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Fast generation of ultrastable computer glasses by minimization of an augmented potential energy
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We present a model and protocol that enable the generation of extremely stable computer glasses at minimal
computational cost. The protocol consists of an instantaneous quench in an augmented potential energy
landscape, with particle radii as additional degrees of freedom. We demonstrate how our glasses’ mechanical
stability, which is readily tunable in our approach, is reflected in both microscopic and macroscopic observables.
Our observations indicate that the stability of our computer glasses is at least comparable to that of computer
glasses generated by the celebrated Swap Monte Carlo algorithm. Strikingly, some key properties support even
qualitatively enhanced stability in our scheme: the density of quasilocalized excitations displays a gap in our
most stable computer glasses, whose magnitude scales with the polydispersity of the particles. We explain this
observation, which is consistent with the lack of plasticity we observe at small stress. It also suggests that these
glasses are depleted from two-level systems, similarly to experimental vapor-deposited ultrastable glasses.
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I. INTRODUCTION

One of the key challenges in glass physics is understanding
the large variations of the thermodynamic and micro- and
macromechanical properties that glassy solids often display,
depending on the protocol by which they are formed. Pro-
nounced examples of this dependence are seen in metallic
glasses: their toughness can depend in a complex manner
on the degree of annealing of the predeformed samples
[1,2], a phenomenon attributed to “annealing embrittlement”
[2]. In numerical simulations of nanoindentation of a model
metallic glass it was observed that the propensity for strain
localization in the form of shear banding is substantially
enhanced by deeper annealing of the predeformed glassy sam-
ples [3]. In computer glasses made by quenching equilibrium-
supercooled configurations of various temperatures, it was
observed that the frequencies of soft quasilocalized modes
increase significantly for more deeply supercooled parent
equilibrium states [4], while the spatial extent of those modes
decreases [5]. The low-temperature thermodynamics of vapor-
deposited ultrastable glasses provide another striking example
of the effects of preparation protocol: the temperature depen-
dence of their specific heat resembles that of crystalline solids
[6,7] instead of the ubiquitous anomalous dependence that is
generically observed in glassy solids [8,9].

A recent ground-breaking advancement in computer sim-
ulations of supercooled liquids has made it possible to equi-
librate supercooled liquids down to extremely low tempera-
tures, surpassing even experimentally accessible supercooling
temperature ranges [10]. This breakthrough has been achieved
by employing the Swap Monte Carlo algorithm [11–13] and,
building on previous observations made in Ref. [14] for a
three-component mixture, carefully tailoring a model glass
former such that the efficiency of the algorithm is maxi-
mized, while ensuring that the model remains robust against

crystallization or fractionation. Computer glasses formed via
this computational approach display very large variations in
their transient elasto-plastic response. In particular, a phase
transition manifested by the nucleation of a system-spanning
shear band in deformed samples is observed, depending on
the temperature from which the initial, undeformed glassy
samples were quenched [15]. Furthermore, a study of the
vibrational spectra of Swap Monte Carlo computer glasses
revealed that the density of quasilocalized vibrational modes,
previously shown to follow a universal non-Debye distribution
D(ω)∼ω−5

g ω4 [16,17], is reduced with deep supercooling: it
retains the same power-law behavior, but the coefficient ω−5

g

diminishes severalfold [18].
While the Swap Monte Carlo approach allows one to

generate computer glasses with unprecedented stability, the
accessible system sizes are inevitably limited by slow glassy
dynamics at very deep supercooling. In this work we de-
scribe a computational approach, proposed by some of us
in Ref. [19], that consists of a direct minimization of an
augmented potential energy in which the particle radii are
included as additional degrees of freedom (DOF). This ap-
proach enables the generation of computer glasses that are
as stable as those created via Swap Monte Carlo, at a small
fraction of the computational cost. We study the structure
and micro- and macromechanical properties of our computer
glasses, demonstrating the large variation in glass stability that
our approach provides. On the practical side, the computa-
tional speed-up offered by our approach will enable extensive
statistical analyses of large ensembles of glassy samples.
Using our approach, very large and stable glassy samples can
be generated, which will likely be useful for computational
studies of transient dynamics and shear-banding instabilities
under external deformations. On the physical side, our key
finding is that the ultrastable glasses we generate have a gap
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in their density of quasilocalized excitations: the behavior
D(ω)∼ω−5

g ω4 breaks down below some frequency scale ω�.
We show that ω� ∼�1/2, where � characterizes the amount
of polydispersity. This result rationalizes why there is so
little preyielding plasticity in these glasses and suggests that
they are also deprived of two-level systems, consistent with
recent empirical observations in vapor-deposited ultrastable
glasses [6,7].

