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We introduce a numerical scheme to evolve functional elastic
materials that can accomplish a specified mechanical task. In this
scheme, the number of solutions, their spatial architectures, and
the correlations among them can be computed. As an example,
we consider an “allosteric” task, which requires the material to
respond specifically to a stimulus at a distant active site. We
find that functioning materials evolve a less-constrained trumpet-
shaped region connecting the stimulus and active sites, and that
the amplitude of the elastic response varies nonmonotonically
along the trumpet. As previously shown for some proteins, we
find that correlations appearing during evolution alone are suf-
ficient to identify key aspects of this design. Finally, we show
that the success of this architecture stems from the emergence
of soft edge modes recently found to appear near the surface
of marginally connected materials. Overall, our in silico evolution
experiment offers a window to study the relationship between
structure, function, and correlations emerging during evolution.

disordered materials | proteins | evolution

Proteins are long polymers that can fold in a reproducible way
and achieve a specific function. Often, the activity of the main

functional site depends on the binding of an effector on a distant
site (1, 2). Such an allosteric behavior can occur over large dis-
tances, such as 20 residues or more (3), and often involves only
a sparse subset of residues in the protein (3, 4). Allosteric reg-
ulation offers an appealing target for drug design (5), and there
is considerable interest in predicting allosteric pathways (6, 7).
One central difficulty is that the physical mechanisms allowing
such an “action at a distance” remain elusive. In some cases,
allostery can be understood as the modulation of a hinge con-
necting two extended rigid parts of the protein (8, 9), but, often,
the displacement field induced by the binding of the effector
cannot be described in these terms (4, 10, 11). Another route,
statistical coupling analysis (12), considers correlations within
sequences of proteins of the same family to infer allosteric path-
ways (4, 7). The generality of this elegant approach is, however,
debated (13).

From a physical viewpoint, specific response at a distance
is surprising. The structure of proteins is similar to randomly
packed spheres (14). Generically, the response of such systems
is nonspecific and decays rapidly in space (in a manner similar to
a continuum medium) at distances larger than the particle size;
this is true, except close to a critical point where the number of
constraints coming from strongly interacting particles is just suffi-
cient to match the number of degrees of freedom of the particles
(15). There, the elastic response becomes heterogeneous on all
scales (16, 17). This point is illustrated in Fig. 1A, showing the
rapidly decaying response of a random spring network to a stim-
ulus. However, as shown in Fig. 1B (and independently found
in ref. 18 using a different algorithm), springs can be moved so
that the response extends farther and specifically matches a tar-
get response on the other side of the system. This observation
raises various questions, including the following: (i) Which net-
work architectures allow for such allosteric response? (ii) Why
are these architectures functional? (iii) What is the number of
solutions? (iv) As we shall see, a network can be represented by
a sequence; knowing only a family of sequences of solutions, can

one predict which sites are important for function from their cor-
relations alone?

In this work, we answer these questions by introducing a model
of elastic networks that can evolve according to some fitness
function F , which depends on the response of the material to
a well-defined stimulus. Our approach allows for considerable
freedom in the choice of the fitness function. As an illustration,
we impose here that a displacement of four nodes on one side
of the material (the “stimulus”) elicits a given displacement of
identical amplitude but different direction on four target nodes
on the other side of the system. A key advantage of our scheme
is that our algorithm uniformly samples the fitness landscape
(we use a Monte Carlo algorithm that turns out to equilibrate
rapidly), which allows us to count the number of solutions and
compute the entropy S(F ), as well as to guarantee that the solu-
tions generated are the typical (most numerous) ones. The qual-
ity of the solutions can be monitored by an “evolution temper-
ature” Te that controls the fitness of the solutions probed. Our
central findings are as follows. (i) There exists a transition tem-
perature below which high-quality solutions appear and above
which solutions are poor. (ii) High-quality solutions share a spe-
cific design. They present a trumpet-shaped region where the
material is less constrained, which ends by a marginally con-
nected region in the vicinity of the target. (iii) The response
amplitude varies nonmonotonically between the stimulus and
active sites. (iv) We rationalize this design based on a recent
theory of edge modes in marginally connected disordered media
(19). (v) We show that coevolution—the correlations in the struc-
tures of the family of solutions—alone is sufficient to identify the
trumpet structure. Finally, this detailed characterization of the
solutions also points to some of their limitations in using them in
thermal environments. We discuss how the fitness function can
be changed to alleviate such problems.

