a 1 : 1 bidisperse monolayer of brass cylinders.

Mechanical energy is injected in the bulk of the system by hori-

zontally vibrating the glass plate on which the grains stand and

dissipated by solid friction. The experimental protocol produces

very dense steady states with a packing fraction up to f¼ 0.8457.

The stroboscopic motion of a set of 1500 grains is tracked in the

center of the sample. The set-up, the quench protocols and the

main properties of the system are described in detail in ref. 44,45.

We now briefly illustrate the methodology adapted in ref. 39 to

discuss the spectral properties ofCp. We have considered a subset

of N ¼ 350 grains acquired during Ns ¼ 100 time steps at

a packing fraction F ¼ 0.844 so that the metastable state of

reference is well defined (no rattlers, no structural rearrange-

ments). Because r ¼ dN/Ns, where d is the space dimension, is

larger than one, strictly zero eigenvalues appear in the spectrum

of Cp. We shall come back to this practical issue in the next

section and restrict the discussion to the positive eigenvalues. The

fluctuations of each grain i around its metastable position are

Gaussian but the width, si, of the distribution is widely distrib-

uted amongst the particles according to the fat tailed distribution

r(s) � s�(1 + m) plotted in Fig. 4 (top-left), where m z 6.

TheMar�cenko–Pastur theorem relates the spectrum computed

at finite r to the one of the true correlation matrix, please see

Appendix VII D for details. It could in principle be used to

obtain predictions, but it provides no explicit analytical form for

the shape of the eigenvalue spectrum of Cp. One alternative

strategy is to define a Random Model of uncorrelated Gaussian

variables with variance s2
i equal to the experimental one. We will
6098 | Soft Matter, 2012, 8, 6092–6109
refer to this model as the RMs case. The eigenmodes extracted

from the real dynamics with eigenvalues larger than the largest

one of the RMs model contain the relevant information about

the correlations.

Fig. 4 (top-right) and Fig. 4 (bottom) display, respectively, the

eigenvalues lm sorted in decreasing order and the probability

density r(l) extracted from the real dynamics, compared to those

obtained for the RMsmodel. Note that there is a straightforward

correspondence between these two curves since
1

N
mðlÞ is exactly

the inverse cumulated distribution of l and a power-law behavior

lm �m�1/a translates into a density r(l)� l�(1 + a). The five largest

eigenvalues for the experimental system are clearly larger than

the largest one obtained for the RMs model. This comparison

shows unambiguously that the top eigenvalues of Cp contain

useful information about the dynamics of the system, and are not

drowned in noise. It also demonstrates the existence of strong

spatial correlations: by moving together, particles achieve large

collective fluctuations that would not develop otherwise.

If one should not attempt to convert these eigenspectra into

densities of states, it is conversely always possible to convert the

expected density of states of a thermal crystal into the the spec-

trum of its dynamical matrix. A 2d crystal has a density of states

r(u) � ud � 1 � u. Using u f l1/2, one obtains r(l) � l�2, that is

a¼ 1 and lm�m�1 as indicated on the figures by the green dotted

line. The experimental data are consistent with an estimated az
2/3, that is a slower decay of the spectrum than for the crystal

case. One can interpret this result by stating that there is a larger

fraction of modes participating in the dynamics than in the

crystalline case.

One can also analyze the structure of the most significant

modes. This was done in ref. 39 for this system of bi-disperse

grains when approaching jamming from above, and it could be
This journal is ª The Royal Society of Chemistry 2012
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demonstrated quantitatively that there is a redistribution of

spectral weight towards larger eigenvalues corresponding to

softer modes and that the softest mode becomes more coherent

and spatially organized. However, as it was discussed above, for

such a system where the energy is not distributed evenly over the

modes, one cannot convert this information into the vibrational

properties and the density of states of the system. The results

presented here as well as in ref. 39 illustrate well how PCA of the

dynamics remains a fruitful tool of analysis without referring to

the vibrational properties.
IV. Practical guidelines

In the previous section, we have assumed that the data at hand

was ‘‘perfect’’ in the sense that neither statistical limitations nor

resolution issues came into play. Also, we did not consider the

possibility of a strong anharmonicity of the dynamics and we

have not discussed removing rattlers, those particles which do

not participate in the collective motion but instead ‘‘rattle’’ in

their cages.

Measuring Cp to a sufficient level of precision to extract reli-

able information from it is not a simple affair. The goal of this

section is to disentangle all the possible sources of practical

problems that one faces when computing Cp, and to propose

methods and alternatives to obtain faithful information from its

spectrum.

In Subsection IV A, we start with a method to test the meta-

stability of the reference state. This is crucial since the entiremodes

approach is based on a displacement field that fluctuates around

a steady reference state. We illustrate this issue in the case of hard

spheres, which by definition sit below jamming, where metastable

states only have a finite lifetime. It is thus of crucial importance to

control that the systemdoes not escape themetastable state during

the timewindowof the analysis. In Subsection IVB, using the case

of vibrated granular media, we then illustrate anharmonicity

setting in when approaching the jamming transition from above.

The reader may also refer to ref. 42, where the same issue is dis-

cussed for the case of numerical simulations of soft spheres. As an

immediate consequence of the above effects, the time window of

the analysis may be seriously shortened compared to the full

duration of the numerical or real experiment, and statistical issues

come into play.More specifically, we shall see in Sections IVCand

IVD how to deal with (the lack of) statistical independence of the

data aswell as convergence issues. In the case of experimental data

sets, resolution issuesmay also alter the analysis. In Subsection IV

E, we analyze an NIPA colloidal experiment to illustrate how

convergence and experimental resolution interplay to affect the

computation of the density of states. Finally, identifying rattlers is

usually a challenging matter. It emerges that calculating the

eigenspectrum itself is a good ‘‘filter’’ for rattlers: their motion

appears only in a few low energy eigenvalues which do not mix

with the remainder of themotion.This is discussed inSection IVF.

Fig. 5 Probing metastability. Top: Cq(t0,t) for a system of hard spheres

below jamming (N¼ 1024 andf¼ 0.841947;fJ¼ 0.841959). The time unit

is tf, the time interval at which particle positions are stored, and corre-

sponds to 800 collisions per particle. Each interval delimited by dashed

lines has 200 snapshots, during which we compute Cp and its basis Bi of

eigenvectors {|lmi}. Bottom: robustness of the first 20 modes as defined in

eqn (17) between pairs of intervals Bi � Bj as indicated in the legend. The

dashed line indicates the value of R(m) for purely random eigenvectors.
A. Metastability

Before starting any of the analysis discussed in the previous

section, one must confirm that the dynamics are purely

composed of fluctuations around a well defined reference state.

