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Abstract. In a recent publication we established an analogy between the free
energy of a hard sphere system and the energy of an elastic network. This
result enables one to study the free energy landscape of hard spheres, which
was previously accessible only via density functional theory. In our formalism
normal modes can easily be defined and computed. In this work we use these
tools to analyze the activated transitions between meta-basins, both in the
ageing regime deep in the glass phase and near the glass transition. We observe
numerically that structural relaxation occurs mostly along a very small number
of nearly unstable extended modes. This number decays for denser packing
and is significantly lowered as the system undergoes the glass transition. This
observation supports the assertion that structural relaxation and marginal modes
share common properties. In particular, theoretical results show that these modes
extend at least on some length scale l∗ ∼ (φc − φ)−1/2 where φc corresponds to
the maximum packing fraction, i.e. the jamming transition. This prediction is
consistent with very recent numerical observations of dynamical length scales
in sheared systems near the jamming threshold, where a similar exponent is
found, and with the commonly observed growth of the rearranging regions with
compression near the glass transition.
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A colossal effort has been made to characterize the spatial nature of the structural
relaxation near the glass transition. Numerical simulations [1] and experiments [2, 3]
have shown that the dynamics in supercooled liquids is heterogeneous and becomes more
collective as the glass transition is approached. Both the string-like [4] and the compact [5]
aspects of the particle displacements have been emphasized. Nevertheless, the cause of
such collective motions remains debated [6, 7]. To make progress, one would like to relate
these motions to other objects. A possible candidate is the excess of low frequency modes
present in all glasses, the so-called boson peak [8]. Because these modes shift in general
to lower frequencies as the temperature increases toward the glass transition temperature
Tg, it has been proposed that they are responsible for the melting of the glass [9, 10]. This
suggests the use of widely employed tools, such as the low frequency instantaneous normal
modes [11] or the negative directions of saddles of the potential energy landscape [12],
to analyze the collective motions causing relaxation. Nevertheless, this approach has the
major drawback of being based on energy instead of free energy. As such, it cannot be
applied for example to hard spheres or colloids, where structural relaxation is also known
to be collective; see e.g. [3]. In this case barriers between metastable states are purely
entropic. More generally, one expects entropic effects to be important for glasses where
hard core repulsions and non-linearities are not negligible, which is presumably the case
in general above Tg [13].

Recent developments make this analysis possible for hard sphere systems. In [14], we
derived an analogy between the free energy of a hard sphere glass and the energy of a
weakly connected network of logarithmic springs. This allows us to define normal modes,
that can be compared with the dynamics. Furthermore, recent results [15]–[17] valid for
weakly connected networks, such as elastic particles near jamming [18, 19]—where scaling
laws relating packing geometry and vibrational properties were first observed—or simple
models of silica [20], apply for characterizing these modes: (i) excess modes appear above
some frequency ωAM which depends on the pressure p and the coordination z, whose
definition will be recalled below for hard spheres. These anomalous modes extend at least
on a length scale l∗, which depends on z and diverges near maximum packing [16, 17, 19].
The predicted dependence of l∗ was checked in [21] by considering the response to a
point force. (ii) Metastable states can exist only if they contain a configuration for which
ωAM > 0. This leads to a non-trivial scaling relationship between p and z that must be
satisfied in the glass phase. Numerically, we observed that the hard sphere glass lies close
to marginal stability: the coordination is just sufficient to maintain rigidity [14]. This
implies that anomalous modes are present at very low frequency.

In this work, we study how low frequency modes take part in the structural relaxation,
both during the ageing dynamics deep in the glass phase, and in the vicinity of the glass
transition where the system is at equilibrium. We show that when relaxation occurs
between metastable states, the system yields in the direction of the softest modes: most
of the amplitude of the observed displacements can be decomposed on a small fraction
of the modes, of the order of few per cent. This observation supports that the collective
aspect of the relaxation does not stem from the non-linear coupling of localized relaxation
events, but rather from the extended character of the softest degrees of freedom. This
suggests that the typical size of the events relaxing the structure increases as the extension
of the anomalous modes l∗ ∼ (φc − φ)−1/2 ∼ p1/2, which diverges deep in the glass
phase.
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We start by recalling some results of [14]. In a metastable state of a hard sphere
system, one can define a contact network [22]: two particles i, j are said to be in contact if
they collide during some interval of time t1, where t1 is chosen to be much larger than τc,
the collision time, and smaller than the structural relaxation time τ where metastability
is lost. The contact force fij is defined as the time average rate of momentum exchange
in collisions between i and j. We define the average contact force 〈f〉 ≡ 〈fij〉ij, where 〈〉ij
denotes an average over all contacts. The coordination number z of this network is defined
as the average number of contacts of the particles in the system. An approximation of
the Gibbs free energy G can then be expressed as a sum over all the contacts 〈ij〉:

G = −kT
∑

〈ij〉

ln(〈hij〉t) (1)

where hij = rij − ri − rj is the gap between particles i and j, rij is the distance between
them, ri denotes the radius of particle i, and 〈〉t is a time average. Equation (1) has two
main limitations: (i) it is only exact near the maximum packing fraction φc where the
pressure diverges and (ii) to perform the time average one requires a strong separation
of time scales between τc and τ . Thus equation (1) is a better approximation deep in
the glass phase. Nevertheless the corrections to equation (1) are found to be rather
small empirically [14, 17], and we shall use equation (1) to study the vicinity of the glass
transition (φ ≈ φ0, where φ0 is the packing fraction above which equilibrium cannot be
reached with accessible numerical time scales) as well.

Equation (1) can be expanded around any equilibrium position3. For a contact ij, one
finds for the force V ′

ij = −kT/〈hij〉t and for the stiffness V ′′
ij = kT/〈hij〉2t . This enables one

to compute the dynamical matrix M [23] which relates a small applied force to the linear
displacement of the average particle positions. Normal modes can then be computed,
whose angular frequencies are the square roots of the eigenvalues of M. In what follows
we locate quiet periods of the dynamics where M can be estimated. Then, we use the
normal modes to analyze the subsequent structural relaxation.

We consider a bidisperse two-dimensional hard sphere system. Half of the particles
have a diameter σ1 = 1, the other a diameter 1.4; their mass is m = 1, and energies are
expressed in units of kT . To study the ageing dynamics, configurations are generated
in the glass phase (φ0 ≈ 0.79 ≤ φ ≤ φc ≈ 0.84) as in [14]. An event-driven code is
used to simulate the dynamics. We observe long quiet periods, or metastable states,
interrupted by sudden rearrangements, or ‘earthquakes’. Such earthquakes correspond
to collective motions of a large number of particles, and have been observed in various
other ageing systems, such as colloidal paste and laponite [24], and in Lennard-Jones
simulations [25, 26]. Even for our largest numerical box of N = 1024 particles, deep in the
glass phase these events generally span the entire system. They appear as drops in the
self-scattering function C(�q, t) ≡ 〈exp[i�q · (�Ri(t) − �Ri(0))]〉i, where 〈〉i is an average over

all particles and �Ri(t) is the position of particle i at time t. An example of earthquake is
shown in figure 1.

3 In a metastable state the average contact forces must be balanced on each particle; otherwise particles would
accelerate. Within the approximation of equation (1), which estimates forces within a few per cent accuracy
throughout the glass phase [14], this implies that the average configuration in a metastable must be at a minimum
of G, since forces are balanced only for such configurations.
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Figure 1. Left: self-density correlation function C(�q, t) versus time (expressed in
units of σ

√
m/kT ) for q = 2π/σ1 in a system of N = 256 particles, at packing

fraction φ = 0.837. Metastable states appear as plateaus of C(�q, t), whereas the
drops of C(�q, t) are the aforementioned earthquakes. Time averages are made
during the time segments t1. Right: displacement field of the corresponding
earthquake. Arrows connect the average particle positions before and after the
earthquake, they are amplified four times here for visibility. For similar data for
a 3D LJ case see [25].

In what follows the average particle position in a metastable state l is denoted as
|Rl〉 ≡ {〈�Ri〉t}, i = 1, . . . , N . In practice the time averaging 〈〉t is over a long time t1
corresponding to few hundred collisions per particle (we use t1 = 105, 5 × 104 numerical
time steps for respectively N = 1024 and 256 particles). The earthquake displacement field
|δRe〉, between two metastable states l and m, is then defined as |δRe〉 ≡ |Rm〉 − |Rl〉;
see figure 1(b). During earthquakes, we find that the average particle displacement is
typically 10%–20% of the particle diameter, and tends to decrease with the pressure.

To analyze these displacement fields, we compute the average of the particle positions
and the contact network in the metastable state prior to the earthquake4. This enables us
to define M and the normal modes |δRα〉, where the label α = 1, . . . , 2N ranks the modes
in order of increasing frequencies ωα. An example of the density of states D(ω) is shown
in figure 2(a), and the lowest frequency mode in figure 2(b). We indeed observe extended
anomalous modes at very low frequencies, in agreement with the marginal stability inferred
from the microscopic structure of the glass [14]. Note that we occasionally observe a
few unstable modes even deep in the glass phase, implying the presence of saddles (and
multiple configurations of free energy minima) or ‘shoulders’ in the metastable states we
are considering. In the present work we do not focus on this aspect, and treat unstable
modes the same as the rest.