This paper is organized as follows; we first provide a
detailed description of the computer model employed and
the protocol by which we created glassy samples in Sec. II.
In Sec. III we present various micro- and macrostructural
analyses of our computer glasses, including an analysis of
the vibrational spectra. We present results from athermal
quasistatic shear deformation of our computer glasses in Sec.
IV. We rationalize the scaling of the frequency gap featured
by quasilocalized excitations in Sec. V.

II. MODEL DESCRIPTION AND NUMERICAL
PROCEDURES

In this section we describe the computer glass model
employed and the procedure used to generate ultrastable
glassy samples. Details about the observables measured and
presented in our work can be found in Appendix A, while in
Appendix B we explain the athermal, quasistatic deformation
protocol that we used.

A. Model

A polydisperse liquid of particles in three dimensions is
usually thought as having three DOF per particle, and the
particle radii or effective sizes are considered to be frozen
parameters. However, in an equivalent description all particles
are identical (or, in our work, come in two species to suppress
nucleation), but their radii are DOF subjected to a chemical
potential, chosen so as to reproduce the desired polydispersity
[19–21]. Inspired by this description, we consider a system of
N particles in three dimensions that interact via the potential
energy

U =
∑
i<j

ϕ(rij , λi, λj ) +
∑

i

μ
(
λi, λ

(0)
i

)
, (1)

where rij is the distance between the ith and j th particles, and
λi is the ith particle’s effective size. During the preparation
of our glasses, the particles’ effective sizes are considered
to be DOF, as explained in what follows. For the pairwise
interactions we use a modified Lennard-Jones (LJ) potential,
which reads

ϕ(rij , λi, λj )

=
⎧⎨
⎩6 ε

[(
λij

rij

)12
−

(
λij

rij

)6
+

3∑
�=0

c2�

(
rij

λij

)2�
]
,

rij

λij
<xc

0,
rij

λij
�xc

,

(2)

where ε is a microscopic energy scale, λij ≡λi +λj , and the
coefficients c2� are determined by requiring that three deriva-
tives of ϕ with respect to the interparticle distance vanish
continuously at the dimensionless cutoff xc. For the sake of

FIG. 1. (a) Pairs of nearby particles in our model glass former
interact via the pairwise potential ϕ(rij , λi, λj ) as given by Eq. (2),
represented here by the thick blue line. We also plot the canonical
Lennard-Jones potential (thin line) for comparison. (b) During the
preparation of our glassy samples we allow the effective size DOF λi

to change; their fluctuations are governed by the potential μ(λi, λ
(0)
i )

given by Eq. (3), and plotted here for various values of the stiffness
kλ as indicated by the legend.

computational efficiency we chose xc = 2.0, instead of the
traditional xLJ

c = 2.5 [22].
The effective sizes λi are subjected to the potential

μ
(
λi, λ

(0)
i

) = 1

2
kλ

(
λi − λ

(0)
i

)2

(
λ

(0)
i

λi

)2

, (3)

where λ
(0)
i is the energetically favorable effective size of

the ith particle in the absence of other interactions, and kλ

is the stiffness associated with the effective size DOF. We
will demonstrate in what follows that kλ plays a crucial role
in determining the stability of our computer glasses. The
potentials ϕ(rij , λi, λj ) and μ(λi, λ

(0)
i ) are plotted in Fig. 1.

We emphasize that in order to maintain a fixed equilibrium
polydispersity, the potential μ should in general depend on
temperature and pressure. (However, we expect the variations
of μ to be small in the realistic setting of fixed pressure and
varying temperature. In that case, fixing μ corresponds to a
system of particles that slightly dilate with temperature, an
effect which is unlikely to significantly affect properties near
the glass transition.) By quenching at fixed μ from some
temperature T as we do, we generate inherent structures
characterizing the landscape at that temperature, structures
that turn out to be ultrastable.

We employ a 50:50 mixture, such that one half of the
particles have λ(0) = 0.5, and the other half have λ(0) = 0.7,
expressed in microscopic units of length �. All particles
share the same mass m, and times are expressed in terms of√

m�2/ε. All physical observables presented in what follows
should be understood as expressed in terms of the relevant
microscopic units.