Description of the Evolution Model
Scalar models, where the response of a node is described by
a scalar instead of a vector, have been introduced to study
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Fig. 1. Illustration of the model. A network is defined by the location of
springs (in red), connecting the adjacent nodes of a distorted triangular lat-
tice. A network has higher fitness if its response field |δR(σ)r〉 (black arrows)
to an imposed stimulus |δRE〉 (purple arrows) reproduces a target displace-
ment |δRT 〉 (cyan arrows) at a distant site, consisting here of four nodes.
The match between the response field and the target displacement (A) is
poor for a random configuration (Te =∞) and (B) is almost perfect for a
system that has evolved by moving springs at Te = 0.01. L = 12 and z = 5.0.

coevolution and allostery (20–22). Although these models can
capture the rigid motion of a part of the system, they cannot
address the propagation of more complex mechanical informa-
tion, such as that illustrated in Fig. 1. Instead, we use elastic net-
works, which have been used extensively to describe the vibra-
tional dynamics of proteins (23–25).

Specifically, we consider on-lattice models previously used to
describe covalent glasses (26, 27). N =L2 nodes are located on
a triangular lattice (slightly distorted to avoid straight lines of
nodes; see discussion in SI Appendix). Ns harmonic springs of
stiffness unity connect some of the adjacent nodes. We declare
that σα = 1 if a spring is present in the link α (as represented
in red in Fig. 1), and σα = 0 otherwise. Thus, the network is
entirely described by a connection vector |σ〉 whose dimension is
the number of links. We define the average coordination num-

ber z as 2Ns/N . Marginally connected networks, also called
“isostatic,” correspond to zc = 4 in two dimensions (28), and we
denote δz = z − zc .

For a given configuration |σ〉, we consider the response to a
ligand binding event, which we model as an imposed displace-
ment field |δRE〉 on a set of four adjacent nodes (the “allosteric”
site) located on one free boundary of the system, as illustrated
in purple in Fig. 1. After relaxing the elastic energy, such a stim-
ulus will generate a displacement field |δR(σ)r 〉 of components
δR(σ)ri in the N − 4 other nodes of the system; a fast numerical
calculation of this response is formulated in Methods. Here, we
focus on studying networks for which the response generates a
desired target displacement |δRT 〉 of identical amplitude but dif-
ferent direction (illustrated in cyan in Fig. 1) on an “active” site,
which we also choose to consist of nT = 4 nodes on the other side
of the system, facing the stimulus site. The case where the target is
inside the system leads to similar results, as shown in SI Appendix.

Because, physically, only the strain (and not the absolute dis-
placement) at the active site can affect catalytic properties, the
target displacement is defined modulo a global translation and
rotation |U〉. To rank networks in term of their allosteric ability,
we define a fitness function F and a cost E ,

F (σ) ≡ −E(σ) ≡ −min
|U〉

√∑
i∈T

(δR(σ)ri − δRTi − Ui)
2
, [1]

where i label the nodes, and T denotes the set of nodes belong-
ing to the active site. Thus, F = 0 corresponds to a perfect
allosteric response. We restrict the networks further by imposing
that all adjacent nodes in the active site are connected, and we
choose a target displacement that does not stretch these bonds.
The minimization of Eq. 1 can be readily performed and the fit-
ness can be written directly in terms of |δRT 〉 and |δR(σ)r 〉, as
discussed in Methods.

Henceforth, we consider 2D networks with periodic bound-
aries in the direction transverse to the direction between the
allosteric and active sites (this corresponds to a cylindrical geom-
etry). As is the case for many aspects of the microscopic elasticity
of amorphous materials (15), we expect our results to hold inde-
pendently of the spatial dimension.

Numerical Solutions
To evolve networks, we use a Metropolis algorithm (Methods)
at some evolution temperature Te , where springs can swap
from an occupied to an unoccupied link, leaving the average
coordination z constant. More precisely, Te is the variable
conjugate to the fitness, so that, once our algorithm reaches
equilibrium (which it does in the range of Te values pre-
sented here), the probability P(σ) of finding a configuration |σ〉
reads P(σ) = exp[F (σ)/Te ]/Z , where Z =

∑
σ exp[F (σ)/Te ].

