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Abstract. – We study theoretically and numerically the microscopic cause of the rigidity
of hard-sphere glasses near their maximum packing. We show that, after coarse-graining over
time, the hard-sphere interaction can be described by an effective potential which is exactly
logarithmic at the random close packing φc. This allows to define normal modes, and to apply
recent results valid for elastic networks: rigidity is a non-local property of the packing geometry,
and is characterized by some length scale l∗ which diverges at φc (Wyart M., Nagel S. R.
and Witten T. A., Europhys. Lett., 72 (2005) 486; Wyart M., Silbert L. E., Nagel S. R.
and Witten T. A., Phys. Rev. E, 72 (2005) 051306). We compute the scaling of the bulk and
shear moduli near φc, and speculate on the possible implications of these results for the glass
transition.

Hard spheres present a glass phase between φ0, where the glass transition occurs and
structural relaxation becomes unobservable, and φc, where the pressure p diverges. In this
region this system is solid and resists to shear on any measurable time scales. Although
a large amount of works focused on the super-cooled liquid, the glass itself received less
attention. In particular, there is no undoubted microscopic theory to explain its mechanical
properties and its rigidity. In the cage-escape picture [1], the cage formed by the neighboring
particles tightens as φ increases, and the typical time for a particle to escape its cage grows
and eventually diverges. Nevertheless, Maxwell showed that the stability against collective
motions of particles is more demanding than against individual particle displacements: in
particular z = d + 1 inter-particle contacts are sufficient to pin one particle in d dimensions,
whereas zc = 2d contacts in average are required to guarantee mechanical stability [2]. Thus
considering a priori rigidity as a local property may be inappropriate.
Recently, several works [3–8] studied the mechanical properties of weakly-connected elastic

networks with an average contacts number —the coordination number— z close to the critical
value zc = 2d, such as those encountered for athermal repulsive short-range particles above
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φc [5, 6]. In particular it was shown that: i) These systems present an excess of vibrational
modes at low frequency in comparison with normal solids [6]. These anomalous modes are
characterized by some length l∗ ∼ δz−1 [3, 4], where δz ≡ z − zc. ii) Rigidity can occur only
if δz ≥ C0

√
p/B on any subsystems of size l ≥ l∗, where C0 is a constant and B is the bulk

modulus [4]. Thus rigidity is a non-local property of the packing geometry. iii) The shear
modulus G satisfies G/B ∼ δz, as observed numerically [6] and confirmed theoretically [8] for
repulsive systems.
Can these results apply to hard-sphere glasses? On the one hand, hard spheres are weakly

connected at high packing fraction, being exactly z = zc at φc as was shown theoretically [9–
14]. On the other hand, all the results established for elastic networks require a smooth
potential to expand the energy and define normal modes. It is in principle problematic in
hard sphere systems where the potential is discontinuous. In this letter we show that, once
a coarse-graining in time is made, hard spheres interact with a continuous effective potential,
which becomes exactly logarithmic as φ → φc. This allows to define normal modes and to
derive new results on the rigidity and the mechanical responses of the glass near φc.
We consider a hard-sphere glass, where particles collide elastically, at high packing fractions

φ close to φc, where structural relaxation is frozen. The particle diameter defines the unit
length. Since temperature only rescales the time unit we fix β = 1. Following [13,15,16] it is
possible to define a contact force network. We introduce an arbitrary time t1 much larger than
the collision time τc. Two particles are said to be in contact if they collide with each other
during a time interval of length t1. This allows to define a coordination number z ≡ 2Nc/N ,
where Nc is the total number of contacts and N is the particles number. Then, the contact
force �fij between two particles i and j is defined as the total momentum they exchange per
unit time:

�fij =
1
t1

n=ncol[t1]∑
n=1

∆�Pn, (1)

where the sum is made on the total number of collisions ncol[t1] between i and j that took
place in the time interval t1, and ∆�Pn is the momentum exchanged at the nth shock. Figure 1
shows a two-dimensional example of the contact force network obtained with a polydisperse
configuration(1) at packing fraction φ close to φc. To obtain high packing fractions numerically
we used the 2-dimensional jammed configurations of [6] with packing fraction φc ≈ 0.83. At
φc the particles are in contact. We reduce the particles diameters by a relative amount ε.
This leads to configuration of packing fraction φ = φc(1 − ε)2. Then, we assign a random
velocity to every particle and launch an event-driven simulation. Such system is not at thermal
equilibrium and displays aging [17]: “earthquakes” can occur which suddenly relax the system
and decrease the pressure(2). In between these rare events, there are very long quiet periods
where no structural relaxation is observed. All our measures are done during these periods.
Note that coordination and contact forces could a priori depend on the arbitrary parameter
t1. In the vicinity of φc no significant dependence of these quantities with t1 were observed
as long as i) τc � t1 and ii) no earthquake occurs in the time interval t1.
As we shall see below, the force networks of dense hard-sphere glasses are weakly connected.

To build a correspondence between hard spheres at φ < φc and elastic spheres at φ > φc, we
change variables: instead of considering the instantaneous particles positions we consider their
time-average position {�Rav

i } over some time scale t1 
 τc. To define an effective potential
we must relate the contact force fij to the average distance between particles i and j. We

(1)Half of the particles have unity diameter, the other half has 1.4 diameter.
(2)Similar earthquakes have been observed in other aging systems such as colloidal pastes, laponite or Lennard-
Jones simulations [18]. They correspond to a sudden collective rearrangement of a large number of particles.
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Fig. 1 – Contact forces for N = 256, ε = 10−4 and t1 = 105 collisions. Particles centers are represented
by (red on-line) circles and the contact forces by the segments whose width is proportional to the
force amplitude. Note that the forces are balanced within our data precision on every particle, as
must be the case on time scales where the structure is stable. For similar force networks see [16].

start by considering the simple example of a line of hard spheres equilibrated at some pressure
p. The isothermal isobaric partition function is easily computed by introducing the spacings
hi between particles, defined as hi = ri,i+1 − ri − ri+1, where ri,i+1 is the distance between
particles i and i+ 1, and ri is the radius of particle i. One obtains:

Z ∼
∏

i

∫ hi=∞

hi=0

dhie
−βphi , (2)

where the terms containing the kinetic energy of the particles have been integrated out. If an
external force dipole pi = −pi+1 ≡ p1 is now applied on i and i+1, the work required to open
the contact i of an amount hi is now (p+ p1)hi. Thus we obtain:

Z ∼
∏
j �=i

∫ hj=∞

hj=0

dhje
−βphj

∫ hi=∞

hi=0

dhie
−β(p+p1)hi . (3)

It is then straightforward to compute the average spacing 〈hi〉 = 1/β(p+p1). Since the contact
force fi in the contact i, i+ 1 is fi = p1 + p, one finds that all contacts satisfy the relation:

fj =
1

β〈hj〉 for all j (4)

which is thus true whether external forces are present or not.
We now demonstrate that eq. (4) can be extended to hard-sphere glasses at φ = φc for any

spatial dimension. As discussed above, at φc, if the “rattlers” are removed(3), the system is
marginally connected, or isostatic: z = zc. Isostatic states have the particularity to display as
many degrees of freedom of displacements as number of contacts. Hence, i) the configuration
of the system can be defined by the set of distances between particles in contact and ii) these

(3)At φc some particles (≈ 5%) do not have any contact, and lie at a finite distance of their neighbors. These
“rattlers” do not participate in the rigidity of the structure. Near φc these particles can be identified since
the distance with their neighbors is much larger than the average. In all our measures we defined “rattlers” as
the particles for which their second strongest contact force is smaller than 1% of the system-averaged contact
force. We checked that our results, such as the scaling of the coordination and the pressure, are still valid when
other definitions of rattlers are used (for example taking a threshold of 5% instead of 1% for the contact force).
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Fig. 2 – (a) Log-log plot of the contact force amplitude vs. the spacing h = r − ri − rj for various
ε in systems of N = 256 particles in two dimensions. Each dot represents the pair of numbers (fij ,
〈hij〉) associated with the contact ij. Dots collapse on the dotted theoretical curve defined by eq. (4).
(b) Average correction C(δz) as defined in the text vs. excess coordination δz for various φ. The line
is a linear fit consistent with the predictions of [8] at small δz. Corrections are small, of the order of
3 to 4 percent when δz = 1.