We then project the earthquake displacement |δRe〉 on the modes and compute

cα = 〈δRe|δRα〉/〈δRe|δRe〉, where 〈δRe|δRα〉 ≡
∑

i δ
�Re

i · δ �Rα
i . The cα satisfy

∑
α cα

2 = 1
since the normal modes form a unitary basis. To study how the contribution of the modes

4 Very close to φc (for 〈f〉 > 5 × 103), ‘rattlers’ [18] are present, which are systematically removed from our
analysis [14].
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Figure 2. Left, straight curve: D(ω) computed in the metastable state prior
to the earthquake of figure 1 versus ω/〈f〉, the angular frequency rescaled with
respect to the average contact force 〈f〉. Dotted curve: g(ω) versus ω/〈f〉. Right:
lowest frequency normal mode.

depends on frequency, we define g(ω) = 〈cα
2〉ω, where the average is over all α such that

ωα ∈ [ω, ω + dω]. Figure 2(a) shows g(ω) for the earthquake shown in figure 1. The
average contribution of the modes decreases very rapidly with increasing frequency, and
most of the displacement projects onto the excess modes present near zero frequency. This
implies that the free energy barrier crossed by the system is located in the direction of
the softest degrees of freedom.

To make this observation systematic, we introduce the label i to rank the c values in
decreasing order: c1 > c2 · · · > c2N . Then we define

F (k) ≡
k∑

i=1

c2
i . (2)

F (k) indicates which fraction of the total displacement is contained in the k most
contributing modes. If F (k) = 1 ∀k then only one mode contributes. If F (k) = k/2N
all modes contribute equally. We then define k1/2 as the minimum number of modes
contributing to 50% of the displacements, i.e. the smallest k for which F (k) > 1/2.
Figure 3 shows F (k) and F1/2 ≡ k1/2/(2N) for the 17 cracks studied. Figure 3(b) shows
that 0.2% < F1/2 < 2% for all the events studied throughout the glass phase. We thus
systematically observe that the extended earthquakes correspond to the relaxation of a
small number of degrees of freedom.

We now extend this analysis to an equilibrated supercooled liquid. We equilibrate at
0.77 ≤ φ ≤ 0.786. As previously observed e.g. in [5], the dynamics is heterogeneous in
time, and sudden rearrangements still occur on time scales of the order of τ , the time scale
of the α relaxation5. We use the procedure previously described to determine the average
configuration of metastable states, and to define the displacement relaxing the structure;
see figure 4(a). We start by studying five packing fractions in a system of N = 64 particles.
For this size, rearrangements generally span the entire system. A similar observation was

5 We define τ as the time for which C(�q, τ ) = 0.3.
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Figure 3. Left: examples of F (k) versus k/2N for systems with different average
contact force 〈f〉. 〈f〉 is measured before the earthquake. It is proportional to
the pressure near φc, and is of the order of 20 near the glass transition φ0. Right:
F1/2 versus 〈f〉 for N = 256 (circles) and N = 1024 (diamonds) particles.
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Figure 4. (a) C(�q, t) for an equilibrated system of N = 64 particles at φ = 0.786.
The segment t1 corresponds to 104 numerical time steps, which corresponds
roughly to 300 collisions on average per particle. (b) 〈F1/2〉 versus φ for
t1 = 5 × 104 (circles) for N = 256 and t1 = 104 (triangles) for a system with
N = 64. The average number of collisions per particle is written in the legend
and denoted by nc. (c) 〈F1/2〉 versus τ for two different system sizes. Inset:
relaxation time τ versus φ for N = 64 (triangles) and N = 256 (circles).

made for a three-dimensional Lennard-Jones system of 125 particles [5]. For each packing
fraction, F (k) and F1/2 are computed for seven relaxation events. Results for 〈F1/2〉 are
presented in figure 4(b) as a function of packing fraction. We find that 〈F1/2〉 ≤ 4% for all
φ studied, implying that also in this region of the supercooled liquid phase a small fraction
of the low frequency modes contribute to the relaxation events. Interestingly, this fraction
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Figure 5. (a) Displacement field corresponding to the relaxation event of
figure 4(a). Arrows were multiplied by 1.2. (b) Lowest frequency normal mode,
which has the highest projection in this particular case. In this example one
mode contributes most of the displacement. (c) Relaxation event in a system of
N = 256 particles at φ = 0.786. (d) Projection of the displacement (c) on the
3% of the modes that contribute the most to it.

decays significantly as the relaxation time grows, suggesting a rarefaction of the number
of directions along which the system can yield near the glass transition. This is supported
by other numerical approaches [27, 28]. For the largest φ ≈ 0.786 we studied, 〈F1/2〉 ≤ 2%,
which implies that the collective event relaxing the system corresponds mainly to one or
two modes. Figures 5(a) and (b) compare one event and the mode that contributes most
to it, which turns out to be the softest mode in this particular example.