Te =∞ corresponds to random networks.
Thus, as we lower the temperature, we probe fitter and fitter

networks as illustrated in Fig. 1. This point is systematically stud-
ied in Fig. 2A, showing 〈F 〉(Te) for a given coordination, where
the ensemble average is made on both Monte Carlo steps and
different realizations. For Te > 0, we find that this average does
not depend on the time of the simulation if it is long enough,
indicating that an equilibrium was reached. As Te decreases, we
observe a transition from low to high fitness, which appears to
become sharper and sharper as N increases. This trend suggests
some kind of transition, as we evidence further by considering
the specific heat c(Te) = d〈E〉(Te)/dTe , which displays a more
and more pronounced peak as L increases, as shown in Fig. 2B.
(Larger system sizes would be required to decide if the transition
becomes sharp in the thermodynamic limit.) This result indicates
that achieving an allosteric function is a collective process.

Below the transition, we find that the networks perform well.
Their performance can be quantified by 〈F 〉|Te=0, an ensemble
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Fig. 2. (A) Average fitness 〈F〉 versus evolution temperature Te for various
system sizes where z = 5.0. A steep change in fitness is seen near Tc ≈ 0.09
for relatively large systems. (B) Specific heat c versus temperature Te. The
maximal specific heat increases with the system size L, suggesting the exis-
tence of a transition at some Tc. (C) Fitness averaged over local maxima
〈F〉Te=0 versus coordination number z in log-linear scale. The black line
shows the fitness if no mechanical response is present at the active sites.
(D) Entropy density S/N versus temperature Te. The entropy jump near Tc

indicates the number of degrees of freedom that must be tuned to achieve
the desired response.

average of local maxima in the fitness landscape, as reported in
Fig. 2C. These structures result from a pure gradient ascent in
the fitness landscape. We find that, in the range of coordination
we probed, the cost decreases by at least 200-fold with respect
to random networks, i.e., the response converges very precisely
toward the desired one. Thus, the system does not get stuck in
local maxima of poor quality in the fitness landscape.

Finally, we can quantify the number of allosteric networks;
it follows eS(Te), where S(Te) is the entropy. It satisfies dS =
c(Te)dTe/Te , and is shown in Fig. 2D. For example,
at Te = 0.05, where networks perform very well, we find
that their number is very large, exponential to the sys-
tem size, eS(Te)≈ 1053 for L= 12, but the probability pA to
obtain such a network by chance is also exponentially low,
pA = eS(Te)−S(∞)≈ 10−10 for L= 12.

Architecture of Allosteric Networks
Hypostatic networks with δz < 0 are extremely floppy. It may
be an interesting case to study intrinsically disordered proteins
(29), but, for folded proteins, considering δz > 0 is more real-
istic. Henceforth we focus on that case and choose z = 5. In
SI Appendix, our results are presented for the floppy case δz < 0.

Which architecture allows for such a long-distance, specific
response? A systematic design is revealed by averaging the occu-
pancy of various solutions that our algorithm generates, as shown
in Fig. 3A for L= 12 (see SI Appendix for larger systems). At high
temperature, the structures are essentially random and not func-
tioning. At low temperature, a trumpet-shaped region appears
that connects the allosteric and active sites. Specific features are
that (i) inside the trumpet, the mean occupancy is lower than
the mean, but there are no floppy modes (i.e., modes that do
not deform the springs); (ii) the mean occupancy or coordina-
tion decreases monotonically from the system center to the active
site; (iii) the mouthpiece of the trumpet is surrounded by two
more rigid regions, which appear in dark in Fig. 3A; and (iv)

the coordination number is close to its critical isostatic value in
the vicinity of the active site (see Physical Processes Underlying
Allostery).

The trumpet-like architecture is robust: It remains qualita-
tively unchanged as the mean coordination number is varied, as
long as δz > 0. For δz < 0, however, a trumpet still exists (see SI
Appendix), but it is inverted: It is more coordinated than the rest
of the system.

Next we study how such trumpets shape the response to a bind-
ing event, by considering the mean-squared magnitude of the
normalized response at different nodes i , 〈|δRr

i |2/
∑

i |δRr
i |2〉,

as shown in Fig. 3. For random networks, unsurprisingly, the
response is large only close to the stimulus site. However, the
response of fit networks displays a striking feature: It varies non-
monotonically between the allosteric and the active site. It almost
vanishes in the bulk of the material, but reappears near the active
site, where it is the strongest.

