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The dynamics of granular media in the jammed, glassy region is described in terms of ‘‘modes’’, by

applying a principal component analysis (PCA) to the covariance matrix of the position of individual

grains. We first demonstrate that this description is justified and gives sensible results in a regime of

time/densities such that a metastable state can be observed on a long enough timescale to define the

reference configuration. For small enough times/system sizes, or at high enough packing fractions, the

spectral properties of the covariance matrix reveals large, collective fluctuation modes that cannot be

explained by a random matrix benchmark where these correlations are discarded. We then present

a first attempt to find a link between the softest modes of the covariance matrix during a certain ‘‘quiet’’

time interval and the spatial structure of the rearrangement event that ends this quiet period. The

motion during these cracks is indeed well explained by the soft modes of the dynamics before the crack,

but the number of cracks preceded by a ‘‘quiet’’ period strongly reduces when the system unjams,

questioning the relevance of a description in terms of modes close to the jamming transition, at least for

frictional grains.
I. Introduction

The physical processes by which super-cooled liquids, granular

systems, and colloids acquire rigidity are not well understood. At

first sight, the phenomenon of rigidity looks utterly trivial: as

P. W. Anderson1 noticed, We are so accustomed to this rigidity

property that we don’t accept its almost miraculous nature, that is

an ‘‘emergent property’’ not contained in the simple law of physics,

although it is a consequence of them. More precisely, a rigid

system can support shear forces and this implies the existence of

some long-range correlations.

Recently,2–8 intense research has been devoted to this problem

and it has become clear that the emergence of rigidity in soft

matter is likely to be related to a collective phenomenon. Many

hints came from numerical and analytical studies of the jamming

transition of hard and elastic frictionless spheres.2,3 In this case, it

has been shown that when the system acquires rigidity it has no

redundant mechanical constraints. As a consequence, it is in

a marginally stable, isostatic, state. This has dramatic conse-

quences for the vibrational spectrum, which displays a broad

band of soft modes.4,5 The role of these modes in the dynamics

close to the rigidity transition and, more generally, for glassy
aService de Physique de l’ �Etat Condens�e, CEA-Saclay, URA 2464, CNRS,
F-91191 Gif-sur-Yvette, France
bInstituut-Lorentz, LION, Leiden University, P.O. Box 9506, 2300 RA
Leiden, Netherlands
cService de Physique de l’ �Etat Condens�e, CEA-Saclay, URA 2464, CNRS,
91191 Gif-sur-Yvette, France
dInstitut de Physique Th�eorique, CEA-Saclay, URA 2306, CNRS, F-91191
Gif-sur-Yvette, France
eScience and Finance, Capital Fund Management, 6 Bd Haussmann, 75009
Paris, France

† This paper is part of a Soft Matter themed issue on Granular and
jammed materials. Guest editors: Andrea Liu and Sidney Nagel.

This journal is ª The Royal Society of Chemistry 2010
liquids has been emphasized in.6–8 However, the applications and

verifications of these theoretical ideas in experiments are scarce.

A first attempt has been performed for colloidal glasses,9 but

could not reach definitive conclusions. More recently10 experi-

ments were conducted on two-dimensional packings of colloidal

thermosensitive hydrogel particles above the jamming transition

and it was observed that the vibrational spectrum and the nature

of the modes are very similar to those predicted for zero-

temperature idealized sphere models and found in atomic and

molecular glasses. Here we focus on mechanically driven gran-

ular media. These are the physical systems that triggered the

studies of anomalous properties of vibrational modes and

isostatic properties.11,12 Despite this, there is still no experimental

study in the literature on the role of the modes close to the

rigidity transition. The aim of our work is to present a first

analysis of the modes close to the rigidity transition of vibrated

frictional grain assemblies. Note that the presence of friction is

expected to modify the properties of the transition compared to

the ideal case of hard spheres.13,14 In particular, our system seems

to be characterized by micro-cracks of all scales, leading to

‘jumps’ in the position of particles with a power-law distribution

of sizes,15 which makes the analysis in terms of modes particu-

larly tricky. Still, we believe that the tools we developed are

interesting also from a methodological point of view, and will be

useful for analysing other systems that undergo a jamming

transition.

In ref. 16 it was shown that as the packing fraction of a hori-

zontally vibrated monolayer of bidisperse hard grains is

increased beyond a certain packing fraction fJ, the system is able

to support mechanical stresses. This is the rigidity transition,

which appears as a genuine critical point, where a dynamical

correlation length and a correlation time simultaneously diverge,

showing that the dynamics occurs by involving progressively
Soft Matter, 2010, 6, 3013–3022 | 3013
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more collective rearrangements. Contrary to the case of fric-

tionless hard sphere or colloids the pressure does not diverge at

fJ but at a higher density.