This can be done both a priori, in order to select a good time
This journal is ª The Royal Society of Chemistry 2012
window to perform the analysis, and a posteriori based on the

properties of Cp. A natural tool to characterize the dynamics is

the self-intermediate correlation function, defined as

Cq(t0, t) ¼ hcos(~q$D~ri(t, t0))ij, (16)

where the average is over the particles but not over the initial

time. Here D~ri(t, t0) ¼ ~rj(t) � ~rj(t0) is the displacement of the

particle j between t0 and t + t0, ~q is a vector whose amplitude is

given by q ¼ p/a and a is the displacement length scale above

which the particle motion induces a change of metastable state.

There is obviously an arbitrary part in such a definition and

traditionally a is set to a fraction of the particle diameter, so that

a metastable state more or less corresponds to a given configu-

ration of neighbors.

Fig. 5 (top) displays Cq(t0, t) computed for a system of N ¼
1024 bidisperse hard disks the dynamics of which has been

simulated using molecular dynamics slightly below jamming (f¼
0.841947; fJ ¼ 0.841959).24,46 Here a has been set to the radius of

the smaller particles. One observes very well defined plateaus,

during which the system is trapped in a metastable state, sepa-

rated by a quick relaxation event that we call a crack. Usually,

the size of the plateau defines s, the interval of time available to

compute Cp. There are however some cases where one cannot

identify the plateaus so easily. This will happen each time the

system size is large compared to the typical size of a crack or

spatial relaxation event. When this is the case, one can always cut

the system into smaller subsystems and do the analysis for each

subsystem as illustrated in ref. 39.

As long as the system remains in the same reference state, the

basis of eigenvectors should essentially remain unchanged. This

can be checked by dividing the time interval of duration s into

smaller subintervals and computing an indicator of the modes

robustness, defined as:39
Soft Matter, 2012, 8, 6092–6109 | 6099
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RðmÞ ¼
Xj¼þM

j¼�M

hlmjl0
mþji2; (17)

where hlm|l0
m+ji is the scalar product between the modes

computed during two successive observation windows of dura-

tion N
0
s < Ns. Setting M to a small but strictly positive value

allows neighboring modes to possibly exchange their rank. For

the largest eigenvalues, we find that the results are basically

independent of M for M $ 2 and we fix M ¼ 2. Fig. 5 (bottom)

displays R(m) for the twenty largest eigenvalues computed

between intervals defined as indicated on Fig. 5 (top) by vertical

dashed lines. The robustness of the first modes is higher when

computed amongst intervals belonging to the same plateau. As

soon as one computes the modes on an interval including the

crack, the robustness decreases sharply and rapidly reaches the

baseline level R(m) ¼ (2M + 1)/2N expected for purely random

vectors. Note also that the robustness is not restored when the

two intervals belong to different plateaus indicating that the

system has indeed relaxed from one metastable state to another.
Fig. 6 Distributions of the position fluctuations r(dxi/si) for four values

of the packing fraction and four durations of observation s. We focus on

the top of the distribution, which is compared to a Gaussian (continuous

black line). The green hatched line separates the distributions well

described by a Gaussian from those deviating from this harmonic

description.
B. Harmonicity of the dynamics

In the previous section, we have identified a metastable state and

checked a posteriori that the basis of eigenvectors remains

unchanged during the lifetime of this state. Additionally we must

also check that the dynamics around this state are purely

harmonic. For an equilibrium system close to jamming, the

structure of the packing is frozen and particle fluctuations are

thermal, so that assuming Gaussian fluctuations around the

metastable state sounds reasonable. However, it was recently

claimed that repulsive contact interactions make jammed parti-

cles systems inherently anharmonic.42 The authors argue that at

very low temperature the breaking and forming of inter-particles

contact is responsible for anharmonicity in the sense that the

response does not remain confined to the original mode of

excitation. Such a definition of harmonicity is very strict, and

how the result depends on system size, temperature and distance

to jamming is still a matter of debate. On the other hand, it is

clear that for mechanically excited athermal and dissipative

systems, such as shaken macroscopic grains, there is no reason

why the dynamics should be harmonic.

While studying horizontally shaken grains, two of the present

authors proposed to check the harmonicity of the dynamics in

a na€ıve but experimentally accessible way, namely by computing

the distribution of the individual fluctuations: r(dxi/si), where dxi
is the position fluctuation along a given direction and si is the

root mean square displacement of particle i. Fig. 6 presents such

distributions obtained for a system of N ¼ 1550 brass disks

shaken horizontally on a oscillating plate just above jamming (fJ

¼ 0.8417, see ref. 44 for details on the experimental set up and

protocol). The distributions are computed for four different

packing fractions f and four durations s of the window of

observation. They are then ensemble averaged over the 104/Ns

intervals provided by the full dataset.

The distributions shown in Fig. 6 highlight some important

characteristics of the dynamics. The parameter space (f, Ns) can

be divided into two regions, as illustrated by the green hatched

line: for small enough observation duration s or large enough

packing fractions, the distributions are unimodal with aGaussian
6100 | Soft Matter, 2012, 8, 6092–6109
core: particles jiggle around a well defined average position; for

longer s or smaller densities, the distribution starts developing

a flat top, with a poorly defined maximum. This suggest that on

these longer observation times, the average position of a signifi-

cant part of the particles is not well defined any more. Particles

either drift slowly or even find (collectively) another metastable

position, as suggested by the double peak observed in the case f¼
0.8417 and Ns ¼ 104, i.e. for the loosest packing fraction and the

longest observation time. This means that over long time scales,

the evolution of the average position becomes comparable or even

larger than the fluctuations, and it becomes meaningless to

describe the system in terms of small vibrations around a fixed

metastable state. For an infinite size system, some rearrangement

always happens somewhere, and the covariance matrix Cp is

always ill-defined. The ‘‘allowed’’ time scale (Ns)max(f, L) is

expected to scale inversely with the system size L.
C. Statistical independence

Once a reference state has been identified for a time window of

duration s, one needs to know whether the particle positions

stored in successive snapshots are independent, or at least suffi-

ciently uncorrelated, to compute Cp. Again, computing the

robustness of the basis of eigenmodes is a good way to check the

validity of the analysis: if the particle positions are not
This journal is ª The Royal Society of Chemistry 2012
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independent the correlator Cp is badly estimated and the eigen-

modes are mostly composed of noise. To illustrate this point we

again use the hard discs system just below jamming (f¼ 0.83878;

fJ ¼ 0.838865), now with N ¼ 256, for which we could identify

a long lasting metastable state the total duration of which, s,
corresponds to 1.6 � 106 collisions per particle.