Physical Processes Underlying Allostery
The observation that fit networks develop a less-constrained
region connecting the stimulus to the active site is not very sur-
prising, because the elastic point response can remain heteroge-
neous on longer length scales in that case (17). This argument
does not explain, however, the strong asymmetry of the trum-
pet, more coordinated near the stimulus and nearly marginally
connected near the active site. We now argue that this design is
selected for because it prevents the decay in the amplitude of the
signal one expects in normal elastic materials.

Recent works have shown that marginally connected crys-
tals can display edge modes, leading to exponentially growing
response when displacements are imposed at the boundary of
the system (30–32). It was very recently shown that such “explo-
sive” modes must be present in disordered marginally connected
materials as well (19). Such systems, if sufficiently constrained
at some of their boundaries, can act as a lever that can amplify
complex motions exponentially toward free boundaries (19).

We argue that our allosteric networks are built along this prin-
ciple. As sketched in Fig. 4A, their structure is approximately that
of a well-connected elastic material surrounding a marginally
connected network near the active site. If a stimulus is imposed

A

B

Fig. 3. (A) Map of the mean coordination number and (B) spatial distribu-
tion of the average response magnitude for configurations equilibrated at
Te = 0.30 (Left) and Te = 0.05 (Right). In the functioning networks (Right),
a trumpet connecting the allosteric and active sites appears in A, and the
response to stimulus varies nonmonotonically inside the trumpet in B.
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Fig. 4. (A) Illustration of the mechanism responsible for allostery in our artificial networks. They display a nearly isostatic region in the vicinity of the
active site, surrounded by a better-connected material. When the ligand binds, it induces an effective shape change at the allosteric site. This mechanical
signal transmits and decays through the well-connected body of the material. It is then amplified exponentially fast in the isostatic region near the active
site, leading to a large strain. (B) System made of two elastic networks with coordination z = 5.0 (red) and z = 4.0 (green). Its response (black arrows) to a
perturbation (purple arrows) demonstrates that an isostatic network embedded in a more connected one can amplify the response near its free boundary.
(C) Spatial distribution of the probability that a node is in an isostatic region connected to the active sites at Te = 0.3 and Te = 0.05 for z = 5.0.

on an allosteric site, the response will decay with distance in
the well-connected region, leading to imposed displacements of
small amplitude on the boundary of the isostatic region. As noted
above, “squeezing” such systems leads to an explosive response
in the direction of free boundaries, allowing the response to
reach the desired amplitude on the target nodes. This explana-
tion captures both the observation that allosteric networks are
nearly isostatic near the active site and that their response varies
nonmonotonically in space.

To test this proposal, we build an artificial network, by
embedding a random isostatic network with z = 4 to a better-
coordinated random network with z = 5 (the details of con-
struction are explained in Methods). As shown in Fig. 4B, the
response to an imposed dipole on the open boundary of the well-
connected network decays, but eventually grows rapidly toward
the boundary of the isostatic region, as predicted.

As discussed in SI Appendix, we have developed an algorithm
to recognize a nearly isostatic region that contains the target
nodes in our evolved networks, which could be extended to real
proteins using the methodology of ref. 33. In Fig. 4C, we show
the probability map that a node belongs to such an isostatic net-
work, obtained by averaging on many realizations. Fit allosteric
networks indeed show a robust isostatic region attached to the
active sites, which is absent for random networks.

In SI Appendix, we show that a similar architecture is found
when the active site is well inside the system: The material devel-
ops a weakly connected region embedded in a more rigid one,
again leading to an amplification of the response.

Beyond this central aspect of the design, detailed features of
the trumpet presumably also improve function, because they are
conserved. This is further demonstrated in SI Appendix, where
the fitness costs of all possible “mutations” (corresponding to a
change of the occupancy of a link) are computed, leading to a
map that reflects the entire trumpet shape.