Experimentally, we have access to the covariance matrix of the

positions, Cp. ‡ Whether and to what extent this can be inter-

preted in terms of vibrations along some modes is one of the

main open questions that we shall address. We shall also inves-

tigate how the eigenstates and eigenvalues of Cp evolve when

approaching fJ and their relation with the dynamics. In order to

do that, we have to separate signal from noise in the eigenpro-

perties of Cp. This is a common and crucial problem in dealing

with covariance matrices, which will be addressed by using tools

and concepts previously developed and used in other fields like

finance and biology.17–22 For example, in finance, a lot of studies

have been devoted to develop methods to clean the stock returns

covariance matrix from noise.22 The eigenvectors corresponding

to the largest eigenvalues are particularly interesting since they

identify financial sectors and correlated stock clusters. As

a consequence, several works studied how much these are

affected by measurement noise. We face a very similar problem,

since we are also interested in the largest eigenvalues and

corresponding eigenvectors of Cp, which should correspond to

the softest vibrational modes of the system.
II. Experimental system and preliminaries on the
particle positions covariance matrix CP

The experimental set-up and the quench protocols are described

in detail in ref. 16. A 1 : 1 bidisperse monolayer of 8500 brass

cylinders of diameters ds ¼ 4 � 0.01mm and db ¼ 5 � 0.01 mm

stands on a glass plate which is horizontally vibrated at

a frequency of 10 Hz and an amplitude of 10 mm. The grains are

confined within a fixed rectangular metal frame of width L z
100 ds. The packing fraction f can be adjusted by moving

a lateral wall on which we control the pressure. The stroboscopic

motion of a set of 1500 grains in the center of the sample is

tracked with an accuracy of 2.10�3ds. Lengths are measured in ds

units and time in cycle units. The initial protocol produces a very

dense state with a packing fraction of f ¼ 0.8457. The packing

fraction is then decreased by very small steps down to 0.84. For

each f, the plate vibrates 104 cycles during which the pressure at

the wall is stored. At high packing fraction, the mean pressure is

dominated by the static pressure, which is measured by inter-

rupting the vibration. At some f, the kinetic part of the pressure

becomes dominant and this is identified as the jamming transi-

tion, which takes place at fJ ˛ [0.8417, 0.8422].

The main properties of the grain displacements have been

discussed in detail in ref. 16,23. Very recently, we re-examined

these statistics of the displacements and found the rather

surprising results alluded to above, which we report in another

paper of the present special issue.15 First, let us insist on the fact

that the typical displacement of the particles is of the order of

one hundredth of its diameter. Accordingly, all structural

rearrangements are frozen on the experimental time scales: the
‡ We have also studied the covariance matrix of the instantaneous
velocities but at the present stage of the study, it did not provide
further insight. We thus concentrate here on the results given by the
study of Cp

3014 | Soft Matter, 2010, 6, 3013–3022
neighbors of a given particle do not change during the experi-

mental time scale. Second, the motion of the particles, sub-

diffusive at short times and diffusive at asymptotically large

times, exhibits a super-diffusive motion at intermediate time

scales close to the jamming transition. Our recent analysis of the

data shows that this superdiffusion is not induced by long-range

temporal correlations of the velocity field, as we first surmised

in.16 Quite on the contrary, the displacements on the intermediate

timescale are made of a large number of incoherent jumps with

a broad distribution of jump sizes. However, these jumps become

more and more collective as the systems becomes rigid at fJ,

which appears as a genuine critical point, where the dynamical

correlation length diverges.

As stated in the Introduction, our aim here is to further

characterize the dynamics and its spatial organization close to

the rigidity transition by studying the covariance matrix of the

particles positions, defined as:

Cp ¼ hdri, a drj, biT ¼ h(ri, a � hri, aiT) (rj, b � hrj, biT)iT,

where ri, a is the a ¼ x or y Cartesian coordinate of the ith grain

and h$iT denotes the temporal average over an observation

window of duration T.

For solids at thermal equilibrium, the modes of Cp can be

identified with structural vibrational modes because particles

simply oscillate around their equilibrium positions. For example

for crystals at low enough temperature the matrix Cp is equal to

the temperature times the inverse of the Hessian matrix of the

potential energy evaluated for the ground state configuration. In

this case the eigenvectors of Cp are plane waves that identify with

the phonons. In the present case, the system being driven out of

equilibrium, it is not warranted at all that the modes of Cp can be

interpreted as vibrational modes. However, as argued in the

Introduction and as will be confirmed in the following, studying

the spectral properties of Cp remains a powerful tool of investi-

gation, provided that the particles have a well defined average

position: Cp measures the fluctuations around a metastable state

and its spectral properties allow one to interpret these fluctua-

tions in terms of effective excitation modes.