Fig. 7 (top) sketches the procedure. The total acquisition is

divided in 10 intervals. Each of them contains 800 snapshots of

the positions, separated by tf ¼ 200 collisions per particle. Cp is

computed and diagonalized on each interval, and the average

robustness among successive intervals hR(m)i is evaluated for the

first 20 largest eigenvalues. To preserve the same statistics,

together with a reduced interval of time between the snapshots,

we then subdivide each interval into 10 subintervals, each of

which contain again 800 snapshots of the positions, but now

separated by tf¼ 20 collisions per particle. Finally, the procedure

is iterated once more leading to 800 snapshots of the positions

separated by tf ¼ 2 collisions per particle in each interval. Fig. 7

(bottom) compares hR(m)i for the three successive levels of time

discretization. Although the system remains in the same meta-

stable state and the number of snapshots and the averaging used

to computeCp are identical in all three cases, one clearly observes

the convergence of hR(m)i towards larger values when the

snapshots are well separated. In the present case the finest dis-

cretization is obviously irrelevant and a separation of successive

snapshots larger then about 50 collisions per particle is necessary.

In summary, whether it arises from experimental limitations of

the acquisition rate or from a microscopic timescale inherent to

the dynamics, there is always a minimal timescale separating the

accessible and useful snapshots of the particle positions. Since we

have also seen that the analysis is confined to the lifetime of the

reference state, we are now in the position to face the conver-

gence issue of the eigenspectrum as discussed by the Mar�cenko–

Pastur theorem.
Fig. 7 Testing statistical independence during a given metastable state

for a system of N ¼ 256 hard disks below jamming (f ¼ 0.83878; fJ ¼
0.838865). Top: sketch of the time discretization procedure (see text for

details). Bottom: hR(m)i for the three discretization schemes as indicated

by the legend.

This journal is ª The Royal Society of Chemistry 2012
D. Convergence of the spectrum (small sample limit)

The Mar�cenko–Pastur (M–P) theorem33,40,47,48 applies to the

ensemble of Wishart random matrices; that is the ensemble of

p � p matrices constructed by the addition of n independent

samples xixj, where the xi (i ˛ 1.p) are distributed according to

either a multivariate Gaussian distribution or a distribution with

finite higher moments, similar to the conditions of the central

limit theorem. The M–P theorem then predicts the eigenvalue

distribution of such matrices in the limit n/N, p/N, r¼ p/n

finite. However, as shown in Appendix VII D, there is no explicit

form for the distribution. Also, the theorem does not touch the

convergence of the eigenmodes. Consequently, we concentrate

here on the numerical characterization of the convergence in

a specific and well controlled situation. This will allow us to

discuss both the shape of the spectrum and the relevance of the

modes themselves. Also, it will allow us to examine the case

where r > 1, when a finite part of the spectrum is strictly zero. The

reader interested in analytical predictions may refer to the orig-

inal papers,33,40,47,48 as well as to Appendix VII D.

We consider the same system as above, with N ¼ 256 hard

disks just below jamming (f ¼ 0.83878; fJ ¼ 0.838865) within

a long lasting metastable state of total duration 4.6 � 106 colli-

sions per particles and we choose to retain independent snap-

shots separated by 200 collisions per particle, so that n ¼ Ns ¼
23 000. In Section III A, we showed that the spectrum of Cp and

that of the effective dynamical matrix match when the whole set

of data is used to compute Cp. Here we discuss how much the

spectrum and the modes of Cp deviate from their asymptotic

behavior when the time interval used to compute Cp is artificially

reduced such that r ¼ 2N/Ns varies in the range [0.021–2.28].

Fig. 8 displays the spectral properties of Cp for increasing

values of r. As soon as r > 0.5, the smallest eigenvalues are

seriously underestimated, respectively the largest frequencies are

overestimated. For r > 1, strictly zero eigenvalues replace the

lowest eigenvalues. On the contrary, the largest eigenvalues,
Fig. 8 Convergence of the spectrum of eigenvalues of Cp for a system of

N ¼ 256 hard disks below jamming (f ¼ 0.83878; fJ ¼ 0.838865) for

decreasing values of r ¼ 2N/n as indicated in the legend. Top: eigenvalues

(left) and corresponding eigenfrequencies (right) sorted in decreasing,

respectively increasing order. Bottom: eigenvalues spectra (left) and

corresponding density of states (right).

Soft Matter, 2012, 8, 6092–6109 | 6101

http://dx.doi.org/10.1039/c2sm07445a


Fig. 10 Density of states for a system of hard disks below jamming (f ¼
0.841947; fJ ¼ 0.841959) extracted from Cp either computed using the

whole system ofN¼ 1024 hard disks (in blue) or cutting the system into 4

sub-systems with Nsub
p ¼ 256 each (in red) as compared to the density of

states obtained from the effective dynamical matrix computed for the

whole system (in black). Inset: zoom on the lowest frequency part of the

density of states.
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respectively the lowest eigenfrequencies, are surprisingly robust,

even in the cases where r > 1. Because of this robustness, when

one is interested in the low frequency part of the density of states,

we recommend normalizing the density such that the area under

the curve equals the fraction of non-zero eigenvalues. As a result,

the density of states D(u) conserves its shape as long as r < 1.5,

and only for larger r the large frequencies part of the density of

states starts to be significantly depleted.

Finally, Fig. 9 illustrates the robustness of the modes them-

selves. We define the matrix of scalar products between the two

eigenbases: the modes of Cp and the modes of the effective

dynamical matrix. If those modes were strictly the same, this

matrix should be the identity matrix. Fig. 9 (left) shows the

matrix of the scalar products for r ¼ 0.021, from where we

observe that the modes of Cp project on a very small number of

modes of the effective dynamical matrix, as already pointed at in

Section III A. We see that even for r ¼ 2.78, the modes of Cp

associated with the largest eigenvalues still project on a small

number of modes of the effective dynamical matrix, while the

higher frequency modes of Cp are spread across the whole

spectrum of the effective dynamical matrix.

Altogether, as long as r < 1.5, the most significant eigenmodes

and eigenvalues of the dynamic matrix as well as the qualitative

features of the density of states are well captured by the analysis

of Cp. Practically speaking, when very long lasting metastable

states are available it is thus often advantageous to average the

spectrum or the density of states on successive time windows,

provided that the duration of each of them satisfies r z 1.

When there are not enough snapshots to recover the whole

spectrum of modes, an alternative strategy is to reduce the system

size in order to increase r. In principle one can divide the system

into smaller subsystems, and compute the density of states in

each of them. This strategy allows better access to the low

frequency part of the density of states, although the lowest

accessible frequency increases as the inverse of the system size.

Fig. 10 and Fig. 11 illustrate the application of such a strategy to

a system of N ¼ 1024 particles below jamming (f ¼ 0.841947; fJ

¼ 0.841959). In this example, the metastable state has a total

duration of 1.6 � 105 collisions per particles and we store inde-

pendent particle positions separated by 80 collisions per particle.