degrees of freedom are independent. This implies that the isobaric partition function is a
product of terms corresponding each to an individual contact. Consequently, if the system is
at equilibrium in a meta-stable state where the contact forces field |f〉 = {fij} is well defined,
the isobaric partition function can be written(4):

Z ∼
∏
〈ij〉

∫ hij=∞

hij=0

dhije
−βfijhij . (5)

Repeating the argument valid for d = 1, one obtains that fij = 〈hij〉−1β−1. Obviously, as is
the case in one dimension, this result is valid with or without external forces. Note that since
this derivation only invokes thermodynamic arguments, it also applies to Brownian particles.
This relation force/distance is checked numerically in fig. 2a) near φc. The dependence of f
on h is found to be in very good agreement with eq. (4).
When φ is lowered from φc, we shall see that the coordination z increases. Then, the

hij are not independent variables anymore in eq. (5) and eq. (4) is invalid. Nevertheless, the
relative corrections to eq. (4) are expected to be small, of order δz [8]. We check this result
in fig. 2b), where we compute numerically C(δz) ≡ 〈fijβ〈hij〉〉ij − 1, where 〈〉ij denotes the
average over all contacts. In what follows, we are mainly interested in scaling relations near
φc, for which corrections of order δz are not relevant. We shall neglect them.
In this approximation, it is straightforward to compute the thermodynamic potential from

eq. (5) (or by integrating eq. (4)): G = −β−1
∑

〈ij〉 ln(〈hij〉). A key remark is that this
expression of G corresponds precisely to the energy of an athermal assembly of particles of
positions { �Ri

av}, interacting with a smooth potential Vij of the form

Vij(r) = ∞ if r < ri + rj ,

Vij(r) = −β−1 ln(r − ri − rj) if i and j are in “contact”, (6)
Vij(r) = 0 if i and j are not in “contact”,

(4)The upper limits of the integrals of eq. (5) are not infinite, but bounded by some finite value hmax which
depends of the contact considered. Nevertheless, as in the one-dimensional case, hmax ∼ N/〈fβ〉 [13]. Since
the integrals in eq. (5) converge as soon as h � 1/βf , eq. (5) becomes exact when N � 1 for any φ near φc.
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Fig. 3 – (a) Collapse of a square lattice. (b) D(ω) vs. ω for ε = 10−4 in a poly-disperse glass.
All frequencies are rescaled by ε−1. The particle positions were averaged over a time t1 = 4 · 105

to obtain |Rav〉. Equation (6) was used to compute the dynamical matrix, from which the normal
modes frequencies were inferred.

where r ≈ ||�Rav
i − �Rav

j || is the average distance between i and j. This analogy between
hard spheres and systems with soft interactions implies that i) a configuration minimum of
the thermodynamic potential is also a minimum of the energy in the corresponding elastic
system, and must therefore satisfy the rigidity criterion evoked in introduction; ii) when
a hard-sphere system is sheared (or compressed), the change of thermodynamic potential
can be deduced from the shear (bulk) modulus of the elastic system; iii) since the effective
potential of eq. (6) is continuous the thermodynamic potential can be expanded around any
configuration. This allows to compute the dynamical matrix M [19] and the normal modes
defined as the eigenvectors ofM.
We now precise i) to derive a microscopic criterion for the rigidity, or meta-stability, of

dense hard-sphere glasses. Any meta-stable state must contain at least one configuration
corresponding to a minimum of thermodynamic potential. Using i), this implies that for this
configuration δz > C0

√
p/B [4]. Anticipating on what follows, we have for hard spheres

B ∼ p2 and p ∼ (φc − φ)−1, therefore there is a constant C1 such that

δz ≥ C1p
−1/2 ∼ (φc − φ)1/2. (7)