We thus start by investigating the fluctuations of the particle

positions around the average position. Here we focus on a single

component x of the position, but we have checked that the

conclusions are identical for both, confirming that the dynamics

is isotropic as already observed in ref. 16. For a given particle i,

one can compute the average position hxiiT on a time T and the

fluctuations around it dxi(t) ¼ xi(t) � hxiiT. Note that in glassy

disordered systems, this average position can itself evolve with

time and be an extra source of fluctuations. The variance of dxi

over time T characterizes how far the particle is, typically, from

its average position: si
2 ¼ hdxi

2iT. We find (see below) that si

significantly fluctuates from particle to particle, reflecting the

presence of dynamical heterogeneities in the system: while some

particles hardly move during time T, others are able to ‘‘rattle’’

quite a bit (but still on scales much smaller than the grain

diameter!). More precisely, the distributions r(si) are shown on

the right of Fig. 1. When decreasing the packing fraction towards

fJ, r(si) shifts to larger values of si, indicating larger overall

motions for each particle, as expected. As f decreases, r(si)

also broadens significantly demonstrating more and more
This journal is ª The Royal Society of Chemistry 2010
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Fig. 1 Left: Distributions of the position fluctuations r(dxi/si) for four values of the packing fraction and four durations of observation T. We focus on

the top of the distribution, which is compared to a Gaussian (continuous line). Right: (a) r(si) for different f keeping T ¼ 100 constant. The arrow

indicates the direction of decreasing f ˛ [0.8417, 0.8426, 0.8440, 0.8457] (b) r(si) for different T keeping f ¼ 0.8426 constant. The arrow indicates the

direction of increasing T ˛ [102, 103, 104].
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heterogeneities among the particles. Indeed describing the right

tail of the distribution by a power law: r(si) � si
�1�m, one find m

decreasing from z 4 to z 3, when decreasing f towards fJ. As

a matter of fact, for the largest packing fractions, the power-law

tail is so steep that it can as accurately be described by an

exponential. When T increases, the distribution r(si) shifts to

larger values of si as expected, but does not broaden, indicating

that the heterogeneities are already well developed within an

interval of time T ¼ 100. Such observations are yet another

confirmation of the statistical properties of the dynamics studied

in.15,16 Note that the exponent m here should not be confused with

the exponent describing the tail of individual jump sizes, as

defined in ref. 15: here, we characterize the variation of the

vibrations across different grains, and not for a single grain over

time. In order to perceive the difference more clearly, imagine

a case where all particles perform exactly the same motion, be it

a regular random walk or a L�evy flight: in both cases, r(si)

should then be a delta function since there is no dispersion at all.

We then study the distribution of rescaled positions, dxi/si, by

averaging over all times and all particles. The distributions are

computed for four different packing fractions f and four dura-

tions T of the window of observation. They are then ensemble

averaged over the 104/T intervals provided by the full dataset.

From now on all statistical quantities (such as the eigenvalue
This journal is ª The Royal Society of Chemistry 2010
spectra, etc.) are evaluated this way, without further specifying it

except when necessary to avoid confusion.

The distributions shown in Fig. 1 highlight some important

characteristics of the dynamics. The parameter space (f, T) can

be divided into two regions, as illustrated by the hatched line: for

small enough observation duration T or large enough packing

fractions, the distributions are unimodal with a Gaussian core:

particles jiggle around a well defined average position; for longer

T or smaller densities, the distribution starts developing a flat

top, with a poorly defined maximum. This suggest that on these

longer observation times, the average position of a significant

part of the particles is not well defined anymore. Particles either

drift slowly or even find (collectively) another metastable posi-

tion, as suggested by the double peak observed in the case f ¼
0.8417 and T ¼ 104, i.e. for the loosest packing fraction and the

longest observation time. This means that over long time scales,

the evolution of the average position becomes comparable or

even larger than the fluctuations, and it becomes meaningless to

describe the system in terms of small vibrations around a fixed

metastable state. For an infinite size system, some rearrangement

always happens somewhere, and the covariance matrix Cp is

always ill-defined. The ‘‘allowed’’ time scale Tmax(f, L) is

expected to scale inversely with the system size; however, when

Tmax becomes too small, statistical noise becomes dominant and
Soft Matter, 2010, 6, 3013–3022 | 3015
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prevents a reliable estimation of the spectrum of Cp. In the

following sections, we will navigate between these constraints

and try to identify well defined eigenmodes of the motion.
Fig. 2 Spectral properties for the whole system (f ¼ 0.844, N ¼ 1550

particles, T ¼ 100). (a): Normalized spectrum lm vs. m for the experi-

mental data and for the random matrix case (RMs). The (blue) dotted line

with exponent �1/a ¼ �1 is the prediction for the 2D Crystal. (b): The

associated density of states. Dashed lines are guides for the eyes.
III. Spectral properties of CP

In this section we shall study in detail the spectral properties of

Cp. Our aim is twofold: first, as stated above, the spectral

properties are affected by measurement noise for finite T. Thus it

is important to disentangle trivial properties of Cp induced by the

noise from relevant ones, which we do in the first subsection.

