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ABSTRACT: In this work, we consider two possible wetting states for a droplet
when placed on a substrate: the Fakir configuration of a Cassie−Baxter (CB) state
with a droplet residing on top of roughness grooves and the one characterized by the
homogeneous wetting of the surface, referred as the Wenzel (W) state. We extend a
theoretical model based on the global interfacial energies for both states CB and W to
study the wetting behavior of simple and double reentrant surfaces. Due to the
minimization of the energies associated with each wetting state, we predict the
thermodynamic wetting state of the droplet for a given surface texture and obtain its
contact angle θC. We first use this model to find the geometries for pillared, simple
and double reentrant surfaces that most enhances θC and conclude that the repellent
behavior of these surfaces is governed by the relation between the height and width of
the reentrances. We compare our results with recent experiments and discuss the
limitations of this thermodynamic approach. To address one of these limitations, we
implement Monte Carlo simulations of the cellular Potts Model in three dimensions, which allow us to investigate the
dependency of the wetting state on the initial state of the droplet. We find that when the droplet is initialized in a CB state, it gets
trapped in a local minimum and stays in the repellent behavior irrespective of the theoretical prediction. When the initial state is
W, simulations show a good agreement with theory for pillared surfaces for all geometries, but for reentrant surfaces the
agreement only happens in few cases: for most simulated geometries the contact angle reached by the droplet in simulations is
higher than θC predicted by the model. Moreover, we find that the contact angle of the simulated droplet is higher when placed
on the reentrant surfaces than for a pillared surfaces with the same height, width and pillar distance.

■ INTRODUCTION

Understanding the parameters that control the wetting
properties of a substrate is important to engineer surfaces
with different applications. One of the ingredients to control
the wetting phenomenology is the chemistry of the surface as
well as the chemistry of the fluid. For an idealized surface
completely flat, the droplet contact angle is univocally defined
by minimizing the necessary energies to generate the interfaces
of the three involved phases: it defines the Young contact angle
θY, which depends on the surface tension between the liquid−
gas σGL, gas−solid σSG, and solid−liquid σSL, cos(θY) = (σSG −
σSL)/σGL. Another controlling parameter is the topology of the
substrate. To transform materials for which θY > 90° into a
super-repellent surface (usually defined as a surface for which
the apparent contact angle of a drop of liquid deposited on it is
typically >150° and the hysteresis effect is small) is possible by
introducing roughness on multiple scales.1 This mechanism is
understood due to the inspiration from natural surfaces such as
Lotus leaves and to numerous experiments, models, and
simulations.1−14

While the super-repellent behavior for materials and liquids
with θY > 90° can be explained by the complementary roles of
surface energy and roughness, in the case where θY < 90° the
understanding requires more elements. In the reference15 the
authors have demonstrated that gold surfaces which is
hydrophilic with a contact angle of 70° for water became
hydrophobic (contact angles of the water droplet >90°) when

decorated with spherical cavities. This behavior was theoret-
ically discussed by Pantakar.16 A superoleophobic surface was
also possible from an intrinsically oleophilic (contact angles of
the oil droplet <90°) material by building a hierarchical porous
structure consisting of micrometer-sized asperities super-
imposed onto a network of nanometer-sized pores.17 In refs
18 and 19, super-repellent surfaces were developed for organic
liquids having lower surface tensions than that of water.
Although the thermodynamics of these surfaces show that the
global minimum energy state of a droplet placed on this surface
would be wetted, the authors have shown that it is possible to
design metastable super-repellent surfaces even with materials
with θY < 90° and that to understand this behavior the
reentrant surface local curvature is determinant. Other
reentrant surfaces with super-repellent properties for liquids
with varying surface tension liquids20 were developed, and
recently Liu and Kim show that a specific double reentrant
structure can render the surface of any material super-
repellent,21 even for liquids with extremely low surface tension.
It is important to note that the presence of reentrant curvature
is not a sufficient condition for developing highly nonwetting
surfaces. Using a free energy model combined with a
hydrodynamic equation, it was shown that reentrant geometries
can provide metastable super-repellent states even when the
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surface is intrinsically wetting.22 Also some simulations were
developed to measure the energy barrier between the super-
repellent and wetting states23,24 and to test the robustness of
the superomniphobic behavior,25,26 as well as experiments to
better understand its properties.27,28