Conservation and Coevolution
In our model, the “sequence” of a network corresponds to
the vector of zeros and ones |σ〉 that defines a structure. This
Boolean sequence is analogous to the sequence of amino acids
that defines a protein. Using our Monte Carlo at some low Te , we
can generate a family of sequences associated with networks of
high fitness. If only such a family could be observed (and assum-

ing no knowledge on the task being performed nor on the spa-
tial organization of the networks), would it be possible to infer
which region of the system matters for function? There is evi-
dence that such inference is useful for some protein families, if
enough sequences are available (4, 7). We show that this infer-
ence also works in our model.

Key aspects of the design are more likely to stay conserved in
evolution. Here we define conservation in each link α as (34)

Σα ≡ 〈σα〉 ln
〈σα〉
σ̄

+ (1− 〈σα〉) ln
1− 〈σα〉

1− σ̄ , [2]

where 〈σα〉 is the ensemble average of the occupancy of link α,
and σ̄=Ns/(3N − 2L) is the mean occupancy of the links. Σα

is a measure of the predictability of the occupancy of the link α:
It is zero when the link occupancy is random, and it is maximum
when the link is always empty or always occupied. The conser-
vation map of allosteric networks is shown in Fig. 5A. We can
distinguish the trumpet pattern, but, most strikingly, the neigh-
borhood of the active site is very conserved. This observation
supports that specificity of the response is essentially controlled
by the geometry of the network near the active site.

Next, we test if an analysis of coevolution alone reveals impor-
tant features of function and structure. We define the correlation
matrix C between the links α, β as

Cαβ = 〈σασβ〉 − 〈σα〉〈σβ〉, [3]

where the 〈•〉 is again the ensemble average over the solutions
found by the Monte Carlo algorithm. We then compute the
eigenvalues λ1 >λ2 > ...>λNs of the matrix C . Fig. 5B com-
pares the spectrum of eigenvalues of a high-temperature (essen-
tially random) network with that of allosteric networks obtained
at small Te . In the latter case, some eigenvalues are much larger
than the continuum spectrum, itself much more spread than in
the random case.

To select out a “sector” (7) of links that coevolve, we (i) pick
up the NΓ = 10 (other choices for the value of NΓ are docu-
mented in SI Appendix) eigenvectors |ψγ〉 with highest eigenval-
ues and (ii) include a given link α in the sector if, for at least one
of these 10 modes, |ψγ

α| > ε= 0.05. Links selected in this proce-
dure are shown in Fig. 5C. This procedure selects precisely the
links that belong to the trumpet, supporting the idea that coevo-
lution alone can uncover key functional aspects (4, 7).
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Fig. 5. (A) Spatial distribution of conservation, as defined in Eq. 2,
for Te = 0.05 and z = 5.0. (B) Spectrum of eigenvalues ρ(λ) of C for the
high-temperature case (Te = 0.30) in black and the low-temperature case
(Te = 0.05) in red. The white region indicates which eigenvalues are used
to identify the springs shown in C. (C) Springs selected using the procedure
explained in Conservation and Coevolution. (D) C̃ is built using the same
parameters as in C. C̃ presents a clear separation in a region where the cor-
relations are stronger, which corresponds to the trumpet shown in C. All
these images are made using L = 12 and z = 5.

For completeness, we define a correlation matrix recon-
structed from its 10 top eigenvectors,

C̃αβ =

NΓ∑
γ=1

λγ |ψγ〉〈ψγ |. [4]

C̃ is shown in Fig. 5D after reordering links in terms of the
strength of their components in the top 10 modes, clearly show-
ing a sector of links where correlations are strong in amplitude
(but vary in sign).

Conclusion
We have introduced a scheme to discover materials that accom-
plish a specified task. The scheme allows us to characterize the
architecture of the solutions, their entropy, and how correlated
they are. We illustrated this approach using a specific allosteric
task, where a strain imposed on an allosteric site must lead to a
given strain on a distant active site. The architectures we obtain
are highly anisotropic. Our analysis revealed that the physical
mechanisms that enable allostery include the recently discov-
ered presence of soft edge modes in marginally connected elastic
materials (19). It would be very interesting to test if some pro-
teins have evolved to exploit such effects by (i) measuring the
displacement field induced by binding the ligand, and by check-
ing if its magnitude varies nonmonotonically inside the protein
and is amplified near the active site, as reported in Fig. 3B; and
(ii) testing if the region around the active site is marginally con-
nected, using algorithms developed in proteins to quantify con-
nectivity and flexibility (33).