Size effect : We now consider a system of N = 256 particles. An example of relaxation
is shown in figure 5(c). We observe for this system size that a larger fraction of the
particles stay motionless. It is also interesting to compare for the same system size the
ageing dynamics deeper in the glass phase; e.g. figures 1(b) with 5(c): as was previously
observed for LJ systems [25], the collective rearrangements at equilibrium involve fewer
particles than earthquakes, but move them more. Nevertheless in the equilibrated case as
well, we shall see now that the observed displacement projects on a very small fraction of
the normal modes. To study this question we perform the analysis introduced above, and
compute 〈F1/2〉 by averaging on twelve events for the five packing fractions considered.
Results are shown in figure 4(b): they are qualitatively similar to those for the system
with N = 64, but the values of 〈F1/2〉 are larger by approximately 0.5%. Nevertheless, it
is well known that the glass transition occurs at lower packing fraction for smaller systems
[29]; see the inset of figure 4(c). When plotted versus relaxation time, see figure 4(c), the
difference between the values of 〈F1/2〉 in the two systems is reduced and less systematic,
and 〈F1/2〉 becomes in fact smaller for N = 256. Thus, even when embedded in a system
containing quiet regions, relaxation occurs along the softest modes.

For kinetically constrained models [30], that have been proposed as paradigms for
glassy dynamics, heterogeneous dynamics can arise from simple local microscopic rules.
Our result that collective rearrangements correspond mostly to a few (and therefore
necessarily reasonably extended) modes supports an alternative view: elementary
relaxation events are already extended objects, as are the soft degrees of freedom of the
system. We now argue that these modes are the anomalous modes [15, 16] described in
the introduction. Our justification for this lies in the microscopic structure of the glass: as
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evoked above, imposing the marginal stability of these modes leads to a power-law relation
between coordination and pressure that is indeed observed in the glass phase [14]. If other
soft objects (e.g. local configurations particularly soft due to disorder) were driving the
dynamics, it is unlikely that the glass would freeze in this specific region of the phase
space6.

More needs to be known on the statistical properties of the anomalous modes, for
example on the curly aspect of their displacement field or on their apparent capacity to
form intense flow lines or strings. This problem turns out to be equivalent to the statistics
of force chains in amorphous solids [31], a much studied problem in the granular literature,
but which still lacks a definite answer. Nevertheless, we know that the anomalous modes
are characterized by some length scale l∗ ∼ p1/2 above which the softest modes must
extend [15]. The observation that the softest modes dominate the relaxation supports the
assertion that regions of size at least l∗ ∼ p1/2 ∼ (φc −φ)−1/2 must rearrange. Very recent
numerical work on sheared systems near them jamming threshold [32] tend to support our
views, as in this case rearrangements are characterized by a diverging length scale with
an exponent 0.6± 0.1, consistently with the idea that relaxation occurs along anomalous
modes. This is also consistent with the growing dynamical length scale observed near the
glass transition. Nevertheless in this case the length scales at play, typically about 5 or 10
particles, are too small for comparing different theories [33]. More stringent tests could
be performed near maximum packing, where a diverging length scale is expected. This
could be tested experimentally, e.g. by considering the intermittent ageing dynamics of
colloids at large osmotic pressures.

Our work supports a unified description of the structural relaxation and the packing
geometry, where the dynamics corresponds to the collapse of anomalous modes, and where
the microscopic structure is fixed by their marginal stability. Note that the theoretical
framework used here applies identically in three dimensions, where we expect our results to
be valid as well. This scenario may also hold for other glasses, for example in the Lennard-
Jones case where anomalous modes are also present [34]. Nevertheless in this case, as for
any long-range interaction potentials, l∗ is bounded above and does not diverge in the
glass phase.

We thank J-P Bouchaud, L G Brunnet, D Fisher, O Hallatschek, S Nagel and T Witten for
helpful discussion and L Silbert for furnishing the initial jammed configurations. C Brito
was supported by CNPq and M Wyart by the Harvard Carrier Fellowship.
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