Inspired by Kim’s experiment,21 in this work, we extend a
theoretical model developed for pillared surfaces in the ref 29
to the surfaces with a simple and double reentrance, as
schematized in Figure 1. The theoretical continuous model
takes into account all the interfacial energies associated with the
energy of a liquid droplet deposited on top of the surfaces. We
consider the Fakir Cassie−Baxter state (CB), characterized by
the suspension of the droplet trapping air inside the surface
grooves, and the Wenzel state (W), where the liquid present a
homogeneous wetting of the surface. To obtain the stable
wetting state, the energies associated with W and CB states are
minimized. This model and the minimization procedure allow
us to build the wetting diagram of the three types of surfaces for
different geometric parameters and types of liquids. We
compare the results of this approach with some experiments
and discuss the limitations of the model. As mentioned above, a
relevant aspect of the wetting problem is the metastability of
the wetting states. This meta-stability in some experiments is
manifested through the dependence of the final wetting state of
the droplet on its initial condition.1,9 To address this issue, we
implement Monte Carlo (MC) cellular Potts model simu-
lations13,30 of a droplet in three dimensions. The simulations
show that when the initial wetting state of the droplet is CB, the
droplet stays in a nonwetting state during the simulation run
and it usually reaches a local minimum. For pillared surfaces,
the simulations have good agreement with the theoretical
model when the droplet starts in a W configuration, but for
reentrant surfaces the simulated angle is always higher than the
model predicts.

■ THE CONTINUOUS MODEL
In this section, we develop a model that takes into account the energy
cost of creating interfaces between different phases when a droplet of a
given volume V0 is placed on a surface of three types, as schematized in
Figure 1. The model and the method used to minimize the global
energy were developed in a previous work29 to study the case where a
droplet is placed on a surface of type 1, Figure 1a. Here we extend the

method for the reentrant and double-reentrant surfaces, as the ones
shown in Figure 1c and e.

We consider a three-dimensional spherical droplet with geometric
parameters as defined in Figure 2. The droplet is supposed to be in

one of the two possible states, the Cassie−Baxter (CB) or the Wenzel
(W) state. We emphasize that in this work we consider one particular
case of the CB state, which is the Fakir configuration with no liquid
penetrating the surface. The W state considered here is the
homogeneous one, where the liquid fully penetrates the grooves.
The total energy of each state is given by the sum of all energies
involved in creating interfaces between every pair formed from liquid,
solid, and gas after the droplet is placed on a surface, Eint

s . This energy
is subtracted from the energy of the surface without the droplet, Esurf,
and the relevant quantity to define how much energy a given state s (s
= W or s = CB) costs is the difference ΔEs = Eint

s − Esurf. For the
droplet sizes considered in this work, the gravitational energy of the
droplet is of order of 10−4 times the interfacial energy and it can be
safely neglected.

In the CB state, the droplet only touches the surface on the top of
the pillars, which size is given by w2 for all the tree types of surfaces, as
indicated in Figure 1. Because there is no liquid in the internal part of
the surface, the energy of the droplet in the CB state is the same for
the three types of surface. Using Young’s relation, σSG − σSL =
σGL cos(θY), we can write the energy of the CB state as

σ θΔ = − + +E N d S[ ( w (1 cos )) ]CB
GL

CB 2 2
Y

CB (1)

Figure 1. Surfaces analyzed in this work. (a) Schema 3D of the pillared surface, also called surface of type 1. (b) 2D section of the pillared surface and
the definitions of its geometric parameters: pillars height h, distance between pillars represented by a, and pillar width given by w. (c) Schema 3D of
the simple reentrant surface, also referred as surface of type 2. (d) Definition of its geometric parameters: the basis of the pillars are decreased,
possessing width w2 ∈ (0,w) and height h2 ∈ (0,h) and creating an horizontal overhang as shown in the figure. (e) Schema 3D of the double reentrant
surface or surface of type 3. (f) Definition of the geometric parameters: this surface is built by adding a vertical overhang with length h3 ∈ (0, h2) and
thickness w3 ∈ (0, (w − w2)/2), generating a double reentrance.

Figure 2. Geometric parameters of the droplet. We consider that a
stable droplet assumes the shape of a spherical cap with radius R, base
radius B, height H, and contact angle θC.
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where d = w + a and σGL is the liquid−gas interfacial tension. The total
number of pillars underneath the droplet is = πN B(2 /d)s

4
s 2, where Bs

= Rs sin(θC
s ) is the base radius. The surface area of the spherical cap in

contact with air is given by Ss = 2πRs2 [1− cos (θC
s )].