This means that n¼ 2000 snapshots and r¼ 1.02. From Fig. 8 we
Fig. 9 Matrices of the scalar product between the modes of Cp and the

modes of the dynamical matrix for a system of N ¼ 256 hard disks below

jamming (f ¼ 0.83878; fJ ¼ 0.838865). The rows are the indices of the

modes in increasing order of their frequency and the color bar indicates

the value of the scalar product. Left: r ¼ 2N/Ns ¼ 0.021 Right: r ¼ 2N/Ns

¼ 2.78.

6102 | Soft Matter, 2012, 8, 6092–6109
know that for this value of r the large frequencies are under-

estimated. By cutting the system into 4 boxes, each one has r ¼
0.25 and we are now able to recover the whole spectrum. In

Fig. 10 we compare the density of states D(u) extracted from Cp

either using the whole system ofN¼ 1024 hard disks (r¼ 1.02) or

cutting the system into 4 sub-systems with Nsub
p ¼ 256 each (r ¼

0.25) to the density of states obtained from the effective

dynamical matrix computed for the whole system. Whereas the

spectrum obtained from Cp computed with the whole system

only captures the very low frequencies, the one computed for the

sub-systems matches the spectrum from the dynamical matrix on

the whole range of frequencies.

Concerning the robustness of the modes, once the modes have

been computed in each subsystem, we first reconstruct artificial

modes for the whole system by pasting together the modes of
Fig. 11 Matrices of the scalar products between the modes ofCp and the

modes of the dynamical matrix for a system ofN¼ 1024 hard disks below

jamming. Left: modes ofCp computed on the whole system. Right: modes

of Cp reconstructed from the modes computed separately in four sub-

systems of sizeNsub
p ¼ 256. The horizontal (resp. the vertical) indices label

the modes of the dynamical (reps. the covariance) matrix. The color bar

indicates the value of the scalar product.

This journal is ª The Royal Society of Chemistry 2012
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each subsystem. Note that the number of modes in these 2 bases

is not the same: for the whole system there are 2Np¼ 2048 modes

while in each subsystem has 2Nsub
p ¼ 512 modes. Fig. 11 shows the

matrices of the scalar products between the modes of the

dynamical matrix and those of Cp, either computed on the whole

system (left) or reconstructed as described above from the modes

computed on the subsystems (right). Despite the artificial nature

of the modes obtained from the computation of Cp in each

subsystem, their projection on the modes of the dynamical

matrix remains rather concentrated, especially when one

remembers that each mode of Cp in this case projects approxi-

mately on four modes of the dynamical matrix.

Let us end this section by citing recent work49 which shows

that in general the modes are modified by the truncation of the

full real-space correlations, and proposes windowing strategies

to best avoid these boundary condition artifacts. Implementing

such strategies on top of the segmentation proposed here would

certainly deserve proper attention.
E. Convergence and experimental resolution (large sample

limit)

Even in the most favorable case of all experimental situations

discussed above, we have not yet addressed the issue of the

experimental resolution. As detailed in Appendix VII D, the

Mar�cenko–Pastur theorem allows us to compute the impact of

finite resolution on the spectral properties ofCp at a finite r¼ 2N/

n, where n ¼ Ns is again the number of independent snapshots of

the particle positions.

To do so we assume that the applicability conditions of the

theorem detailed in Appendix VII D are met. The finite moments

condition corresponds broadly speaking to a long-lived meta-

stable state with short-time fluctuations of the particles in well-

defined cages. The metastability condition can be tested through

the methods of Section IV A. For an equilibrium system, the

short-time fluctuations of the particles in their cages are thermal

and can hence well be approximated as Gaussian within the

range of linear response. For a non-equilibrium system such as

shaken granular systems, this condition needs to be verified

experimentally. The independence of the different samplings of

the system can be tested through the methods of Section IV C.

If we have now constructed Cp in these conditions, how does

the experimental resolution affect the properties of the matrix

and how does it interplay with finite r? How does it modify the

spectral properties of the true correlation matrix, the one would

obtain in the limits of infinite resolution and r / 0? We model

the resolution as an additive Gaussian noise of variance 32, where

3 is the resolution-induced uncertainty of the particle positions. If

C0 is the true correlation matrix, i.e. the one of the shadow

system, one easily shows that for Gaussian fluctuations of the

particle positions, the finite resolution correlation matrix is ~C0 ¼
C0 + 32I, where I is the identity matrix. Then the measured Cp is
~Cr, such that limn / N

~Cr¼ ~C0. TheMar�cenko–Pastur theorem is

still valid and one finally relates the eigenvalues distribution of ~Cr

and the true correlation matrix C0.

As for the case without noise, there is no explicit form for the

distributions, but we show in Appendix VII D that the mean and

variance of the eigenvalue distribution of Cp converge with r /

0 and 3/m0 / 0 in the following way:
This journal is ª The Royal Society of Chemistry 2012
~mr ¼ m0 þ 32

~s2
r ¼ s2

0 þ rm2
0 þ r34;

(18)

where the quantities labeled 0 refer to the exact eigenvalue

distribution and the ones labeled r to the measured quantities.

Note that for uncorrelated particles m0 would be the typical cage

size squared, i.e. the value of the plateau in the mean square

displacement curves, preceding the onset of diffusive behavior.

Interestingly, while the resolution directly impacts the mean, it

only changes the width at O (34), and the correction is moreover

multiplied by r. As a result, the noise dependence of the eigen-

value distribution is in fact much weaker than one might have

expected.

We now present the results of a statistical model specifically

developed to test the validity of the experimental results for

colloidal NIPA particles.13 In the experiment, N ¼ 3600 particles

forming quasi two dimensional packings deep in the glassy phase

were imaged with a confocal microscope, yielding n ¼ 30 000

independent samples of their positions per run. In the language

of the Mar�cenko–Pastur theorem, this corresponds to r ¼ 0.24.

The combination of optical resolution and sub-pixel accuracy

particle tracking led to an estimated uncertainty in the particle

positions of 3 ¼ 0.007 mm.

We build a ‘random vector’ model by constructing a model

Cp where we repeatedly sample from an uncorrelated multi-

variate normal distribution corresponding to the experimentally

measured cages sizes, and with added noise at the experimental

amplitude. The covariance matrix of the model is then ~Cij ¼
(li + 32)dij, where the li are the diagonal elements of one of the

measured Cp from ref. 13. While this model resembles the

‘Random Model’ introduced in Section III B detailing PCA,

our aim here is different: we only intend to illustrate eqn (18)

with a model where we know the exact eigenvalue distribution

in the absence of noise and for r / 0. By construction, this is

just P(li), the distribution of diagonal elements or cage sizes

which enter the model.