B. Glass preparation protocol

We created glassy samples as follows: we begin by fixing
the number density ρ = N/V (with V the system’s volume)
at 0.5 and performing a high-temperature (T = 1.0) equili-
bration of the system subjected to the potential energy U .
For this part of the preparation protocol we choose the mass
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associated with the size DOF to be unity for all particles.
We then employ the FIRE algorithm [23] to minimize the
potential energy U . This minimization is done while fixing the
imposed pressure at p = 1.0 using a Berendsen barostat [24],
with a time constant τBer = 10.0. States are deemed to be in
mechanical equilibrium when the ratio of the typical gradient
of the potential to the typical interparticle force drops below
10−12. Crucially, upon convergence of the minimization of the
potential energy U , we freeze the effective size DOF for all
subsequent analyses and simulations, reducing the potential
energy to

U =
∑
i<j

ϕ(rij , λi, λj ) , (4)

where the pairwise potential ϕ given by Eq. (2) remains
unchanged. Notice that, in contrast with U , U does not depend
on the target effective sizes {λ(0)

i }. By construction, config-
urations found by minimizing the potential U with respect
to particle coordinates and effective sizes also correspond to
local minima of the reduced potential U .

We carried out the procedure explained above while sys-
tematically varying the stiffness kλ between 10 and 105.
We have also created glasses in which the size DOF
are completely frozen during glass formation, correspond-
ing to the limit kλ →∞. For the structural analyses and
elasticity calculations discussed in the next section, we
generated 42 000 independent glassy samples of N = 4000
particles for each value of the stiffness kλ. For the shear-
deformation experiments presented in Sec. IV, we generated
a few tens of larger systems of N = 256 000 particles for
values of kλ between 10 and 104, in addition to a hundred
solids of N = 16 000 particles for values of kλ between 102

and 105.

III. STRUCTURAL ANALYSES AND ELASTICITY

A. Structure

Our choice of chemical potential μ [parametrized by the
stiffness kλ; see Eq. (3)] fixes the distribution of radii of the
obtained inherent states, as we now characterize. Figure 2
shows the distributions p(λ) of effective particle sizes λ. As
the stiffness kλ associated with the effective size DOF is
reduced, the width of the distributions grows. In the large-kλ

limit, we find �∼k−1
λ , where � is the polydispersity (see

figure caption for details), consistent with the prediction put
forward in Ref. [19]. We find that below kλ ≈ 102, the two
peaks corresponding to “large” and “small” particles start to
overlap.

Next we study the pair correlation function g(r ) for various
values of kλ in Fig. 3. As traditionally done, we calculated
the pair correlations for pairs with the same “large” effective
target size and the same “small” effective target size, and for
different (“large”-“small”) effective target sizes. In the figure
we present only the “large”-“large” correlation function; the
other two have similar features. We find that varying kλ does
not seem to introduce any observable ordering. In fact, for
smaller kλ the second and third peaks of g(r ) are diminished.
We conclude that all of our constructed glassy samples are
disordered.

FIG. 2. Distributions p(λ) of particles’ effective size DOF, plot-
ted against the dimensionless effective size λρ1/3, for various values
of kλ as indicated by the arrows. The dashed lines represent the
distributions measured for particles whose target effective size during
glass preparation was λ(0) = 0.5, and the solid lines represent those
for which λ(0) = 0.7. Inset: the polydispersity � is defined as the
ratio of the effective sizes’ standard deviation to their mean. We re-
port � for “small” and “large” particles, and the total polydispersity
(calculated as the standard deviation to mean ratio, taken over all
particles), vs the stiffnesses kλ.

B. Macroscopic elasticity

We next turn to examining the elastic properties of our
glassy samples. We focus first on characterizing the degree
of structural frustration that our glasses possess, as mani-
fested by their sample-to-sample shear stress fluctuations. In
particular, we are interested in assessing whether allowing