On the other side, in the W state, the droplet is in contact with the
internal part of the surface and therefore the energy terms will be
different for each kind of surface:

σ θΔ = − + E S N d wh[ ( 4 )cos ]

T

(1)
W

GL (1)
W

(1)
W 2

Y

1 (2)

σ

θ
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+ − − −
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σ
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T
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W
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where the subscripts 1−3 indicate the indexes of the three types of
surfaces. We remind readers that all the geometric parameters are
defined in Figures 1 and 2.
To define which wetting state is stable, W or CB, we find the

minimum energy state for a given geometry and type of liquid. To do
so, we do not use the absolute values of the energies, but only their
difference. Because surface tension of the liquid σGL multiplies all the
equations above, this term does not influence the thermodynamic
stable state. Therefore, we will assume that σGL = 1 and the only
information about the type of the liquid in the model is contained in
θY.
In what follows, we discuss some analytical limits of these equations

that guide us to compare the energies of the droplet in the different
surfaces. At the end of this section, we explain the minimization
procedure used to define the wetting stable state and how to obtain
the wetting diagram for a droplet placed on these three surfaces.
Theoretical Considerations about the Model. In this section,

we consider a limit case where the radius of the droplet is large
compared to the typical scale of roughness. In this limit the volume of
the liquid inside the roughness grooves is negligible compared to the
volume of the cap. Then Ns and Ss are the same for all the surfaces and
the expressions of energies can be rewritten as

θ

θ

θ

θ

Δ = + − +

Δ = −

Δ = Δ −

Δ = Δ −

E S N d w

E S NT

E E NT

E E NT

( (1 cos ))
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W
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W

3 Y

with T1, T2, T3 defined in eqs 2−4. Note that T2 can be zero, which

happens when = * = +h h w w
2 2

( )
2

2 , positive or negative. T3 is always

positive, but the value of h3 does determine the relation between the

energies of the surfaces. The parameter * = − * −
−h h h[ ] w w

w w3 2 2
( )

(2 )
2

3
is

determinant in defining these relations (see below).
The first question is about the possibility of CB being the lowest

energy state. For the case where θY > 90°, it is possible mathematically
the relation ΔECB < ΔE(i)W for the three types of surfaces, i = 1, 2, 3. It
implies that in this situation the thermodynamic stable state of the
droplet can be the CB for all three types of surfaces depending on its
geometric parameters. However, for the case θY < 90°, there is no set
of geometric parameters for any of the type of surfaces considered in
this work for which one could build a CB as the stable state. In terms
of energy, it means that ΔECB > ΔE(i)W always.
Another question to address is which interval of geometric

parameters increases the energy of the W state when changing the

type of surface. Note that even in the cases where the CB state is not
reachable, the fact that the energy of the W state increases implies that
the contact angle of the droplet has a chance to increase as well. In
other words, to find the conditions for which ΔE(i)W increases is related
to the possibility of enhancing θC of the droplet. The enhancement of
θC is associated with the repellency of the surface: higher is θC, more
repellent is the surface. This argument does not take into account the
energy barrier which is known to be important in this phenomenol-
ogy18,22,23 and will be discussed in a next section.

Table 1 shows a comparison between the W energies of the three
types of surfaces, indicating which are the interval of geometric

parameters that increase the energy of the W state. We then take into
account the inequalities shown in the Table 1 and build Table 2 with
all the theoretical possible relations between the contact angle θC of
the droplet placed on the surfaces and the geometric conditions for all
of these situations. θi means the contact angle of the thermodynami-
cally stable state of the droplet on the surface of type i = 1, 2, 3. Below
Table 2, it is shown a schema of the geometric configurations that
represents each condition for the case θY > 90°.

The table and the figures indicate nontrivial relations between the
geometric parameters of the surfaces and the result in terms of the
contact angle of the droplet. The relation denoted by “a”, where θ3 >
θ2 > θ1, corresponds to a geometrical situation where h2 < h2*, with

* = +h w w
2

( )
2

2 . Besides the fact that h2 depends on the widths of the

reentrances and not on their heights, the result is such that the height
of the simple reentrance is small. There is no condition on the
overhang of the second reentrance to create this situation. The
situation “b,c,d” happens when h2 > h2*, but depending on the value of
the overhang h3 there are three possibilities as shown in the schema.
Situation “e” happens when the term T2 = 0 in eq 3 is equals to zero
and mathematically there is no effect of the first reentrance.