Fig. 12 (top-left) shows the convergence of the numerical

eigenvalue distribution ~Pr(l) as r / 0 at fixed noise. The

eigenvalue distribution corresponding to the experimental value

r ¼ 0.24 is shown in black. It appears to be relatively close to the

exact distribution shown in pink. The numerically obtained first

two moments of the distributions exactly match the theoretical

result from eqn (18) (Fig. 12 (top-right)). The curves indicate that

for the experimental value of r (green vertical line), the error

made compared to the true converged noiseless distribution is of

the order of 10%.

For equilibrium systems, one is mostly interested in the

density of states. Unfortunately, when performing the change

of variables u ¼ ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
kBT=ml

p
, there is no straightforward and

reliable way to calculate the moments of the distribution and

we have to rely mostly on numerical results. Only the asymp-

totic values in the limit r / 0 could be obtained (see Appendix

VII D). In the bottom row of Fig. 12 we have numerically

applied the transformation u ¼ 1=
ffiffiffi
l

p
to obtain the density of

states and its first two moments for the ‘random vector’ model.

The density of states obtained for the experimental value of r ¼
0.24 again matches pretty well the asymptotic one. Note that

we find a fortuitous compensation in the moments of the

distributions: in the limit r / 0, one can show that a finite
Soft Matter, 2012, 8, 6092–6109 | 6103

http://dx.doi.org/10.1039/c2sm07445a


Fig. 12 Statistical convergence analysis for the NIPA system,13 using the ‘random vector’ model (see text). Top left: numerical eigenvalue distribution

for different values of r as indicated in the legend. The distribution associated with the experimental value r¼ 0.24 is plotted in black and the asymptotic r

/ 0 one is plotted in pink. Bottom left: same for the density of states. Top right: numerical (dots, subscript ‘sim’) and theoretical (dashed lines, subscript

‘th’) results for the mean and variance of P(l) normalized by the exact result. The experimental value of r ¼ 0.24 is indicated by a green line. Bottom

right: same for the density of states, numerical result only (dots and dashed lines, subscript ‘sim’). The green line marked ‘30 000 frames’ corresponds to

the number of samples in the experimental NIPA system.13
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resolution systematically leads to an underestimation of both

the mean and the variance. Since working at finite r always

leads to an overestimation of these moments, it compensates

the above underestimation. In the present case, the experi-

mental value of r (green line) is very close to the point where

the compensation is perfect. Note that this is pure coincidence

related to the specific values of the moments of the true

distribution, and that even so it does not validate the detailed

shape of the distribution.

In the case of the experimental data obtained with NIPA

particles,13 and for which correlations are present, the authors

tested convergence of the density of states based on the methods

outlined here and found scaling of mean and width consistent

with our example. The error from experimental and statistical

resolution was estimated in the 10% range at r ¼ 0.24.

We can make a similar comparison for the hard sphere colloid

setup of Ghosh et al.35For this experiment, the estimated number

of particles is N ¼ 2000, and approximately n ¼ 4000 samples at

a resolution of 3 ¼ 0.03 mm were taken to obtain the DOS. While

the resolution effect is comparable to the NIPA setup, we obtain

r z 1. This introduces a large error into the measurement of the

DOS, similar to the r ¼ 0.95 curves in the left panels of Fig. 12.

We estimate an error of 40% and 200% on the mean and the

width of the DOS, respectively. However, as detailed in the

previous section, even at this r it is still possible to obtain the

relevant low energy modes.50
6104 | Soft Matter, 2012, 8, 6092–6109
F. Rattlers

Above jamming, there are particles, the so-called rattlers, which

do no participate to the rigidity of the structure: removing them

does not alter mechanical stability. Rattlers compose a finite

and increasing fraction of particles when approaching jamming.

The vibrational properties of rattlers are well known: they

coincide with modes of zero frequency entirely localized on the

rattler. When computing, for instance, the average coordina-

tion of the packing, these rattlers need to be identified and

excluded. For simulations of soft spheres, the procedure is

straightforward. The number of contacts is known for each

particle and those which have less than two contacts are

considered as rattlers. For simulations of hard spheres just

below jamming, the contacts are defined by computing the

transfer of momentum during successive collisions. Again,

particles with less than two contacts are defined as rattlers, but

additionally also those which have a significant smaller

momentum transfer per contact as compared to the average.

Such a criterion was proposed in ref. 51, where it was shown

that particles with momentum transfer per contact smaller than

2% of the average value could safely be considered as rattlers.

Varying this threshold in the range 0.5–5% did not alter the

results.

We now offer an alternative way to identify rattlers in exper-

iments by using the Principal Component Analysis (PCA) itself
This journal is ª The Royal Society of Chemistry 2012
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Fig. 14 Eigenmodes of Cp for a system of N ¼ 256 hard disks below

jamming (f ¼ 0.83878; fJ ¼ 0.838865) with its rattlers (top row) and

having removed them (bottom row).
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and compare it to the above method used for hard spheres. As

a matter of fact, the PCA diagonalizes the dynamics on its

dominant features. Since the rattlers are not tightly confined by

their neighbors, they move significantly more than other parti-

cles. Also such motion is by definition localized on a single

particle. Hence rattlers correspond to a very singular kind of

excitation and thereby tend to jeopardize the modes structure.

Diagonalizing Cp and analyzing the modes with high eigenvalues

and a very high participation ratio is thus a good strategy to

identify rattlers. Here the participation ratio of a given modem is

simply defined as PðmÞ ¼ PN
i¼1ðdrmi Þ4, where drmi is the

displacement of the particle i on the mode m. Given that the

modes are normalized,
PN

i¼1ðdrmi Þ2 ¼ 1 so that a perfectly delo-

calized mode has a participation ratio of 1/N, whereas a mode

fully localized on a single particle would have a participation

ratio of order one.

The method is illustrated in the case of a system of N ¼ 256

hard disks just below jamming (f ¼ 0.83878; fJ ¼ 0.838865)

within a long lasting metastable state of total duration of 46 �
106 collisions per particles with n ¼ 23 000 independent snap-

shots and r ¼ 0.021. Fig. 13 shows the spectrum and the

participation ratio of the modes of Cp computed with and

without rattlers. One easily identifies the modes with a simul-

taneously large eigenvalue and high participation ratio. Three

of these modes are plotted on Fig. 14 (top). Here also, one

immediately identifies the rattlers with huge displacements as

compared to the other particles. The rattlers in each modes are

then defined as the particles having a displacement amplitude

larger than x times the average displacement inside the mode:

drmj $ hdrmi + xsm
dr, with sm

dr being the standard deviations of

the displacement on the mode m. One must fix a threshold;

however because the modes selected by the procedure concen-

trate most of the motion on the rattlers, it is very easy to fix the

threshold and the results are robust to the choice of x, as we

verified in Fig. 13. Once the rattlers are identified—sometime in
Fig. 13 Eigenvalues of Cp and participation ratio as defined in the text

for a system of N ¼ 256 hard disks below jamming (f ¼ 0.83878; fJ ¼
0.838865) with its rattlers (black curves) and having removed them

according to different values of the threshold criteria x as indicated in the

legend. See text for the definition of x.