This is our main result, which relates rigidity and microscopic structure.
To test this prediction we study three different systems: the two-dimensional hard-sphere

glass introduced above, the mono-disperse crystal and the mono-disperse square lattice. We
consider all these systems at their maximum packing fraction where particles are in permanent
contact, then we reduce the particles diameter by a relative amount ε, and we launch a
simulation. In the crystal case, the coordination is 6, therefore δz = 2 
 p−1/2 ∼ ε1/2 for
small ε: condition (7) is satisfied and the system is stable. On the other hand, the square
configuration has z = 4, δz = 0, and the system cannot satisfy (7) without large structural
rearrangements for any ε. These predictions are verified numerically. For small ε, the crystal
is stable and displays no structural changes, whereas the square lattice collapses rapidly [9,16],
see fig. 3a).
As discussed above, the poly-disperse glass we obtain near φc presents long periods of

stability, where no relaxation occurs. To check eq. (7) we computed numerically both the
coordination and the pressure for various packing fractions, and for various stable periods
that appear along the aging regime. As shown in fig. 4, the data are consistent with an
equality of the inequality (7). This suggests that a hard-sphere glass lies close to marginal
stability, as is the case for soft spheres slowly decompressed toward φc [4].
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Fig. 4 – Log-log plot of δz vs. the average contact force 〈f〉 ∼ p. The data were obtained for different
ε and different time periods. The black line corresponds to the equality of the inequality (7).

In fig. 3b) we also furnish an example of density of states D(ω) for ε = 10−4 computed
during such a plateau, when the “rattlers” are removed. Note that D(ω) does not vanish as
ω → 0, as in any isostatic system [3]. It is the case here, since φ is very close to φc, and
therefore δz ≈ 0. Interestingly, no unstable modes are observed at this packing fraction. This
is not obvious: in a meta-stable state, the system could lie alternatively in several minima of
the thermodynamic potential, since the temperature is non-zero. Condition (7) would then
be satisfied, as is the case for each minimum. Nevertheless, after averaging, the position may
lie in between several minima, near a saddle-point where unstable modes are present. This
situation may well occur at lower φ. We leave this question and its possible relation with
some observed structural relaxation processes [1] for future investigations.
To compute the scaling of the elastic moduli of the glass near φc we can use the results

valid for repulsive weakly connected elastic networks. For the bulk modulus one obtains [6,8]

B ∼ δp

δφ
∼ (φc − φ)−2 (8)

as found previously [13, 14]. The same scaling holds for the crystal [20]. As discussed in the
introduction, in repulsive weakly connected network the shear modulus does not scale as B,
but rather as G ∼ Bδz. Making the assumption that in the glass phase, the system does not
depart much from marginal stability, eq. (7) is an equality, and one obtains the new result:

G ∼ p3/2 ∼ (φc − φ)−3/2. (9)

To conclude, we showed that an analogy can be made between a hard-sphere glass and an
elastic system once a coarse graining in time is made, and that the effective potential that
describes particle interactions becomes exactly logarithmic at φc, where the pressure diverges.
This allows to define normal modes, and to compute the scaling of the elastic moduli near
φc. This implies that the rigidity that characterizes the glass phase near maximum packing is
related to a non-local microscopic property of the system geometry: the coordination number
z must be bounded below on any subsystems larger than some length l∗ ∼ δz−1 which diverges
at φc. Finally, our numeric data suggest that the glass phase is only marginally stable, at
least in the vicinity of φc, implying the presence of anomalous modes near zero-frequency.
One may question if these results apply in the vicinity of the glass transition. On the one

hand, near φ0 the coordination is rather large, similar to the one of the crystal. One the other
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hand, the distribution of contacts stiffness is certainly broader in the glass. This enhances the
presence of anomalous modes at low frequency, since softer contacts affect only weakly the
vibrational spectrum [8]. Thus, anomalous modes could be an appropriate concept to study
how rigidity appears when φ increased toward φ0. In particular, it has been proposed that
the dramatic slow-down near φ0 corresponds to a transition in the topology of the free-energy
landscape [21,22]: at high φ, the system lies near free-energy minima, and the dynamics is acti-
vated. At lower φ, the system lives near saddle-points, and the dynamic consists in going down
the unstable directions of the free energy. Our work suggests the following hypothesis: these
unstable directions correspond to anomalous modes. Since such modes are collective particles
motions, they may cause the heterogeneous dynamics [23] observed near the glass transition.
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