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Contacts at the Coulomb threshold are unstable to tangential perturbations and thus contribute to

failure at the microscopic level. How is such a local property related to global failure, beyond the

effective picture given by a Mohr–Coulomb type failure criterion? Here, we use a simulated bed of

frictional disks slowly tilted under the action of gravity to investigate the link between the avalanche

process and a global generalized isostaticity criterion. The avalanche starts when the packing as a whole

is still stable according to this criterion, underlining the role of large heterogeneities in the destabilizing

process: the clusters of particles with fully mobilized contacts concentrate local failure. We demonstrate

that these clusters, at odds with the pile as a whole, are also globally marginal with respect to

generalized isostaticity. More precisely, we observe how the condition of their stability from a local

mechanical property progressively builds up to the generalized isostaticity criterion as they grow in size

and eventually span the whole system when approaching the avalanche.
Fig. 1 (a) Generalized isostaticity phase diagram in 2D. In red is the line
Introduction

Understanding the failure of granular packings is of tremendous

importance from both practical and theoretical aspects. Practi-

cally, avalanches are clearly of special interest for industrial and

natural processes. From a more fundamental point of view, the

mechanical rigidity of granular packings is related to the recently

explored field of rheology close to dynamical arrest,1–3 as well as

to the nature of the jamming transition for frictional particles.4–7

Despite many studies both from a continuum and a microscopic

point of view (see, for example, ref. 8–17), the mechanisms of

failure in frictional granular media are still unclear.

Macroscopically, the application of the well known Coulomb

criterion18 requires the knowledge of an effective friction coeffi-

cient, which remains out of reach of most recent developments.

From a microscopic perspective, Maxwell derived a global

stability criterion based on counting the number of independent

contact force components, which has to exceed the number of

degrees of freedom for a packing to be mechanically stable.19

Recently, this isostaticity criterion has been generalized for

frictional packings by including contacts exactly at the Coulomb

threshold in the above counting argument.20,21 Such fully mobi-

lized contacts are prone to tangential slipping, and it was indeed

shown by Staron et al.13,15 that they play a key role in the

destabilization process. A frictional packing of N particles with

mean contact number z and mean number of fully mobilized

contacts per particle nm has only Ndz/2 � Nnm independent force

components, due to the additional restrictions on the tangential

forces. For this packing to be stable, this number has to exceed

Nd(d + 1)/2, the number of degrees of freedom, and the gener-

alized isostaticity criterion in d dimensions reads:
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z $ zm
iso þ

2nm

d
hz

gen
iso (1)

where zm
iso ¼ d + 1 is the isostatic value for infinite friction

packings.20 It can be represented in a (z, nm) phase diagram (see

Fig. 1) where a line of marginal stability divides the stable from

the unstable regions of phase space. Recent molecular dynamics

simulations using an isotropic compression protocol20 have

shown that frictional packings unjam (in the sense that the

pressure p/0 close to the generalized isostaticity line). The final

state is characterized by z(m) and nm(m), where m is the friction

coefficient, and the linear response properties of these packings

suggest that it is the distance to the line of marginal stability,

dzgen ¼ z � zgen
iso , which controls stability.22
of marginal stability (eqn (1)). Frictional packings under isotropic

compression unjam—when compression is released (schematic green

arrow)—at different positions close to this line (crosses) depending on

friction m.20,22 Does a pile slowly inclined under gravity towards

avalanche follow the hypothesized blue line? (b) The system during the

avalanche, at an inclination of 24�, for the details of the coloring scheme

please refer to Fig. 3.
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These promising results, regarding both the global stability

criterion and the details of the microscopic mechanism, raise two

important questions. First, does the stability criterion dzgen >

0 remain valid in more realistic situations, which necessarily

involve finite displacements and anisotropy? More specifically

does a granular layer inclined under gravity follow the hypo-

thetical trajectory plotted in blue in the (z, nm) space in Fig. 1?

Second, what is the link between the microscopic role of fully

mobilized contacts in the failure of the system and the global

generalized isostaticity criterion?