The detailed study of the architectures we found also reveals
some of their limitations. Real proteins have additional con-
straints other than those we have considered: Among others,
they are made of a chain that folds and remains relatively stable
despite thermal noise. Our asymmetric structures are quite soft
near the active site: As documented in SI Appendix, the thermally
induced motion would be about 4 times larger there than in the
other nodes also located at the system surface, which may not
be desirable. Note, however, that such features will improve if
alternative fitness functions are considered, which our approach

allows for. This procedure could be implemented by explicitly
penalizing thermal motion at the active site. An intriguing exten-
sion of our work is to reason in terms of energy, as is done, in par-
ticular, in the Monod–Wyman–Changeux model (1, 2), instead of
displacement. A natural quantity to maximize is the cooperativity
between two distant sites. Denoting by E1 and E2 the mechanical
energies associated with a binding event in some site 1 and site 2,
respectively, and denoting E12 the energy of binding both, we can
consider F =E1 + E2 − E12. Fitness can be large only if the two
sites are strongly coupled together elastically, which, from the
symmetry of the fitness, presumably corresponds to more sym-
metric architectures than those discovered here.

In addition, our scheme can be used to benchmark (and seek
novel) methods aiming at inferring function and structure from
protein sequence data alone. As an illustration, we performed a
statistical coupling analysis and identified “protein sectors” from
top eigenvectors of the correlation matrix. Our results support
that such a method (4, 7) can indeed reveal compact regions
central for function. It would be very interesting to extend this
analysis to multiple and possibly time-varying tasks, and to con-
sider how many sectors appear under these conditions. Another
approach, direct coevolutionary couplings (35), identifies evolu-
tionary interactions between amino acids. Our framework can be
used to measure these interactions, and to study their relation-
ship with elasticity, structure, and function.

Methods
Computing the Linear Response to an Imposed Displacement. The linear
response to an external force field |F〉 reads

|F〉 =M|δR〉, [5]

where the stiffness matrixM depends only on connection |σ〉 and the link
directions. Here |δR〉 is the entire displacement field, of dimension 2N. Its
components are noted δRi . We use a basis for which i = 1...4 corresponds to
the stimulus nodes, whereas i = 5...N labels the other nodes.

To impose the stimulus at the allosteric nodes |δRE〉, forces must be
applied on these nodes. All other nodes adapt to a new mechanical equilib-
rium with no net forces on them, and they follow a displacement |δR(σ)r〉.
Thus, Eq. 5 becomes, for this choice of basis,(

|FE〉
|0〉

)
=M

(
|δRE〉
|δR(σ)r〉

)
. [6]

which leads to (
|FE〉
|δR(σ)r〉

)
= Q−1M

(
|δRE〉
|0〉

)
, [7]

with

Qij =

{
δij if j ∈ E
−Mij if j 6∈ E . [8]

When there are floppy modes in the network,Q is not necessarily invert-
ible. Then, in the above formula, Q−1 should be understood as the pseu-
doinverse. Another possibility is to regularize the problem, for example, by
imposing that each node also interacts with all its next-nearest neighbors via
weak springs of stiffness kw� 1. Both methods lead to qualitatively identi-
cal results. Our results were computed using the second approach with the
very small value kw = 10−4.

Computing the Fitness. Minimizing Eq. 1 with respect to the global transla-
tion and rotation leads to√∑

i∈T

(δRr
i − δRTi )2 −

∑
i∈T

(δRr
i − δRTi )(δRr

i+1 − δRTi+1), [9]

where i + 1 = min(T ) if i = max(T ).

Metropolis Algorithm. Starting from a configuration |σ〉, we consider the
move toward a new configuration |σ′〉 that differs only by the motion of a
spring. The move is accepted with the probability

P(|σ〉 → |σ′〉) = min
[

1, exp
(

F(|σ′〉)− F(|σ〉)
Te

)]
, [10]

which satisfies detailed balance. Based on whether the move is accepted or
not, the algorithm samples the new configuration |σ′〉 or the original one
|σ〉. The next step starts from the configuration just sampled.
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For each coordination number z and each evolution temperature Te,
we sample 20 Monte Carlo sampling series with 105 Monte Carlo steps in
each, and do not consider the first half of these time series (which is suf-
ficient to eliminate transient effects). Our results are thus averaged over
106 configurations.
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