FIG. 3. Pair correlations g(r ) between pairs of “large” particles
(i.e., those with a target effective size λ(0) = 0.70 during glass
preparation) measured in our glassy samples, plotted against the
rescaled pairwise distances rρ1/3 for various values of the stiffness
kλ, increasing from thin to thick lines. We find no ordering upon
decreasing kλ. The inset shows how the density ρ = N/V of our
glassy samples increases as kλ is reduced. The horizontal dashed line
marks the density of our kλ = ∞ glasses.
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FIG. 4. Elastic properties of our glassy samples: (a) sample-to-
sample standard deviation of the dimensionless shear stress δσ̃ (see
text for definition and discussion) vs the stiffness of the size DOF kλ.
(b) δG̃ is the sample-to-sample standard deviation to mean ratio of
the shear modulus, scaled by

√
N . (c) Sample-to-sample mean of the

ratio of shear to bulk moduli. (d) Sample-to-sample mean Poisson’s
ratio of our glassy samples. The horizontal dashed lines represent the
kλ = ∞ values in all panels.

for size fluctuations of the particles during glass formation
reduces in some way the degree of structural frustration.
In order to meaningfully compare between different system
sizes and the ensembles created with different values of the
size DOF stiffness kλ, we calculate a system-size-independent
and dimensionless sample-to-sample standard deviation of the
shear stress by rescaling the dimensionful standard deviation
δσ by 1/

√
N and the athermal shear modulus G:

δσ̃ ≡
√

N δσ/G . (5)

For the definition of G and other elastic moduli, see
Appendix A. In Fig. 4(a) we plot δσ̃ versus the stiffness kλ.
As expected, lowering kλ results in more optimally packed
glasses with a lower degree of structural frustration, as ex-
pressed by a decrease of a factor of two of the shear stress
fluctuations over the entire range of kλ.

We next study the athermal elastic moduli of our glassy
samples. In Fig. 4(b) we report a dimensionless and system-
size-independent characterizer of shear modulus fluctuations,
defined as

δG̃ ≡
√

N δG/G . (6)

Remarkably, the relative fluctuations decrease by over a factor
of four across the entire sampled range of kλ, suggesting that
the increased stability of our glasses with decreasing kλ is
accompanied by a strong reduction of coarse-grained local
elastic moduli fields.

In Fig. 4(c) we plot the sample-to-sample mean of our
glasses’ athermal shear to bulk moduli ratio (see definitions
in Appendix A). The ratio appears to increase above the

kλ = ∞ value, represented by the horizontal dashed line,
by approximately 85%, which amounts to a variation of the
glasses’ Poisson’s ratio from ν ≈ 0.4 for kλ = ∞ to ν ≈ 0.32
for kλ = 10, as reported in Fig. 4(d). We emphasize that all of
the above elastic properties show significant change over the
range of measured kλ but start to saturate at around kλ = 102.
We will see that this behavior is consistent with our other
measurements in the sections below.

C. Vibrational spectra

The stability of disordered solids is often characterized in
terms of the statistical properties of low-frequency vibrational
modes that emerge due to the solids’ disordered microstruc-
ture [4,18,25,26]. In particular, the destabilizing effect of
internal stresses and structural frustration has been captured
by effective medium [26] and mean-field [27] calculations,
that predict a gapless spectrum D(ω)∼ω2 of nonphononic
(i.e., disorder-induced) vibrational modes. However, numer-
ical results in spatial dimensions d̄ � 4 indicate that the
non-Debye low-frequency spectrum (obtained by eliminating
Goldstone modes, by considering small systems [16,17] or
by selecting modes based on their participation ratio [18,28])
of generic structural computer glasses follows a universal
D(ω)∼ω4 form, independent of model [16], preparation pro-
tocol [4,18], proximity to the unjamming transition [28], and
spatial dimension [17]. The modes that populate the ω4 tails
have been shown to be quasilocalized [16,17] and have been
argued to control elasto-plastic responses of externally loaded
glasses [29,30] and the singularities observed in nonlinear
elastic moduli [31]. Furthermore, they are believed [32–35]
to serve as the tunneling two-level systems responsible for the
universal anomalous thermodynamics of glasses below a few
Kelvin [8,9].

We study the statistics of nonphononic low-frequency vi-
brational modes of our glassy samples. We have calculated
the Hessian matrix M≡∂2U/∂x∂x of each member of our
ensembles of 42 000 glassy solids and calculated the first
120 vibrational modes (excluding the three translational zero
modes). The resulting spectra are plotted in Fig. 5(a). We find
that as kλ is decreased, a gap forms at low frequencies. This
indicates that for our small-kλ glassy samples, quasilocalized
modes are strongly depleted.