Second, we would like to understand whether Cp is indeed

measuring some steady fluctuations around a well-defined

metastable state. We will refer to such a property as robustness

and study it in the next subsection. Third, we will see that the

structure of the modes itself confirms that the 10 first modes are

significantly out of the noise range. In order to do so we

concentrate on one specific case in the middle range of our

parameter space, f ¼ 0.844 and T ¼ 100, for which particle

positions seem to be well defined on the observation window

duration and we consider the whole set of tracked particles N ¼
1500. Given that the correlation matrix is computed in a obser-

vation window T < 2N, there are at the best only T non-zero

eigenvalues amongst 2N. The eigenvalues are normalized by �s2/

Q, where �s ¼ hsiii is the average of the si
0s over all particles and

Q ¼ T/2N is the total number of measured data points 2N � T

divided by the total number of variables 4N2. With such

a normalization, one can easily compare the spectra of Cp for

systems with different average mobility �s as well as for compu-

tations of Cp with different values of Q—for instance when

considering subsystems of smaller size N, as we shall do in the

next section.
A. The role of noise

In order to obtain some hints on the role of noise in the spectral

properties of Cp we will compare our results to the ones obtained

by constructing the covariance matrix with independent identi-

cally distributed random variables zi(t) ¼ hi(t)si, where hi(t) are

iid Gaussian variables and si are positive random variables

following the experimental distribution r(si). Note that si is

constant during each interval of duration T. In this benchmark

model, which we shall refer to as the Random Matrix case

(RMs), the spatial correlations between hi(t) and hj(t), j s i, and

between the different s0s are discarded. By comparison, we will

be able to evaluate the relevance of these correlations in the

experimental system. Our results will also be compared to the

case of a 2-d equilibrium crystal.

Fig. 2 displays the normalized spectrum lm and the associated

density of states r(l) for both the experimental data and the RMs

simulation when f ¼ 0.844 and T ¼ 100. Note that there is

a straightforward correspondence between the behaviour of the

more commonly studied r(l) at large l and that of lm at small m

since 1
N

mðlÞ is exactly the inverse cumulated distribution of l.

Accordingly a power-law behaviour lm � m�1/a translates into

a density r(l) � l�(1+a). For instance a 2D crystal, with a density

of states r(u) � ud�1 ¼ u, with u � 1/l1/2, has r(l) � l�2, that is

a ¼ 1 and lm � m�1 as indicated on the figure by the blue dotted

line. For the random matrix case (RMs), if the distribution r(si)
3016 | Soft Matter, 2010, 6, 3013–3022
has power-law tails with exponent m, then the top eigenvalues of

the correlation matrix also has a power-law tailed distribution,

with exponent 1 + m/2 and r(l) should decay at large l at least as

slow as l�(1+m/2). In the present case, m z 4 and one would expect

a z 2, whereas we measure here 1/a z 1/4. The reason for this

discrepancy is insufficient sampling: as is clear from Fig. 1, right,

there is hardly a factor 10 contrast between the largest s

encountered in the sample and the typical one as given by the

median of the distribution. We have checked that with many

more samples, the expected power-law tail eventually appears.

But we have been careful here to take exactly the same statistics

in the simulation and in the experiment, so that the comparison

made in Fig. 2 is meaningful. The ten largest eigenvalues for the

experimental system are therefore clearly larger than for the

random matrix case. Our data is consistent with a ¼ 2/3, that is

a slower decay of the spectrum than for both the RMs and the

crystal case. This comparison shows unambiguously that the top

eigenvalues of Cp contain useful information about the dynamics

of the system, and are not drowned in noise. It also demonstrates

the existence of strong spatial correlations: by moving together,

particles achieve large collective fluctuations that would not

develop otherwise.
B. Micro-cracks and robustness

As already stressed, in such an heterogeneous system the above

analysis strongly relies on the selection of the observation

windows, in order to ensure that the system remains in a single

metastable state. We thus compute the instantaneous self

density-correlation function:

Cq(t,t0) ¼ hcos(~q$[~ri(t) �~ri(t0)])ii (1)

where~ri(t) is the particles position at time t and~q is a wave vector

whose amplitude is given by q¼ p/a. a is chosen as a small length

scale of the order of a*¼h(~ri(t+s*) �~ri(t))
2i1/2 ¼ 7 � 10�3, where

s* is the timescale at which dynamical heterogeneities are

maximal (see ref. 15 in the present volume for details). The

average is computed over all particles, but not on the initial time
This journal is ª The Royal Society of Chemistry 2010
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t0 and it is not ensemble averaged either. Cq(t, t0) decays to zero

when the average displacement of the particles between time t0

and t0 + t is larger than a.

Ideally, one would like to observe sudden drops of Cq(t, 0) that

signal moments when a significant collective event occurs,

hopefully separated by long enough ‘‘quiet’’ periods. Also, the

same plateaus and cracks should be present for a reasonable

range of length-scales a. This is not the case here, as clearly

observed in Fig. 3(a). For all a ˛ [a*, 10a*], the decrease of

Cq(t, 0) is progressive rather than taking place during sudden

drops. Furthermore, the observation time windows which look

like quiet for a given a, are in fact very jerky when decreasing a.