It is important to realize that the analysis of the equations developed
in this section allow us to understand the range of parameters for
which the energy of one state can overcome the energy of the other
state or can enhance the contact angle of the droplet. These analysis
cannot, however, predict which is the value of the apparent contact
angle θC of the thermodynamically stable state of the droplet on each
type of surface. To do so, one needs to implement the minimization
procedure explained in the next section.

It is worth noting that, in the experiments where the droplet
evaporates, eventually the volume of the droplet becomes small
compared to the typical scale of roughness and a transition from CB to
W is observed.29,31−33 In these cases, the volume below the grooves
can compete with the term of the cap and some considerations made
above can fail.34−36

Energy Minimization. To decide which wetting state (W or CB)
is favorable from the thermodynamic point of view, we minimize the
equations of global energy derived above and compare the minimal
energy for each state. This minimization procedure was discussed in
the reference29 for the pillared surface. Here we recall the idea for a
surface of type 1 and apply the method for the types of surface 2 and 3.
In the Supporting Information (SI), we show a flowchart, Figure S1, of
the method and explain how to extend it for surfaces of types 2 and 3.

Table 1. Interval of Geometric Parameters for Which the
Energies of the Droplet Placed on Different Surfaces Present
Global Energies for the W State As Given by the Relation
Shown on the Top of Each Columna

ΔE(2)W > ΔE(1)
W ΔE(3)

W > ΔE(2)W ΔE(3)W >ΔE(1)
W

θY > 90° h2 < h2* always (a) h2 < h2* or (b) h2 > h2* and
h3 > h3*

θY < 90° h2 > h2* never h2 > h2* and h3 < h3*

aWe remind readers of the definition of * = +h w w
2

( )
2

2 and

* = − * −
−h h h[ ] w w

w w3 2 2
( )

(2 )
2

3
. Note that for the case ΔE(3)W > ΔE(1)W and

θY > 90° there are two different conditions, denoted by (a), (b).
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Consider a surface of type 1. We fix all its geometric parameters h, a,
and w and its chemical properties (in practice, we only need to chose
θY) and ask the following question: if a droplet of a fixed volume V0 is
placed on this surface, which would be its final wetting state, W or CB?
If the geometry and θY are fixed, the energies expressed in eqs 1 and 2
only depend on the droplet radius Rs and on the contact angle θC

s .
To find the minimum of CB and of the W state, we do the

following: (i) we compute the radius Rs by solving the cubic equation
for a fixed volume V0 (the equations for the volume of each surface are
shown in the SI). (ii) Then, we vary the contact angle θC

s ∈ (0, π] and
for each contact angle we compute the energy difference ΔEs

associated with these parameters using eqs 1 and 2. (iii) We compare
all the energies found for ΔECB and store the minimum one, called
ΔEminCB . There is one detail in this step: to select ΔEmin

CB , we also impose
the constraint that the contact line of the droplet has to be pinned to
the pillars.37 This implies that the base radius BCB and θCB does not
have a continuous value as a function of volume. We do the same for
the W state and define ΔEmin

W . (iv) The thermodynamically stable state

is the one with the lowest ΔEs. In other words, if ΔEmin
W < ΔEminCB , the

W is the stable state.
Once the state with the lowest energy is defined, all geometric

parameters of the droplet (contact angle θC, radius R, base radius B,
spherical cap height H) in this state are determined. This procedure
can be applied for any set of geometric parameters (h, a, w) and value
of θY to build the wetting diagram for the pillared surface.

■ THEORETICAL RESULTS AND DISCUSSION

In the previous section, we discussed the theoretical
possibilities for the energies of the droplet placed on each
type of surface and we observed that, depending on the
geometric parameters, there are five possible relations between
the θC on different surfaces, summarized in Table 2. These
relations guide us to look for the enhancement of the θC, but to
know by how much the θC is enhanced we need to apply the
minimization procedure explained before. Our goal in this
section is to explore the wetting diagrams of all types of

Table 2. Summary of All Possible Mathematical Relations between the θC for the Three Surfaces and Its Respective Geometric
Conditions Divided in the Two Cases θY < 90° and θY > 90°a

aBelow the table there is a schema of the surfaces for each of the five geometric conditions. The symbols refer to the relations between θC of the
droplet on the different types of surfaces.