In Fig. 5(b) we show that the gap ω� ∼1/
√

kλ ∼√
�

in systems made with kλ�104 by plotting k2
λ D(ω) against√

kλ ω/ω0, leading to a data collapse at low frequencies. We
will explain the scaling of the gap with kλ in Sec. V. For
smaller kλ, the occurrence of the lowest-frequency phonons
in D(ω) destroys the collapse. We further find a consistent
behavior with the previously observed D(ω)∼ω4 above the
gap frequency scale.

D. Nonaffine displacements

Our measurement of the vibrational density of states in
Sec. III C was limited to the range kλ�103 since the lowest-
frequency phonons hinder a clear observation of the further
depletion of quasilocalized modes upon decreasing kλ beyond
kλ = 103. We therefore supplement the measurements of the
vibrational density of states with a study of the statistics of
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FIG. 5. (a) Density of vibrational modes D(ω) vs rescaled fre-
quency ω/ω0 where ω0 ≡cs/ρ

−1/3 and cs ≡
√

G/ρ is the shear wave
speed. (b) In the limit of large kλ a gap of order 1/

√
kλ opens in D(ω)

as the collapse indicates. Here we plot D(ω) for kλ = 105, 3×104,
and 104. For smaller kλ, the occurrence of the lowest-frequency
phonons in D(ω) destroys the collapse. Inset: numerical validation
of the frequency independence of the particlewise mean squared
variation of the forces fi ≡−∂U/∂λi , induced by a quasilocalized
vibrational mode of frequency ω in kλ = ∞ glasses; see discussion
in Sec. V.

particles’ linear displacement responses to forces that emerge
following an imposed shear deformation, often referred to as
the nonaffine displacements, and denoted here by v. Nonaffine
displacements are defined as

v = −M−1 · ∂2U

∂x∂γ
, (7)

where γ parametrizes the imposed shear deformation; see
details in Appendix B. The main contributions to the con-
traction of M−1 with ∂2U/∂x∂γ are expected to stem from
soft quasilocalized modes, rather than from low-frequency
phonons [31]. The statistics of nonaffine displacements are
therefore expected to echo those of soft quasilocalized vibra-
tional modes.

In Fig. 6 we show the particlewise distributions of non-
affine displacements squared v2

i ≡vi ·vi (no summation on i

FIG. 6. Particlewise distributions p(v2) of nonaffine displace-
ments squared v2, plotted against the dimensionless displacements
squared v2ρ2/3, measured in our ensembles of glassy samples with
various values of the size DOF kλ, increasing from thin to thick lines.

implied). We indeed find that the form of the large-value tails
of these distributions mirror the observed gaps in the density
of vibrational modes as shown in Fig. 5. Here, however, we are
able to meaningfully probe the full range of kλ compared to
the limited range shown in Fig. 5. We further see the beginning
of the saturation of the stabilizing effect below kλ = 102,
consistent with the behavior of the elastic properties reported
in Fig. 4.

There is an intimate relation between nonaffine displace-
ments and the shear modulus: G∝∂2U/∂γ 2+v · ∂2U/∂x∂γ

[36]. The substantial reduction in the extreme values of the
nonaffine displacements observed upon reducing kλ correlate
with the decrease in sample-to-sample fluctuations of the
shear modulus as seen in Fig. 4(b). We observe a saturation
in both quantities for kλ�102.

IV. ELASTO-PLASTIC TRANSIENTS

In this section we put the mechanical stability of our ultra-
stable glasses to a direct test. We employ systems of 256 000
particles and deform them under simple shear strain using an
athermal quasistatic protocol as described in Appendix B. The
results are presented in Fig. 7 for glasses made with kλ =
104, 3×103, 103, and 101 in Figs. 7(a)–7(d), respectively.
Stress-strain curves for kλ = 102 are displayed in Fig. 10
in Appendix B. In these plots we rescaled the stress by its
average steady-state value.