In this paper, we explore these two issues using simulation data

obtained by Deboeuf et al.5 Having precisely isolated the

‘avalanches’ from the ‘quiet periods’, our immediate observation

is that the pile destabilizes when it is still stable according to the

generalized isostaticity criterion. This result prompted us to

investigate the microscopic role of the fully mobilized (or critical)

contacts. These critical contacts form elongated clusters and we

carefully study the relation between them and local failure as

measured by the number of lost contacts. Our main results are

the following: (i) these clusters correlate both spatially and

temporally with failure, (ii) by applying the counting argument at

the scale of these clusters, one finds that their stability condition

builds up progressively from a local mechanical property to the

generalized isostaticity criterion as they grow in size and (iii) their

size obeys critical scaling, with a characteristic length which

approaches system spanning size near the avalanche onset.

Hence the avalanche can be related to a subset of the packing

becoming marginally stable according to the global criterion,

while growing up to the system size. The above scenario is to be

understood as an averaged picture, since these clusters are

constantly destabilized and renewed.
Fig. 2 (a) Distribution of the kinetic energy Ekin of the system averaged

over all frames and all runs. (b) Avalanche criterion: probability density

of the fraction of contacts lost between frames qf (log-binning). The

criterion at 2% of failing contacts is shown in red. (c) Distance from

generalized isostaticity for a sample run; the run is divided into quiet and

avalanching periods (in orange). (d) Probability density of the position of

the system in the generalized isostaticity diagram, overlaid by the trace of

a sample run. The quiet period is shown in black, while the avalanching

period is in red. The system clearly loses stability before crossing the

marginal stability line, and the dynamics during the quiet period is

dominated by the fully mobilized contacts.
Avalanches and stability criteria

The system we study here is a simulation of 2D packings of grains

under gravity. The simulations were performed by Deboeuf

et al.5 using the contact dynamics code developed by Staron,23

which assumes perfectly rigid grains interacting at contacts

through a hard core repulsion and a Coulomb friction law: the

tangential force at contact, ft, is related to the normal force fn by

the inequality |ft| # mfn, where m ¼ 0.5 is the friction coefficient.

Beyond the fact that contact dynamics treats them as strictly

nonsmooth, these contact laws do not differ from those more

commonly used in discrete simulations.24 The system consists of

4000 circular grains with diameters uniformly distributed

between [dmin, dmax] in a way to ensure 20% polydispersity. The

length of the box is about 120dg and the height is about 35dg,

where dg is the mean diameter of the grains. Initially the grains

free fall in the box set horizontally. The box is then tilted qua-

sistatically to the desired inclination q. Deboeuf et al.5 have run

several histories of inclination—including several back and forth

oscillations—to investigate the stress anisotropy. In the present

case, we have selected the final part of the pile history, starting

with a horizontal pile with q0¼ 0� and tilting it in the direction of

positive q until q z 30�. We use 50 independent runs, with

different initial conditions and our results are usually shown as

an average over these runs. For each run, particle positions,

contacts and forces were stored in successive frames separated by
2940 | Soft Matter, 2010, 6, 2939–2943
50 computational time steps, which corresponds to an angle

variation of dq ¼ 0.05�.

Let us first turn to the identification of the avalanche periods.

We are interested in the properties of the packing just before

failure occurs, i.e. for q/qm, where qm, the failure angle, is

known to show considerable statistical variance.5 Obtaining

a good criterion to precisely identify the start of an avalanche is

not straightforward: one possibility with limited resolution is to

consider the probability distribution of the kinetic energy Ekin

(either translational or rotational) and identify as a threshold the

value above which the distribution escapes the power law

reported in the quiet region. A more explicit signature of failure

is given by considering the probability density of the fraction of

contacts lost between two subsequent snapshots qf. As observed

in Fig. 2b, the data clearly fall into two distinct sub-populations

(note the logarithmic scale on the x-axis), which we associate

with the quiet period (left) and the avalanching period (right).