This journal is ª The Royal Society of Chemistry 2012
several mode—one eliminates them and recomputes Cp. One

then easily checks that the extremely localized modes have

disappeared, together with the rattlers, Fig. 14 (bottom). Note

that most of the particles identified as rattlers using this crite-

rion are identical to those identified with the previous criterion

used in ref. 51. The mismatch between both criteria is of the

order of 10% of the rattlers identified.
V. Conclusions

We have reviewed various situations for which the study of Cp,

the covariance matrix of the positions of a system of particles,

can be used to infer dynamical properties of the system. It has

been emphasized that for systems without the equipartition of

energy, or without an independent knowledge of the energy

distribution amongst the modes, the spectrum of Cp cannot be

transposed into the density of states of the system. Still, it

conveys relevant information about the dynamics. We also insist

on the physical interpretation of the modes obtained via the

analysis in terms of the vibrational properties of the shadow

system, which must not be confused with the experimental

system, even an idealized one.

We have then reviewed the numerous steps one has to go

through to implement the analysis. Metastability of the refer-

ence state, harmonicity of the dynamics, statistical indepen-

dence, convergence and experimental resolutions are all key

elements. How to deal with rattlers was finally discussed.

Following the whole procedure requires, as always, a bit of

physical insight, a good knowledge of the system of interest and

patience.

We have not discussed the new physics one can eventually

extract from this analysis. It depends on the specifics of each

system, especially the range of linear response and the partic-

ular dynamics; but it also depends on the aim of the investi-

gation. If one insist on predicting the dynamics precisely, the

approach is limited. However, as detailed above, the largest

eigenvalues, along with their associated eigenvectors, keep their

significance and even at the level of PCA, a wealth of useful

information can be extracted from Cp or the dynamical matrix.

We believe dynamical matrix calculations in the harmonic

approximation will remain an important tool for the analysis of
Soft Matter, 2012, 8, 6092–6109 | 6105
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systems near jamming. We hope that in this light the present

review of the methods associated to the correlation matrix

approach will be useful to the community.
VI. Appendix

A. Newtonian dynamics

Starting from the Newton equations linearized around the

reference state |r0i,
jdr€i þDjdri ¼ 0; (19)

where D¼ K/m is called the dynamical matrix, the eigenmodes of

D, also called the vibrational modes of the system are defined by

D|lqi ¼ u2
q|lqi, where uq are the vibrational frequencies. The

solution of eqn (19) is given by:

jdri ¼ e�i
ffiffiffi
D

p
tjdrð0Þi; (20)

where |dr(0)i is the displacement field at time zero. Replacing this

solution in eqn (1), one has

Cp ¼
D
ei

ffiffiffi
D

p
t
���drð0ÞEDdrð0Þjei ffiffiffi

D
p

t
E
; (21)

then writing |dr(0)i in the eigenbasis of D, {|lqi}:���drð0Þi ¼ X
q

aq

���lqE; (22)

where aq ¼ hlq|dr(0)i, is the amplitude of the initial condition on

the mode |lqi, one obtains

Cp ¼
*X

q;k

aqa
�
ke

�iðuq�ukÞt���lqEDlkj
+

(23)

Provided that the time average h$i is performed on a large

enough interval, large as compared to the inverse of the minimal

gap between adjacent frequencies (uq � um), one hasD
e�iðuq�umÞtE ¼ dq;m; (24)

and

Cp ¼
X
k

a2
k

��lk�	lk��: (25)

Using the orthogonality of the eigenvectors {|lqi}, hlkklmi ¼dk,m,

one finally obtains the eigenvalue equation of Cp:

Cp|lqi ¼ a2
q|lqi. (26)

At equilibrium, the initial condition is thermalized and the

energy is equally distributed among the modes. Each mode of

frequency uq and amplitude aq carries an energyma2
qu

2
q/2¼ kBT/

2. Hence the eigenvalues lq of Cp and the vibrational frequencies

uq of the dynamical matrix are related through

lq ¼ a2
q ¼

kBT

mu2
q

: (27)
B. Overdamped Langevin dynamics

Starting from the Langevin equation for an overdamped linear-

ized dynamics around the reference state |r0i:
6106 | Soft Matter, 2012, 8, 6092–6109
��d _rðtÞ� ¼ �K

m
jdri þ 1

m
jhðtÞi; (28)

where m is the viscous damping and |h(t)i is a white noise of

amplitude G: hh(t0)|h(t00)i ¼ Gd(t0 � t0 0), one introduces the

operator L ¼ K/m whose eigenvalue equation is: L |lqi ¼ mu2
q/m|

lqi. sq ¼ m/kq ¼ m/(mu2
q) is the relaxation time of the system along

the eigenmode |lqi.
The solution of the eqn (28) can be written as

jdri ¼ e�L tjdrð0Þi þ 1

m

ðt
0

e�L ðt�t0Þjhðt0Þidt0 (29)

Replacing this solution 29 in eqn (1) one obtains an expression

with four terms, only two of which are not zero because the noise

|h(t)i is assumed not to be correlated with the position field

|dr(0)i. One ends up with:

Cp ¼
D
e�L t

���drð0ÞEDdrð0Þ���e�L t
E

þ 1

m2


ðt
0

dt00
ðt
0

dt0e�L ðt�t0Þjhðt0Þihhðt00Þje�L ðt�t00 Þ
� (30)

Expressing |dr(0)i and |h(t)i in the eigenbasis {|lqi} of

L jdrð0Þi ¼ P
qaqjlqi and jhðtÞi ¼ P

qbqðtÞjlqi, with aq ¼ hlq|
dr(0)i and bq ¼ hlq|h(t)i, the first term of the previous equation,

which we note T1 turns into:

T1 ¼
*X

q;k

e�ð1=sqþ1=skÞtaqa
�
k

��lq�hlkj
+

¼
X
k

e�2t=ska2
kjlkihlkj;

where the last equality is justified by the fact that the components

on each mode of the initial conditions are uncorrelated haqa*
ki ¼

aqa
*
kdk,q.