The reason for these features are (i) the heterogeneity of the

relaxation (for a large enough system, some relaxation event is

always taking place somewhere in the system) and (ii) the scale

invariance of these relaxation events, or ‘‘micro-cracks’’ as

recently pointed out in ref. 15.

This scale invariance makes it very hard (if not impossible) to

define properly the metastable states of the system, and the

corresponding covariance matrix Cp. It suggests to identify

relaxation events not by their size but through an iterative

process such as the one proposed in ref. 24 to identify cage jumps

in the trajectories of particles in a super-cooled liquid. In

a nutshell the algorithm consists in cutting each trajectory in two

sub-trajectories, in such a way that each subset maximizes

a clustering criteria, and in applying iteratively the algorithm to

each subset until the maximization criterion is no more signifi-

cant. As a result one obtains for each particle a set of instants

corresponding to the times when it has relaxed, without
Fig. 3 Relaxation events for f ¼ 0.844. Top: (a) Instantaneous self

density-correlation function Cq(t, t0) as defined in the text. Each curve is

for a different a ˛ [a*, 2a*, 5a*, 10a*] and the arrow indicates increasing a.

(b) Positions of the particles which where identified as significantly

contributing to the relaxation of the system (see definition in the text).

Different symbols indicate different time windows of duration T ¼ 1000.

The square box surrounds the rather inactive region, which we select as the

subset of particles over which we re-compute Cq(t, t0) displaid in (c). The

dotted lines indicate the temporal windows isolated as quiet periods. (d):

Same plot as in (b) but restricted to the period of time t ˛ [3000–6000].

This journal is ª The Royal Society of Chemistry 2010
specifying the amplitude required to relax. Fig. 3(b) displays such

events: at all times some small regions of the system relax, each of

them contributing to a small decrease of Cq(t, 0).

Altogether, when approaching the jamming transition from

above, the system as a whole becomes more and more hetero-

geneous, less rigid, and metastable states harder and harder to

define. This makes the computation of Cp increasingly difficult,

precisely where we would like to use it to characterize the

dynamics. However, one also notices in Fig. 3(b) a region indi-

cated by the square box, where there is little activity as compared

to the rest of the system. Fig. 3(c) again displays Cq(t, 0) but

averaged on the particles belonging to this quiet region only. One

now can better identify periods of time where Cq(t, 0) is rather

constant, independently of a. These sub-regions are rigid during

long enough time intervals to perform the analysis in terms of

modes. In the following we shall refer to these sub-systems and

time-intervals as the ‘‘rigid subsets’’ of the system.

This we confirm by assessing the robustness of the modes. For

that purpose, we compute the following indicator:

RðmÞ ¼
Xj¼þM

j¼�M

�
lm j l

0

mþj

�2
(2)

where hlm|l0m+ji is the scalar product between the modes

computed during two successive observation windows of dura-

tion T. If the two eigenbases are precisely the same, R(m) is equal

to 1 for all eigenvectors lm. Note that the definition allows that

the modes computed in one observation window project onto

any of the (2M + 1) modes of the second basis surrounding mode

m, in order to allow the neighbouring modes to possibly

exchange their rank. For M $ 2 and not too large the results are

basically independent of M. Here we fixed M ¼ 2. One observes

in Fig. 4 that the robustness of the modes is twice larger when

restricting the analysis to the rigid subsets.

Let us finally describe the spectral properties within the rigid

subsets. Fig. 5 displays the distribution r(si) and the spectrum

lm, which we compare to the ones obtained for the whole system

(Fig. 1-right and 2-a). We shall come back to the description of

the distributions r(l) in the next section. The right tail of the

distribution r(si) is more narrow (m x 6) for the subset than for
Fig. 4 Robustness of the modes for f ¼ 0.844 as characterized by R(m)

for T¼ 100 and T¼ 1000; (a) whole set of particles, (b) subset of particles

and observation window identified in Fig. 3 (N ¼ 350 particles, T ¼ 100

and T ¼ 1000).

Soft Matter, 2010, 6, 3013–3022 | 3017
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Fig. 5 Spectral properties computed for the subset of particles and

observation window identified in Fig. 3 (f¼ 0.844, N¼ 350 particles, T¼
100). (a) Density of si for both the whole system and the subset of

interest. (b) Normalized spectrum lm vs. m for the experimental data and

for the random matrix case (RMs). The (blue) dotted line with exponent

�1/a¼�1 is the prediction for the 2D crystal. Dashed lines are guides for

the eyes.
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the whole system (m x 4) confirming that these rigid subsets are

more homogeneous. For the RMs case, the spectrum lm for small

m is again flatter than expected, due to insufficient sampling

(1/a x 1/4 instead of 1/3). More remarkable is the fact that

the spectrum for the experimental system remains well above the

RMs case and that it is almost identical to the one obtained in the

whole system, suggesting that (i) it is not dominated by the shape

of the distribution r(si) but on the contrary unveils non trivial

correlations; (ii) the heterogeneities associated to these correla-

tions are present at all scales.