Glasses created with kλ = 104 show a monotonic increase
of the stress as deformation proceeds. For kλ = 3 × 103 there
is a mild stress overshoot, and for kλ�103, we observe a stress
overshoot terminated by the occurrence of a macroscopic
stress drop signaling the nucleation of a system spanning
shear band at a characteristic strain that increases with de-
creasing kλ. We note that Fig. 7 presents data only from
samples whose shear band is parallel to the x-z plane; when
the shear band is parallel to the x-y plane, the stress does
not attain a plateau value after the shear band nucleation,
which is an artifact of the geometry of the Lees-Edwards
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FIG. 7. Stress-strain curves for computer glasses made with kλ = 104, 3 × 103, 103, and 101, from (a) to (d). Stresses are rescaled by their
respective average steady-state values. The large insets show representative snapshots of the deformed solids; the color coding represents the
magnitude of total nonaffine displacements δx measured between γ = 0 and γ = 0.13, rescaled by the length ρ−1/3. The small inset illustrates
the geometry of the applied shear deformation.

periodic boundary conditions employed [37], as shown in
Appendix B.

The stability of our glasses can be quantified by the relative
magnitude of the stress drop, i.e., the ratio between the height
of the stress peak and the following steady-state stress. This
ratio is zero for kλ = 104 and grows to ≈4 for kλ = 10.
For comparison, the most stable configurations presented in
Ref. [15] that were created by Swap Monte Carlo feature a
relative stress drop of ≈3, i.e., it is smaller by roughly 25%
compared to the relative stress drop found in our most stable
glasses. This difference establishes that our glassy samples’
mechanical stability is similar compared to that of the Swap
Monte Carlo-generated glasses. We emphasize here that the
computational bottleneck in this numerical experiment is the
deformation simulation, which take roughly an order of mag-
nitude more computation time compared to the preparation
of our glassy samples of 256 000 particles. We further note
that the relative magnitude of the stress drop across the shear-
banding event increases the most dramatically between kλ =
103 and kλ = 102, and saturates upon decreasing kλ from 102

to 10, consistent with the trend we have observed for elastic
properties (reported in Fig. 4), indicating a possible relation
between stability and elasticity.

To assess the degree of plastic deformation occurring along
the elasto-plastic transients, we have performed single-shear
cycles on systems of 16 000 particles; we deformed our
glasses using the same athermal quasistatic scheme (described
in Appendix B), up to various maximal strain values γmax,
and back to zero strain, as shown in Fig. 8. Interestingly, we
find that at intermediate kλ of 103 and 3×102, plastic events
take place before the occurrence of the macroscopic shear
band; however, upon reversal of the strain, the system appears

to nearly return to its original, undeformed zero-stress state;
see, for example, Fig. 8(b). This behavior has been termed
“partial irreversibility” in Ref. [38], where similar findings
for well-annealed hard sphere glasses were reported. Upon
further decreasing kλ to 102, very few plastic events take place
before the macroscopic shear band occurs.

In Fig. 9 we report the sample-to-sample mean energy
density dissipated in a shear cycle, made dimensionless by
rescaling by the undeformed solids’ shear modulus, namely,
G−1

∮
γmax

σdγ . Averages were taken over 100 independent re-
alizations for each kλ ensemble. Consistent with the depletion
of quasilocalized modes in the small kλ glasses, we observe a
remarkably small degree of dissipation up to the macroscopic
shear-banding event in those samples.

V. SCALING ARGUMENT FOR THE GAP IN THE
DENSITY OF QUASILOCALIZED EXCITATIONS

Consider for a given kλ the lowest-frequency quasilo-
calized modes, which appear at a frequency scale ω�. We
shall argue that ω� ∼1/

√
kλ or larger, otherwise the ini-

tial configuration would not be at a minimum of the en-
ergy function U defined in Eq. (1). We denote by M̃ the
N (d̄+1)×N (d̄+1) Hessian matrix of U , which must be
positive definite in any minimum. In the limit where kλ is
infinite, the spectrum of M̃ is the union of the spectrum
of M, together with additional modes at frequencies ∼√

kλ

corresponding to the “breathing” of individual particles. For
finite kλ the breathing modes hybridize with the usual vi-
brational modes, lowering the frequency of the latter. For
large kλ this softening can be computed straightforwardly by
perturbation theory [19] and is of order �ω2 ∼−〈δf 2

i (ω)〉i/kλ
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FIG. 8. Example stress-strain signals obtained in shear cycles, for kλ = 104 (a), 103 (b), and 102 (c) and for maximal strains γmax as
indicated by the legend (growing from thin to thick). Curves are rescaled by the same steady-state stresses σ∞ as used in Fig. 7. For large kλ the
dynamics is irreversible, even for small γmax. For intermediate kλ some plasticity sets in before the macroscopic shear-banding event; however,
the system is able to nearly return to the zero-stress state upon reversing the strain. For our most stable glasses we observe almost no plasticity
before the macroscopic shear band (see also Fig. 9 below).

where δfi (ω) = ∑
j �=i δ[ ∂ϕij

∂λij
](ω) is the compression induced

by a mode of frequency ω on particle i, and 〈〉i indicates an
average on all particles. In the inset of Fig. 5(b) we scatter-plot
〈δf 2

i (ω)〉i versus frequency ω of quasilocalized vibrational
modes [39] calculated in our kλ = ∞ glasses, to find that they
are independent of frequency.