We now turn our attention to the second term in the eqn (30),

referred to as T2:

T2 ¼ 1

m2

*ðt
0

dt00
ðt
0

dt0
X
q;k

e�1=sqðt�t0 Þbqðt0Þ
��lq�hlkjbkðt00Þe�1=skðt�t00 Þ

+

¼
ðt
0

dt00
ðt
0

dt0
X
q;k

e�ðt�t0 Þ=sq�ðt�t00 Þ=skbqðt0Þbkðt00Þ
��lq�hlkj

Now, assuming that the components of the noise on the modes

are also uncorrelated, hbq(t0)bk(t0 0)i ¼ Gdq,kd(t
0 � t0 0) one obtains

for T2:

T2 ¼ G

m2

X
k

ðt
0

dt0e�2ðt�t0Þ=sk jlkihlkj

¼ G

m2

X
k

sk
2

�
1� e�2t=sk


jlkihlkj

Finally applying Cp on the eigenvector |lqi one obtains the

eigenvalue equation for Cp:

Cp

��lq� ¼
��

a2
q �

Gsq
2m2

�
e�2t=sq þ Gsq

2m2

���lq� (31)

C. Out of equilibrium stochastic forcing

To generalize on the two equilibrium cases of Newtonian

dynamics and Langevin dynamics, we now consider
This journal is ª The Royal Society of Chemistry 2012
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a non-equilibrium system with both inertia and damping and

a colored noise spectrum. We choose to stick to a Langevin type

description of the dynamics, where the damping is linear and

single particle, as appropriate for particles in a Newtonian fluid

bath, but not necessarily for a large scale mechanical excitation.

The generic equations of motion will then be:

m
���dr€ðtÞEþ m

���d _rðtÞE ¼ �K
���drðtÞEþ

���hðtÞE (32)

We now expand in the modes of K, using the same notation as

for the Langevin case, K|lqi ¼ kq|lqi, and jdrðtÞi ¼ P
qaqðtÞjlqi.

We define the colored noise in the basis of the modes as

jhðtÞi ¼ P
q

hqðtÞ
��lq�

with
	
hqðtÞhk

�
t
0
� ¼ Gqdqkdðt� t0Þ:

(33)

In the eigenbasis of the modes, the equations of motion are:

€aqðtÞ þ m

m
_aqðtÞ þ kq

m
aqðtÞ ¼ hqðtÞ: (34)

We first solve the homogeneous equation, in the absence of

noise. The solutions are either oscillatory or overdamped

depending on the relative importance of inertia and damping.

For (m/m)2 < 4kq/m, i.e. the low damping limit, we find two

oscillating solutions

as
qðtÞ ¼ as

qð0Þe�
mt
2msin

�
1

2
~U qt

�

ac
qðtÞ ¼ ac

qð0Þe�
mt
2mcos

�
1

2
~U qt

�

~U q ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
4
kq

m
�
�m
m

�2
r

(35)

Clearly, the limit m/m / 0 corresponds to Newtonian

dynamics.

For (m/m)2 > 4kq/m, i.e. the strong damping limit, we obtain

two decaying solutions

a�
q ðtÞ ¼ a�

q ð0Þexp
�
1

2

h�m

m
� Uq

i
t

�

Uq ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi�m
m

�2

�4
kq

m

r (36)

It can be shown that in the limit m/m / 0, the ‘+’ solution

corresponds to the Langevin homogeneous solution

aqðtÞ ¼ aþ
q ð0Þe�kqt=m, while the ‘�’ solution decays infinitely

fast.

To solve the inhomogeneous equation, we find a particular

solution ap
q(t) through the method of variation of constants based

on the homogeneous solutions. In the oscillatory regime, we find

ap
qðtÞ ¼

ðt
0

hqðt0Þ
m ~U q

e
m
2m

ðt�t0Þ2sin
~U q

2
ðt� t0Þ

� �
(37)

while for the damped regime, the particular solution is given by:

ap
qðtÞ ¼

ðt
0

dt0
hqðt0Þ
mUq

e
m
2m

ðt�t0Þ2sinh

�
Uq

2
ðt� t0Þ

�
(38)

Both solutions are similar in spirit to the particular solution of

the Langevin equation: the source of continued motion in the

system is the colored noise, and in the long time limit, only the
This journal is ª The Royal Society of Chemistry 2012
motion due to the noise remains. From this point of view, the

memory a non-dissipative system such as the Newtonian case

retains of the initial conditions is singular.

We can now calculate Cp by performing an ensemble average

over initial conditions and the noise. In particular, we assume

that we can replace the noise correlations by their expectation

value hhq(t)hk(t0)i ¼ Gqdqkd(t� t0). We also assume that noise and

initial conditions do not cross-correlate, and that in ensemble-

average, the initial conditions of different modes are independent

of each other. Then only the diagonal terms in the modes remain

and, schematically, Cp is given by:

CpðtÞ ¼
X
q

D
a1
qðtÞ2

E
þ
X
q

D
a2
qðtÞ2

E
þ
X
q

D
ap
qðtÞ2

E
(39)

For the oscillatory case, we obtain

Cp ¼
P
q

e�mt=m
hD�

as
qð0Þ

�2E
sin2

�
~U qt=2




þ
D�

ac
qð0Þ

�2E
cos2

�
~U qt=2


iþ Gq

2mkq
� 2Gqe

�mt=m

mm ~U
2

q

� m

m

Gqe
�mt=m

2mkq ~U
2

q

�
~U qsin

�
~U qt


� m

m
cos

�
~U qt


���lq�	lq�� (40)

For the damped case, we find

Cp ¼
P
q

e�mt=m
hD�

aþ
q ð0Þ

�2E
eUqt þ

D�
a�
q ð0Þ

�2E
e�Uqt

i

þ Gq

2mkq

�
1þ e�mt=m


� m

m

Gqe
�mt=m

4mkqU
2
q

h
Uq

�
eUqt � e�Uqt




þ m

m

�
eUqt þ e�Uqt � 2


i��lq�	lq��
(41)

which in the over-damped limit m/m / 0, defaults to the result

for Langevin dynamics if we assume equilibrium noise Gq ¼
G, cq.

In both cases, in the long time limit we recover the an

expression similar to that of the equilibrium result

Cp

��lq� ¼ Gq

2mkq

��lq� (42)

where the initial conditions cease to matter.
D. Sampling, resolution and the Mar�cenko–Pastur theorem

We derive relations which characterize the deviation induced by

finite sampling and finite resolution on the spectral properties of

Cp. For a system of N particles the positions of which are

sampled independently n times with a resolution 3, we will

establish an adapted form of the Mar�cenko–Pastur theorem,

which then allows the derivation of relations between the

moments of the experimentally measured eigenvalue distribution

and the moments of the eigenvalue distribution of the true

correlation matrix. The sampling number r ¼ Nd/n, is defined as

the total number of degrees of freedom (Nd)2 divided by the

number of measurements n � Nd.