The good separation between the two populations allows us to

apply a cutoff at a maximum of 2% of contacts lost between

frames to determine the end of the quiet period (in red). In

Fig. 2c, this criterion has been applied to a sample configuration,

and it is clearly able to capture the location of significant events

in the packing. We have checked the robustness of this criterion

by varying the cutoff between 1% and 4%, which typically

changes the location of the onset of the avalanche by 1–2 frames,

corresponding to an error in qm of 0.05�–0.1�. The position of the

avalanche onset is very variable from one run to the other and

there may be several avalanches of various sizes within a single

run. In the following all ensemble averages are performed as

a function of qm � q, where qm is the location of the next

avalanche onset. We have checked, performing averages over
This journal is ª The Royal Society of Chemistry 2010
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Fig. 3 Top: Contact properties close to the avalanche onset, qm � q z
0.3�. The critical contacts are shown in green. Particles with at least one

critical contact are black or red (these particles belong to a cluster). The

red ones will slip during the following time step. Particles without critical

contacts are white or blue. The blue particles will fail during the following

time step. The red arrow indicates the direction of gravity. Bottom:

Spatial (left) and temporal (right) correlation between clusters and failure

during the quiet period. Left: Fraction of failure which occurs in a cluster,

Nf
c/N

f as a function of fraction of the system in a cluster, Nc/N. The

dashed line is the limit where failure and clusters are uncorrelated. Right:

Temporal correlation between the maximum cluster size at time t and the

number of particles that fail between t and t + s; the units are frames, each

corresponding to Dq ¼ 0.1�.Pu
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5 subsets of 10 runs instead of over the 50 runs, that our results

are robust against statistical fluctuations.

Fig. 2d shows the probability density of the system in the

parameter space (z, nm), together with the trace of one sample

run. The black and red lines correspond to the quiet and

avalanche periods, respectively. Two features are apparent.

First, the quiet period and the avalanche occupy very well

separated regions of parameter space and the transition

between them is abrupt. During the quiet period, the mean

contact number z is quenched, and all of the dynamics are due

to fully mobilized contacts appearing and disappearing in the

packing (corresponding to an up-and-down motion in the

graph). This is confirmed by our observation that throughout

the pre-avalanche period, particles move typically less than 1%

of their diameter and remain ‘caged’. When the system enters

the avalanche period, the structure of the packing breaks down

and the trace moves along a diagonal. Second, the system

crosses the marginal stability line only after the start of the

avalanche. This means that the generalized isostaticity crite-

rion, eqn (1), is a necessary criterion for stability, but not

a sufficient one.

Generalized isostaticity is a global, mean-field type criterion,

and it is likely to overestimate the stability of the packing if the

system behaves in an heterogeneous way. We have checked that

such heterogeneities are not related to the geometry. If we

exclude the top and bottom single layers of particles, which

cannot easily be integrated into the counting, no part of the

system is critical at the start of the avalanche (note that we only

used the bulk of the system for Fig. 2d). We also have cut the

system both into lanes and several other patterns and found that

the same general conclusion holds: within a scale of a few frames,

the avalanche onset measured by this method is the same for all

sub-parts of the system ensuring that the avalanche is truly

a global property of the system (see also Fig. 4b). Note that for

a granular bed much deeper than our relatively shallow layer of

particles, one may observe a stronger dependence of nm on depth

than in the present case and that the system could then eventually

separate.
Critical contacts and failure

Inspired by Staron’s work,13 we identify the critical contacts as

a natural candidate for the source of the heterogeneity suggested

by the above observations. Since the contact number is quenched

during the quiet period and all changes in dzgen are borne by the

critical contacts, while the remainder of the system does not

contribute, we can divide the system into two subpopulations:

those particles with at least one fully mobilized contact, and

those without. Fig. 3, top, illustrates the critical contacts close to

the onset of the avalanche. It becomes apparent that the particles

with critical contacts (black and red) organize in rapidly fluctu-

ating clusters. To define these clusters, we first select all the

particles that have, at least, one critical contact. Among these, we

group together particles that share a contact (this shared contact

is not necessarily critical).