Altogether, despite rather poor statistics and a significant

amount of noise in the spectral properties of Cp, the difference

reported between the random matrix and the experimental cases

confirms that one can trust the largest eigenvalues and that the

spectrum in the experimental system is mostly governed (in its

top region) by non-trivial spatial correlations.
Fig. 6 Participation ratio of the modes computed within a rigid subset for

both the experimental data and the random matrix case (RMs); f¼ 0.844.
C. The structure of top eigenvectors

We can substantiate this last assertion even more by comparing

the localization properties of the associated eigenvectors. We

start with the RMs case. Assuming that the si are power law

distributed with an exponent m, the maximum smax is given by

the equation

N

ðsmax

0

rðsiÞdsixOð1Þ

, which leads to smax f N1/m. Calling i* the value of i corre-

sponding to the maximum si, one expects in the absence of

correlations that the covariance matrix has a very large diagonal

entry at i* (in the present case, the two eigenvalues corresponding

to the x and y directions are equally large as imposed by the

equally large si in both directions). A reasonable guess, that can

be justified using arguments as the one developed in ref. 25, is that

this leads to the largest eigenvalue and that the rest of the

covariance matrix can be considered as a perturbation. Accord-

ingly the largest eigenvalue in the RMs is given by smax
2 and the
3018 | Soft Matter, 2010, 6, 3013–3022
corresponding eigenvector is completely localized on i*. We have

checked that both facts are indeed very well realized. Note that

similar results hold for the second, third, largest eigenvalues

which are related to the second, third largest value of si.

When considering the experimental covariance matrix, the

largest eigenvalues and their corresponding eigenvectors are

instead very different. This allows us to make clear that they are

not due at all to noise and that spatial correlations are very

instrumental in creating large eigenvalues or large fluctuations in

the particle positions. In order to quantify this effect, we compute

the participation ratio defined as:

PðmÞ ¼ 1

N
PN

i¼1

��~u i
m

��4 (3)

where~ui
m is the normalized displacement of particle i within mode

m. This quantity is such that, if the mode m is completely

localised on one particle, P(m) ¼ 1/N. The other extreme case is

when all the particles contribute equally to the mode: in this case

P(m) ¼ 1. Fig. 6 displays P(m) for both the experimental and the

random matrix cases. It is clear that largest eigenvalues for the

RMs case have a very small participation ratio, as expected since

they are essentially localized on one or a few sites. Instead, the

modes from experiments are characterized by a much higher

P(m), indicating that these modes are delocalized although less

than plane waves for which P(m) ¼ 2/3. Beyond m ¼ 10, the

participation ratio in both cases are very similar, suggesting that

these bulk modes are incoherent and dominated by the local

fluctuations of si, and not by spatial correlations.

After this long but necessary description of the methodology,

we can venture into the investigation of the relevant eigenvalues

and modes structure, when approaching the jamming transition.

On the basis of the above analysis, we will concentrate the

computation of Cp on the rigid subsets and restrict the analysis to,

say, the 10 largest eigenvalues and corresponding eigenvectors.
IV. Towards the jamming transition: mode structure
and dynamics

In the following, we present a quantitative analysis of the modes

and their properties when approaching the rigidity transition. This
This journal is ª The Royal Society of Chemistry 2010
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is to our knowledge the first attempt of this kind for granular

assemblies. We first characterize the mode structure and then assess

the role of these modes in the dynamical evolution of the system.

We focus on the spectral properties of Cp for the four densities

f ˛ [0.8417, 0.8426, 0.8440, 0.8457] following the methodology

outlined in the previous section, i.e. identifying rigid subsets for

which we measure Cp. Then for a given density, we average over

all the available rigid subsets. For the two densest cases, we

identified two sub-regions which are rigid during typically 3000

cycles. Closer to the jamming transition, there is no region, which

remains rigid during more than 400 cycles. We identified 6 of

such rigid subsets for f ¼ 0.8426 and 5 for fJ ¼ 0.8417. In all

cases the regions have about N ¼ 350 particles. An important

observation is that it becomes increasingly difficult to measure

the modes when approaching the rigidity transition. This is likely

related to the findings explained in the companion paper 15 which

show that at fJ the dynamics is due to temporally incoherent but

spatially correlated Levy jumps, corresponding to micro-cracks

of all amplitudes that span the system, making it hard to find sub-

regions where nicely separated, ‘‘big’’ cracks occur.
A. Structure of the modes close to fJ

The study of the spectral properties when approaching fJ unveils

that the softest modes become both softer and more extended

� Mode softness. As observed on Fig. 7, the largest eigen-

value increases when approaching fJ; moreover lm vs. m

becomes steeper in the log-log plot leading to an exponent 1/a

slowly varying between 3/2 and 2. Accordingly the spectrum

develops larger tails and there is a redistribution of spectral

weight towards larger eigenvalues. The situation is clearly

different from the crystal case were 1/a ¼ 1.