Figure 3. (a−d) Wetting diagrams for the surface of type 1. The quantity shown is the contact angle θ1 for a droplet radius R0 = 1000 μm as a
function of two geometric parameters of the surface: the height of the pillars h and the distance a between them. The dotted line, when it appears,
shows the predicted thermodynamic transition between the Cassie−Baxter and Wenzel states, being that the Wenzel state corresponds to the region
below the line. In the case where θY < 90°, there is no thermodynamic transition. (e−h) Diagram of θ2

max as defined in the text. From left to right, the
θY is increased, ranging from a wetting to nonwetting case. w = 20 μm for all diagrams.
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surfaces, focusing on quantifying when the difference in θC is
maximized for the three types of surfaces.
Pillared vs Simple Reentrant Surfaces. The wetting

diagrams for the surface of type 1 are shown in Figure 3a−d.
These are diagrams of the contact angle of the most stable
wetting state when the droplet placed on a surface of type 1,
named θ1, as a function of the pillar height h and pillar distance
a for several θY. To build these diagrams, we fix R = 1000 μm
(corresponding to a volume V0 = 4.2 μL), the value of θY and
then, for each set of parameters (h, a, w), eqs 1 and 2 are
minimized.
When θY> 90°, the CB state is the thermodynamic stable

state for small values of a and high values of h and there is a
transition to the W state when a increases and h decreases, as
the dashed line indicates in Figure 3c,d.29 When θY decreases,
the CB region also decreases gradually and disappears for θY =
90°. Below this value, there is no transition: the only stable
thermodynamic state is the Wenzel state.
What are the geometries that maximize the enhancement of

θC on the surface of type 2 compared to this value on the
surface of type 1? To answer to this question, one needs to
span systematically all the geometric parameters that define the
surface of type 2. To do so, we developed the following
procedure. (i) We fix a set of parameters (h, a, w) of the surface
of type 1 and vary the parameters of the surface of type 2 taking
into account all the possibilities w2 ∈ (0, w) and h2 ∈ (0, h).
(ii) For each set of parameters (h, a, w, w2, h2) of the surface of
type 2, we minimize eqs 1 and 3 and find the contact angle θ2
that minimizes the global energy of the droplet on this surface
2, as explained in the SI. (iii) After spanning all possible
geometries of the surface 2, we search for θ2

max which is defined
as the angle that maximizes the difference between θ2 and θ1.
We refer to the surface that produces θ2

max as an optimal surface
for the set of parameters (h, a, w) and the geometric parameters
responsible for that as w2

opt and h2
opt.

Figure 3e−h shows θ2
max for different values of θY. In the case

where θY > 90°, comparing diagrams (c) and (g) for θY = 95°

or diagrams (d) and (h) for θY = 120°, we observe typically no
difference between θ1 and θ2

max. In the case where θY < 90°,
comparing, for example, the diagrams (a) and (e) for θY = 60°,
we also observe that for some region the contact angle increases
from the surface 1 to the surface 2.
Surface roughness r for the surface of type 1 is defined as r1 =

1+ (4hw)/d2 and for the surface of type 2 the definition is given
by r2 − r1= (2(w2 − w2

2) − 4h2(w − w2))/d
2, with d = a + w. In

the case of θY> 90, typically w2
opt → 0 and h2

opt → 0 (both values
are finite because we impose minimal values for these
parameters), which results in r2

opt − r1 = 2w2/d2, where r2
opt is

the roughness of the optimal surface. We can analyze the
variation of r2

opt with respect to r1: for small values of a, r2
opt − r1

≈ 2, while for large values of a, r2
opt ≈ r1. The fact that r2

opt is
similar to r1 agrees with θ2

max ≈ θ1. In the case of θY < 90°,
typical values are w2, opt → 0 and h2

opt → h2, implying that r2
opt −

r1 = 2w(w − 2h2
opt)/d2. For most of the points of the diagram,

r2
opt < r1 by a factor that depends on (w − 2h2

opt)/d2. For
example, in the case of Figure 3 and θY = 85°, the value of r2

opt −
r1 vary from 0 to −12, which agrees with our measure θ2max > θ1.

Pillared, Simple, and Double Reentrant Surfaces. In
this section we consider the surfaces with double reentrance,
Figure 1e. From Table 2, we note that the global minimum
energy contact angle of a droplet placed on a surface of type 3,
θ3, is the highest in most of the geometric situations for the
cases where θY > 90°. However, θ3 is not the highest contact
angle in any of the geometric parameters for the case θY < 90°.
For this reason, we only analyze the situation where θY > 90°,
setting θY = 120°.
Figure 4a shows the diagram of the θ1, which was shown in

Figure 3 but it is repeated here to indicate the points P1 and P2
that are analyzed in detail. Note that P1 is in the CB state, P2 is
in the W state and both are close to the transition line. We will
refer to the set of geometric parameters that defines these
points Pi as (a

Pi, hPi, wPi). At the end of this section we also
discuss what happens far from the transition line.