We now turn to the relation between clusters of particles with

critical contacts and local failure, as measured by the contacts

lost between two consecutive frames. We first note that there are

two scenarios leading to the failure of a contact. Either the
This journal is ª The Royal Society of Chemistry 2010
contact is critical and slips (red particles in Fig. 3), or the contact

is not critical but is lost in the following step (blue particles in

Fig. 3). To investigate what is the most common type of failure,

the one represented by the blue or red particles, we computed

both spatial and temporal correlations between clusters and

failing contacts. Even though less than half the system is part of

a cluster, most of the failure occurs within clusters. This is

confirmed in the bottom-left figure which shows that the fraction

of particles that have a critical contact and fail is much higher

than the fraction of the system that has a critical contact. If

having a critical contact was not relevant for failure, these frac-

tions should be the same (dashed line).

Similarly, we track the size Sm of the largest cluster in the

system and correlate it with the number of contacts Nf that fail in

the following frames using
CðsÞ ¼
P�

Sm

�
k
�
� hSmi

��
N f ðk þ sÞ �

�
N f
��

�
VarðSmÞVarðN f Þ

�1=2
(2)
Soft Matter, 2010, 6, 2939–2943 | 2941
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Fig. 5 Cluster size distribution r(s) at different distances from the

avalanche onset, ensemble averaged over an angular interval of Dq ¼
0.5�. The arrow is in the direction of approaching the avalanche. From

left to right, (q � qm)-values: �14.4� (green plusses), �4.6� (blue trian-

gles), �0.75� (red squares), �0.25� (black circles) and during the

avalanche (purple diamonds). Lines are fits to eqn (3), and the dashed line

indicates a slope of �2.5. Insets: (a) x and (b) maximum cluster size Smax

as a function of q � qm, the distance to the avalanche onset.
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where the limits on the sum are chosen such that both k and k + s
fall within the quiet period. The mean and the variance are

computed over the same set of frames. As shown in Fig. 3

bottom-right, both quantities are correlated during the whole

quiet period, but the maximum correlation happens at s ¼ 0: just

after the cluster size peaks, the failure rate is enhanced by about

40%. The slow decay for s > 0 is due to the persistence of clusters,

since most of the critical contacts tend to belong to particle pairs

which repeatedly form and lose contact. In contrast, during the

avalanche, both the correlations between clusters and failure and

the directionality of the clusters are lost (see Fig. 1), a signature

of the breakdown of the structure of the system.

The clusters of particles with at least one critical contact hence

appear as natural candidates for being the seeds of the destabi-

lization process. However, for stability reasons, this is far from

trivial. Let us recall here that for one particle to be stable, it must

satisfy the local stability criterion z � 2nm/d $ 1/2(d + 1), which

states that the dz � 2nm force components need to be able to

constrain the 1/2d(d + 1) degrees of freedom of the particle. The

particles which belong to these clusters have by construction

a minimal nm ¼ 0.5 (at least one critical contact shared by two

particles). The average number of contacts for the whole pile is

hzi x 3.5. Thus these particles easily satisfy the local stability

criterion. However when such individually stable particles

aggregate into clusters, one expects that above some mesoscopic

size, the cluster will need to satisfy the global criterion in eqn (1).

Assuming for the moment that the average contact number

within the clusters is also close to hzix 3.5, one finds that these

clusters are prone to be marginally stable as confirmed in Fig. 4,

where one can see that the clusters straddle the marginal stability

line during the quiet period (in black) and hence are highly

unstable to perturbations. And indeed one observes visually that

the clusters are very intermittent, constantly losing and gaining

particles, vanishing and reforming in contrast with the remainder

of the system which is always far removed from isostaticity

during the quiet period. Hence, it is not clear that the clusters can

grow up to a system spanning size.

As a matter of fact, this complex dynamics leads to an inter-

esting critical feature for the cluster size distribution. As shown in
Fig. 4 Probability density of the position of the clusters in the gener-

alized isostaticity diagram, before the avalanche in black, and during the

avalanche in red. The clusters straddle the marginal stability line during

the quiet period. The z-distribution of the remainder of the system is

shown below; note that since nm ¼ 0 for this subset, we have ziso ¼ 3.