� Mode extension. The closest the system is to the jamming

transition, the more coherent and spatially organized the softest

mode is. This is visually clear on Fig. 8, which provides an

example of the softest mode for each packing fraction.
Fig. 7 (a) Normalized spectrum lm vs. � m for f ˛ [0.8457, 0.8440,

0.8426, 0.8417]. As specified in the text, Cp is computed within the subset

of particles (N x 350), with well identified rigid periods. (b) Corre-

sponding eigenvalue densities r(lm).

This journal is ª The Royal Society of Chemistry 2010
Two quantitative results support this last assertion. First, the

participation ratio for the largest modes increases from P(1) ¼
0.2 to P(1) ¼ 0.4 when approaching fJ. Second, spatial corre-

lations within the modes increase. This is measured by

computing the following correlation function:
Cm(r)¼h(~ui
m�h~umi)$(~uj

m�h~umi)ii,j/di,j ¼ r (4)

where the average is computed over all pairs of particles sepa-

rated by r. These spatial correlators are plotted for m ¼ 1 and

m ¼ 10 in the insets of Fig. 8. Clearly, the correlation extends on

a longer distance when the system is closer to fJ. An interesting

feature is that Cm(r) becomes negative for r z 10, indicating

some anticorrelation, which we attribute to the vortices pattern

observed in the modes. Also, the correlation is much weaker for

m ¼ 10 than for m ¼ 1. This effect is further characterized in the

main plot of the same figure, where we plot Im ¼
P

r<5Cm(r)

versus m for the four packing fractions. Not only the modes have

a structure on a larger scale closer to fJ, but also more of them

are structured.
Fig. 8 Top: Four realisations of the first mode (m ¼ 1) for each packing

fraction f ˛ [0.8457, 0.8440, 0.8426, 0.8417]. Bottom: Spatial correlations

within the modes. The main plot provides an estimation of the correlation

length as a function of the mode rank for the four packing fractions.

Insets: spatial correlation for the four packing fractions for the modes

m ¼ 1 and m ¼ 10.

Soft Matter, 2010, 6, 3013–3022 | 3019
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Fig. 9 Projection of the dynamics restricted to the rigid subsets. Top:

Fraction of the dynamics projected on the 10 most significant mode:

hF(10)i vs. s as defined in the text. The arrow on the right indicates the

direction of increasing packing fraction f ˛ [0.8417, 0.8426, 0.8440,

0.8457]. Bottom: Average value of hF(m)i vs. m for different f. The error

bars correspond to the standard deviations of F(m) and the dashed line is

the prediction of eqn (6) for a basis composed of random modes.Pu
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B. Soft modes and dynamics in a metastable state

We now turn to the relation between the modes |lmi and the

dynamics |r(t)i ¼ {~ri(t)}. We first concentrate on the dynamics

restricted to the rigid subsets and consider the projection of the

real dynamics on the modes computed in an observation window

preceding the dynamics by a lag time s. More precisely, let [t, t +

T] be the time window where the basis of eigenmodes {|lmi} is

computed. The dynamical evolution |dr(s)i ¼ |r(t + T + s)i � |r(t

+ s)i is then projected on the modes m and the corresponding

component is rescaled by the amplitude of the dynamics:

cmh
hlm j drðsÞi
hdrðsÞ j drðsÞi (5)

The components cm satisfy
P

m(cm)2 ¼ 1 since the eigenvectors

form a complete basis. We sort the cm in decreasing order c0
k ¼ c1

> c2. > c2N and, following,6 define:

FðmÞ ¼
Xm

k¼1

c2
k (6)

F(m) measures the fraction of the dynamics ‘‘explained’’ by the

m most contributing modes. Here, in the light of the previous

section, we have chosen to consider the 10 first modes, T¼ 100, s
varies from 1 to 1000 cycles and we average F(10) on two initial

times t as well as over all the rigid subsets. Fig. 9-top displays

F(10) for the four packing fractions. Three key aspects emerge

� For all packing fractions F(10) fluctuates around a large

constant value. This shows that even for large s the dynamics is

well described by the 10 most significant modes of Cp as long as

the system remains in a metastable state. From this perspective,

the modes defined by Cp for the rigid subsets give a faithful

representation of the dynamics and can be indeed considered as

effective vibrational modes.

� Interestingly, the average value hF(10)is increases, beyond

error bars, when f increases towards fJ. This indicates that

the 10 first modes concentrate a more important part of the

dynamics as f / fJ, in agreement with the idea that the

dynamics becomes more collective, or structured. This is further

demonstrated on Fig. 9-bottom where hF(m)i is plotted versus m

for the fifty largest modes. The closer to fJ, the larger is hF(m)i.
� The fluctuations of F(10) are clearly more correlated in time

when f decreases, revealing that the modes have a larger char-

acteristic time closer to fJ.
C. Soft modes and cracks: a preliminary analysis

The observations above suggest that when approaching fJ

a smaller and smaller amount of modes concentrate the dynamics

for longer and longer times: the system ‘‘rattles’’ around its

metastable state along more and more preferential and softer

directions in phase space. However, for all the methodology

issues seen above, and because of the lack of theoretical grounds

for frictional systems, determining whether such directions

determine the way the system locally cracks (as seen in other

systems6,26) is an extremely challenging issue in the present

system. Here we provide a first attempt to answer this question,

which obviously deserves further analysis.