In its most general form, the Mar�cenko–Pastur

theorem40,47,48,52 is valid on the ensemble of Wishart random

matrices, that is matrices constructed as Cr ¼ X*X, where
Soft Matter, 2012, 8, 6092–6109 | 6107
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X is a n � p matrix which can be written as X ¼ YC1/2
0 where the

elements of the n � p matrix Y are identically independently

distributed (i.i.d), with mean 0, variance 1 and a finite fourth

moment and C0 is a p � p positive definite matrix. In the

following, we shall use the slightly more specialized derivation

for Gaussian distributions found in Burda et al.52 We thus

assume that Cr is the average of n samplings of xi xj, where the

variables {xi}, i ¼ 1.p are identically and independently

distributed according to a multivariate normal distribution:

P
�
x1;.xp


 ¼ h
ð2pÞpdetðC0Þ

i�1=2

exp

�
� 1

2
xiC

�1
0ij xj

�
: (43)

In the limit n/N, at fixed p, one then clearly has from eqn (43)

limr / 0 Cr ¼ C0.

For a given correlation matrixC, define the (negative) moment

generating function of the eigenvalue spectrum P(l)

mðzÞ ¼
XN
k¼1

mk

zk
; (44)

where mk ¼ hlki. Also define the Stieltjes transform of the

eigenvalue distribution P(l) written as a sum over the poles of

(C � zI)�1 at the eigenvalues

sðzÞ ¼ 1

p
Tr

�
ðC � zIÞ�1

�
; z˛Cþ: (45)

Both are related by

m(z) ¼ �zs(z) � 1. (46)

To see this, note that in the eigenbasis of C, we can write the

Laurent series of the right hand side as

XN
k¼1

1

p

Xp

l¼1

lkl
zk
: (47)

Let us denote P0(l), m0(z), s0(z) the eigenvalue spectrum, the

generating function and the Stieljes transform of the true corre-

lation matrix C0, and Pr(l), mr(z), sr(z) the corresponding

quantities for the experimental Cr. Then the Mar�cenko–Pastur

theorem stated in Burda et al.52 provides an explicit conformal

transformation relating mr(z) to m0(z):

mrðzrÞ ¼ m0ðz0Þ where z0 ¼ zr

1þ rmrðzrÞ: (48)

Burda et al. then derive relations between the moments mr
k and

m0
k through writing the Laurent series in zr on both sides, and

then equating the coefficients of the powers of z�k
r .

We can adapt this approach to include an experimental

Gaussian noise term as follows. If C0 is the true correlation

matrix, let yi ¼ dxi + xi be the particle fluctuations with the

resolution-induced noise included, so that we have P(xi) ¼
[2p32]�1/2exp(�x2/32). The probability distribution of a sum of two

random variables is obtained through a convolution of their

respective probability distributions, so that we have

P
�
yi;.; yp


 ¼ Yp
i¼1

ð
dxiPðxiÞP

�
y1 � x1;.; yp � xp



: (49)

This integral can be calculated by completing the square in the

eigenbasis of C0, and the resulting distribution is simply

Gaussian with variance matrix ~C0 ¼ C0 + 32I.
6108 | Soft Matter, 2012, 8, 6092–6109
Then the correlation matrix which determines the probability

distribution in our system is ~C0 ¼ C0 + 32I and what is measured

is ~Cr, such that limn / N
~Cr¼ ~C0. TheMar�cenko–Pastur theorem

is still valid and we have ~mr(zr) ¼ ~m0(z0). We can then relate the

modified moment generating function ~m0(z0) to the real moment

generating function m0(~z0) through a change of variables ~z0 ¼ z0
� 32. The Stieltjes transform of the new eigenvalue distribution

becomes:

~sðzÞ ¼ 1

p
Tr

�
~C � zI


�1¼ 1

p
Tr

�
C � ~zI


�1¼ s
�
~z


: (50)

We can then derive the moment generating function:

~m(z) ¼ �(z~s(z)) � 1 ¼ �(~zs(~z)) � 1 � 32s(~z). (51)

The first two terms are nothing but m(~z), while one can show

through a Laurent expansion that the last term is given by

32

~z
½1þmð~zÞ�. The relation between the moment generating

functions becomes then

~mðzÞ ¼ m
�
~z

�
1þ 32

~z

�
þ 32

~z
; (52)

from which we derive an adapted form of the Mar�cenko–Pastur

theorem:

~mrðzrÞ ¼ m0ð~z0Þ
�
1þ 32

~z0

�
þ 32

~z0
;

where ~z0 ¼ zr

1þ rmrðzrÞ � 32
(53)

Finally, this allows us to derive relations between the moments

~mrk of the experimentally measured eigenvalue distribution and

the moments of the eigenvalue distribution of the shadow system

mk
0. This can be done through a Laurent expansion in zr on both

sides, together with a Taylor expansion in 32. After a considerable

amount of algebra we find to second order in 32:

~m1
r ¼ m1

0 þ 32

~m2
r ¼ m2

0 þ 2m1
03

2 þ r
�
m1

0


2þ 34
(54)

The central moments, i.e. the mean m and the variance s2, are

more convenient and we find

~mr ¼ m0 þ 32

~s2
r ¼ s2

0 þ rm2
0

(55)

To this order, the second moment does not depend on the

noise, however it comes in at higher orders. For a system with

pure noise eqn (55) gives mn¼ 32 and s2
n¼ r34 (note that for r/ 0,

the second moment of the noise eigenvalue distribution vanishes

as it should). Since for large enough 3, this has to be consistent

with eqn (55), we obtain:

~mr ¼ m0 þ 32

~s2
r ¼ s2

0 þ rm2
0 þ r34

(56)

To convert these relations into useful relations for the density

of states one needs to perform the change of variable u f l�1/2.

Unfortunately, we could not find a straightforward and reliable

way to calculate the moments of this distribution and we had to

rely mostly on numerical results. However in the limit r/ 0, the
This journal is ª The Royal Society of Chemistry 2012
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relation ~C0 ¼ C0 + 32I directly translates to the eigenvalues, i.e.
~l0j¼l0j + 32, and we recover eqn (56) for r ¼ 0. Here we can

perform the change of variables explicitly, and we find to order 32

(written in the most convenient mixture of direct and central

moments):

~mu
0 ¼ mu

0 � 32

2

	
u3

�
0�

~s2
0

�u

¼ �
s2
0


u�32
�hu4i0 � hu3i0hui0


 (57)

It can be shown that the factor multiplying 32 in the equation for

s2 is strictly positive, so that in the limit r / 0, both mean and

variance are reduced proportional to 32.
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