Next we use the observation [5,40,41] that the low fre-
quency of quasilocalized modes stems from the near cancella-
tion of two terms ω2 = ω2

+−ω2
−. The contribution ω2

+ corre-
sponds to the stretching of interactions whose characteristic
stiffness is denoted k and must scale as ω2

+ ∼〈δf 2
i (ω)〉i/k,

whereas ω2
− emerges due to prestress effects [42] and inter-

actions with negative stiffnesses (usually absent in systems
of purely repulsive particles). Counter-examples to this near
cancellation can be found, e.g., rattlers in systems of purely
repulsive particles. However, (1) it can be shown to hold
for modes causing the boson peak in a variety of systems
[26,43–45], and (2) the architecture of the modes forming
the boson peak at frequency ωBP was found to be essentially
similar to that of quasilocalized modes, with ω2

+ ∼ω2
BP [40].

Using this result, we thus predict that ω2
���ω2 ∼

ω2
BP(k/kλ), a bound indeed consistent with our observation.

This bound, which must hold in all the inherent structures
of U , must also hold true for the ground state of the usual

FIG. 9. Energy dissipated per unit volume (made dimensionless,
see text) in a shear cycle of magnitude γmax, reported in linear (a) and
logarithmic (b) scales.

potential energy U . As a consequence, in continuously poly-
disperse materials, quasilocalized modes in very low-energy
glassy configurations must be gapped.

If quasilocalized modes are gapped, then other excitations
including shear transformations and two-level systems with
small tunneling barriers must also be gapped, since otherwise
would imply the existence of vibrational modes in the for-
bidden frequency range [30]. For example, using the fact that
shear transformations sit near a saddle-node bifurcation, we
expect the characteristic stress at which plasticity sets in to
scale as ω4

� ∼�2.

VI. SUMMARY AND DISCUSSION

In this work we introduced a simple computer glass for-
mer and preparation protocol, following ideas put forward in
Ref. [19], that enables the generation of ultrastable glasses.
By allowing the effective sizes of particles to fluctuate during
glass formation, and freezing them thereafter, we are able to
generate extremely stable glassy configurations at minimal
computational cost. We demonstrated that the mechanical sta-
bility of our glasses is readily tunable by varying the stiffness
kλ associated with the effective size DOF, and showed that it
is at least comparable to the mechanical stability of glasses
created using the Swap Monte Carlo method [15]. Structural
analyses reveal that no ordering takes place in any of our
glasses.

Since our ultrastable glasses are not created via a phys-
ical protocol, they may not be faithful representatives of
real-world glasses. Also, their polydisperse nature, which is
not a generic feature of structural glasses, is clearly key
to their enhanced stability. This raises the crucial ques-
tion of whether the structural and mechanical characteristics
of our glasses are generic, or, conversely, that our glass-
formation protocol introduces nongeneric features. This re-
sembles the open question posed in Ref. [6] of whether the
absence of two-level systems in ultrastable vapor-deposited
glasses is due to their increased stability (and, hence, is a
generic property of ultrastable glasses) or their preparation
protocol.
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The qualitative correspondence between the discontinuous
response of bulk metallic glasses and that of our ultrastable
glasses is an encouraging item with regard to the genericity
of our results. Our approach may thus help resolve which
precise microstructural features of glassy solids are respon-
sible for their mechanical stability. For example, results from
our deformation simulations indicate that there should exist
a critical stiffness kλ,c above which a discontinuous event
nucleates, as predicted by several approaches [15,46,47]. In
Ref. [47] the anisotropy of the problem is included, and the
discontinuous event for very stable glasses corresponds to a
narrow shear band whose nucleation shares similarity with
that of a fracture, a scenario that could be tested with our
obtained configurations.