We identify in the self-density correlation function Cq(t)

a sudden drop preceded by a quiet period (see Fig. 10-a). We
3020 | Soft Matter, 2010, 6, 3013–3022
compute the covariance matrix of the positions restricted to this

rigid subset before the crack T< ¼ [t1, t2]. We then consider two

further time intervals related to the crack: one during the crack

T¼ ¼ [t2, t3] and one after the crack T> ¼ [t3, t4]. We observe the

real dynamics during these intervals and project the dynamics

onto the first m modes determined before the crack, defining

F<(m), F¼(m) and F>(m). One observes on Fig. 10-(b) that F¼(m)

and F<(m) share a similar behaviour as a function of m, different

from the one of F>(m): both F<(m) and F¼(m) increase sharply at

small m whereas F>(m) only increases for larger m. In all cases

70% of the dynamics is explained by the first ten modes, but only

35% of the dynamics taking place after the crack projects on the

first three modes, whereas this fraction reaches 60% for the

dynamics taking place before or during the crack. A visual

transcription of these numbers is provided by Fig. 10-(c).

These observations suggest that (i) the crack considered here is

really a micro-event in the sense that the dynamics after the crack

still projects on a small amount of modes (here of the order of

ten), (ii) at least for such a micro-crack, there is a selection of

directions in phase space along which the cracks occurs.
This journal is ª The Royal Society of Chemistry 2010
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Fig. 10 Analysis of a relaxation event within a sub-region, following

a quiet period f ¼ 0.8417. Above: (a) Cq(t) indicates a sudden collective

motion of the particles, the so-called ‘‘crack’’. The four arrows enumer-

ated from 1 to 4 indicate the bounds of the time intervals, where the real

dynamics is considered. The quiet period during which the modes are

computed is indicated by the straight horizontal (red) line just preceding

the crack. (b) F(m) vs. m/2N for the three dynamics defined above; the

vertical blue dotted line indicates m ¼ 3. (c) On top of each other the real

dynamics during the three periods of time and its recomposition with the

3 most significant modes.
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V. Discussion and conclusion

This paper is a first attempt to describe the dynamics of granular

media in the jammed, glassy region in terms of ‘‘modes’’, by

applying a principal component analysis (PCA) to the covariance

matrix of the position of individual grains. This is perfectly

justified, and gives sensible results, in a regime of time/densities

such that the average position of the particles is approximately

constant, that is, varies less than the typical fluctuations them-

selves, otherwise both the reference configuration and covariance

matrix itself evolve with time. The time scale over which the

reference configuration can be considered as stable also depends

on the system size, since in an infinite system some rearrangement

takes place somewhere in the system at each instant of time.

For small enough times/system sizes, or at high enough

packing fractions, this stability criterion is approximately ful-

filled and the spectral properties of the covariance matrix reveals

large, collective fluctuation modes that cannot be explained by

a random matrix benchmark where these correlations are dis-

carded. The existence of these collective modes is expected from
This journal is ª The Royal Society of Chemistry 2010
the results of ref. 16 that established the existence of dynamical

correlations, which diverge as the system reaches its rigidity

transition fJ. The analysis in terms of eigenmodes provided here

confirm that the slow, large scale dynamic structures appear

when f / fJ
+, that explain a substantial fraction of the

dynamics.

We then attempted to find some link between the softest modes

of the covariance matrix during a certain ‘‘quiet’’ time interval

and the spatial structure of the rearrangement event that ends

this quiet period. In order to do so, we first tried to identify well-

defined ‘‘cracks’’ that would lend themselves to such an analysis.

This proves to be exquisitely difficult: the rearrangements are

made of micro-cracks of all amplitudes, that span larger and

larger regions of the system as f / fJ and that are at the origin

of the superdiffusive, L�evy flight character of the motion found

in ref. 15. In spite of this difficulty, we have succeeded in iden-

tifying some ‘‘rigid subsets’’ where well characterized cracks

appear. The motion during these cracks is indeed well explained

by the soft modes of the dynamics before the crack. However,

a more systematic analysis should be undertaken because we do

not know at this stage whether the identification of these rigid

subsets induces a strong selection bias on the nature of the cracks

themselves. In the hypothesis where for a majority of cracks we

could even not define the precursor modes then these soft modes

would not be relevant to understand the dynamical evolution of

the system. We believe that this is increasingly the case as one

approaches the rigidity transition, where self-similar micro-

cracks of all scales become overwhelming. In that eventuality, the

analysis in terms of mode would only be useful to characterize

the rigidity of amorphous granular systems, for dense enough

packings where the rigid subsets remain dominant. In all cases,

we believe that the methodology presented here will motivate and

buttress further work in that direction.
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