2942 | Soft Matter, 2010, 6, 2939–2943
Fig. 5 it develops larger and larger tails when approaching the

avalanche onset. These distributions are indeed well fitted by

a power law with an exponential cut off, the characteristic

lengthscale of which increases sharply when approaching the

avalanche onset:

rðsÞ ¼ 1

sd
e�s=x (3)

where s is the size of the cluster in particles. We have estimated

d ¼ 2.5 � 0.25 from the distribution just above onset (see dashed

line) and the inset (a) displays the cluster scale x as a function of

the distance to avalanche onset. We observe a sharp upturn close

to the avalanche, especially in the last 10 frames. Similarly, the

ensemble-averaged size of the largest cluster also grows and

presents an upturn just before the onset of the avalanche (see

inset (b) of Fig. 5). Hence, despite their intrinsic marginal

stability, and provided that the clusters are indeed quasi unidi-

rectional, which was also established in ref. 15, the maximal size

recorded here corresponds to clusters reaching system-spanning

size at the onset of the avalanche.

In the above discussion, we have assumed that the average

contact number inside the clusters is roughly equal to the one for

the whole pile. However given the increase of the exponential cut-

off when approaching the avalanche, one suspects that the

average contact number and to a lesser extent the average

number of critical contacts actually depend on the cluster size. To

elucidate this last point, we compute the distributions of dz¼ z�
2nm/d within clusters of a given size N (see Fig. 6 (top)). Apart

from discretization effects at small size and the shrinking of the

width with � N�1/2, the distributions progressively shift from

negative dz to a slightly positive one. This is further illustrated in

the inset of Fig. 6 (bottom), where one clearly observes that the

global stability criterion is not satisfied for clusters smaller than

4, as it does not need to be. Note also that the minimal value of dz

goes from the marginal local criterion for the smallest size (all

studied clusters must be composed of locally stable particles) to

close to the global stability criterion for the largest size (Fig. 6
This journal is ª The Royal Society of Chemistry 2010
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Fig. 6 Cluster size effects on stability: (top) distribution of dz for

different cluster sizes, with binning that reflects the fundamental

discreteness of the distributions. The curves have been shifted for clarity.

(Bottom) In black (squares) is hdzi for different cluster sizes and the

global stability criterion (dash-dot line). The blue circles are the minimal

dz obtained for each cluster size; the dashed line is the marginal stability

criterion for a single grain. Inset: hzi and hnmi for the different cluster

sizes in the generalized isostaticity phase diagram.
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(bottom)). This is obviously a consequence of the narrowing of

the distribution when increasing the cluster sizes. However,

the important point is that if the clusters are to be stable, the

distribution must have a minimum dz larger than or equal to the

stability criterion dzmin for this cluster size, which scales with

the fraction of boundary contacts,19 so that we have dzmin�N�1/2

as well. Hence in the limit of large N, the distributions must be

centered around a strictly positive <dz>. Altogether these clus-

ters appear to be dynamically selected according to their

stability, which from a local mechanical property progressively

builds up self consistently with their size towards the generalized

isostaticity criterion.

Conclusion

The picture that emerges from this analysis is the following. The

idea that the whole system is isostatic at the avalanche onset is

too simple because it ignores the anisotropy and inhomogeneity

of the pile, which translates to the critical contacts. These

important effects of the anisotropy have been strongly empha-

sized before5,15 and it is clearly too strong an assumption to

ignore them.25 This suggests an even deeper history dependence

of frictional piles, which calls for a refined description of the

texture beyond the introduction of the number of critical

contacts. For the isotropically compressed packings ofref. 20 and

22, it was also noted that only extremely slowly equilibrated
This journal is ª The Royal Society of Chemistry 2010
packings unjam at dzgen ¼ 0; for those packings, the critical

contacts are indeed randomly distributed.26 The appearance of

system-spanning marginally stable clusters is an intriguing

mechanism of unjamming; one which cannot exist in frictionless

systems if the packing structure and hence the local contact

numbers are to remain homogeneous. This suggests that the

frictional and the frictionless jamming transitions may be more

different than expected. Further insight in that matter could be

gained from new experiments with two dimensional packings of

photoelastic discs; in particular, the generalized isostaticity

diagram could have direct relevance to the cyclic shear experi-

ments of ref. 27.
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