There is a qualitative difference between the nonphononic
density of vibrational modes of glasses created with the Swap
Monte Carlo algorithm and glasses created with our approach.
In Ref. [18] it was shown that glasses created by Swap Monte
Carlo retain gapless non-Debye spectra, featuring D(ω)∼ω4

even for the most deeply annealed and stable glassy samples
that can be created with that approach. This stands in contrast
to the spectra of our ultrastable glasses, that feature a gap for
any finite kλ.

Two possible origins of the difference between these re-
sults are (1) glasses created with Swap Monte Carlo are
quenched from a finite (although rather low) temperature,
whereas our protocol produces glasses that undergo structural
relaxation all the way down to zero temperature and (2) the
equivalence between Swap Monte Carlo ultrastable glasses
and our ultrastable glasses is expected only in the thermody-
namic limit [19–21], in which a particle in a canonical (i.e.,
with no external particle reservoir) Swap Monte Carlo system
can assume any size within a finite support of relative width �.
However, in finite-size Swap Monte Carlo systems, a particle
can swap sizes only with the N−1 other members of a single,
particular realization of the polydispersity. This finite-size
discretization, which is completely absent in our approach
(our particles can assume any size), may introduce structural
frustration and reduce the effectiveness of polydispersity in
stabilizing the glass.

We note that the formation of a gap in the nonphononic
density of vibrational modes also occurs when the degree
of internal stresses is relieved by artificially reducing the
magnitude of pairwise forces in model glasses [5,26]. Inter-
estingly, measurements of a dimensionless characterization
of sample-to-sample stress fluctuations in our glassy samples
[see Fig. 4(a)] also indicate a reduction of internal stresses
with increasing stability.
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FIG. 10. (a) Stress-strain curves for computer glasses made with
kλ = 102, in which the two possible shear-banding geometries occur,
as shown in panels (b) and (c). The color code of particles, which
represents the magnitude of nonaffine displacements, is the same as
in Fig. 7.

APPENDIX A: OBSERVABLES

1. Vibrational modes

Vibrational modes were calculated by a numerical partial
diagonalization of the dynamical matrix M ≡ ∂2U

∂x∂x , where U

is the potential energy as given by Eq. (4), and x denotes the
vector of 3N particles’ Cartesian coordinates. We employed
the ARPACK package [48].

2. Athermal elastic moduli

The shear stress is given by

σ = 1

V

∂U

∂γ
, (A1)

where γ denotes a simple shear strain. Athermal elastic mod-
uli were calculated following the formulation of Lutsko [36].
The shear modulus G is given by

G =
∂2U
∂γ 2 − ∂2U

∂γ ∂x · M−1 · ∂2U
∂x∂γ

V
, (A2)

and the bulk modulus K by

K =
∂2U
∂η2 − ∂2U

∂η∂x · M−1 · ∂2U
∂x∂η

Vd̄2 + p . (A3)

Here p≡− 1
Vd̄

∂U
∂η

is the hydrostatic pressure, V is the system’s
volume, and γ, η are simple shear and expansive strains,
respectively, that parametrize the three-dimensional strain
tensor as

ε = 1

2

⎛
⎝2η + η2 γ + γ η 0

γ + γ η 2η + η2 + γ 2 0
0 0 2η + η2

⎞
⎠ . (A4)
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APPENDIX B: ATHERMAL QUASISTATIC DEFORMATION

In addition to various static structural analyses of our
glassy samples, we have also carried out conventional ather-
mal quasistatic deformation simulations to test the stability of
our glassy samples by studying their transient elasto-plastic
response. We imposed increments of simple shear deforma-
tion by applying the following transformation of coordinates:

xi → xi + δγ yi , yi → yi , zi → zi , (B1)

using strain steps of δγ = 10−3. Each such transformation
was followed by updating the images of the Lees-Edwards

periodic boundary conditions [49] and then minimizing the
potential energy U using a conventional conjugate gradient
algorithm.

In our deformation simulations, shear-banding events can
occur in two different geometries, as demonstrated in Fig. 10:
they can be parallel to the x-z plane, as shown in Fig. 10(c), or
parallel to the y-z plane, as shown in Fig. 10(b). In Fig. 10(a)
we show that the resulting strain-strain curves in these two
cases are different; in the former, the stress is stationary
after the shear band (at least up to the maximal imposed
deformation of 20%), whereas in the latter the stress increases
after the event. In Fig. 7 we show only data pertaining to
events with the geometry as displayed in Fig. 10(c).
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