Figure 4. (a) θ1 as a function of the height of the pillars h and distance a between them. (b, d) Diagrams θ2 as a function of the height h2 and width
w2. (c,e) Diagrams of θ3

max(θ2) as a function of the height h2 and width w2 of the simple reentrance. For the diagrams (b,c), the values of h and a are
given by the point P1 of the diagram (a) and for the diagrams (d,e) the values of h and a are given by the point P2 of the diagram (a). The figures on
the right are schema of the surfaces with the correct proportion between the geometric parameters. Each set of three surfaces refers to the points α,
β, γ, δ marked in diagrams (b)−(e). On the right of each set of figures is indicated the values of θ1, θ2, and θ3max for each point. w = 20 μm, R0 = 1000
μm, and θY = 120° for all diagrams.
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Figure 4b,d shows θ2 at the points (aPi, hPi, wPi, h2, w2). For
each Pi, we compute the contact angle θ2 using eqs 1 and 3 and
the minimization procedure for each pair (w2, h2), with w2 ∈ (0,
wPi) and h2 ∈ (0, hPi).
We now seek the optimal surface 3, which is the surface of

type 3 that maximizes the θC compared to the surface of types 1
and 2. To find the optimal surface 3, we use the same method
applied in the previous section to select the optimal surface 2.
We recall the procedure here, applying it for the surface of type
3. (i) For each set of parameters (aPi, hPi, wPi, h2, w2) of the
surface of type 2, we vary the parameters of the surface of type
3: h3 ∈ (0, h2) and w3 ∈ (0, (w − w2)/2). (ii) For each set of
parameters (aPi, hPi, wPi, h2, w2, h3, w3), we minimize eqs 1 and 4
and find the contact angle θ3 that minimizes the global energy
of the droplet on this surface 3. (iii) After spanning all the
possible geometries of the surface 3, we find θ3

max(θ2), which is
defined as the angle that maximizes the difference between θ3
and θ2. We also find θ3

max(θ1), the angle that maximizes the
difference between θ3 and θ1, but is it not shown here because
the diagram of θ3

max(θ1) is similar to the diagram of θ3
max(θ2) for

the points chosen.
The diagrams of Figure 4b−e allow us to investigate, for any

point (aPi, hPi, wPi, h2, w2), the relation between the optimal
surface of type 3 and the other surfaces with the same base (aPi,
hPi, wPi) but different types of reentrances.
The diagram of Figure 4b shows θ2 of the point P1 indicated

in Figure 4a. The whole diagram presents θ2 ⩽ θ1, meaning that
the contact angle is never bigger in the surface 2 than it would
be in the surface of type 1. This remains true for any point Pi
inside of the CB phase for the surface 1, which confirms the
conclusion of the previous section: if the droplet were in a CB
state in the surface of type 1, its contact angle keeps a high
value when placed on a surface of type 2. To understand if
there is any gain in using a double reentrance, we choose two
typical points of this diagram, identified as α and β. For the α
point, Figure 4c shows that θ3

max > θ2, indicating that the
optimal surface of type 3 enhances θC compared to the surface
of type 2, but θ3

max ≈ θ1. For the β point, we observe that all
diagrams have the same color, indicating that there is no
significant difference in the θC for all surfaces. Both situations
are illustrated on the right of the diagrams where we also
indicate the geometric parameters of the surfaces for the points

α and β. The inequalities indicate the relation between the
contact angles in different surfaces.
The situation is different when one considers a point P2 that

is in the W region in the pillared surface, shown in Figure 4a. In
this case, the use of a double reentrant surface can enhance
significantly the contact angle. In the case of the γ point, we
observe in Figure 4d that θ2 < θ1 but θ3

max − θ1 ≈15°,
generating a relation expressed in the schema on the right.
Finally, the δ point is in a region where the differences between
the surfaces are smoothed when compared with the γ point.
Figure 4d shows that θ2 ≈ θ1, but Figure 4e shows θ3

max − θ2 ≈
10°. This situation is shown in the right of the diagram.
To close this section, we comment on the wetting behavior

of surfaces with the geometries given by the points Pi of the
diagram Figure 4a that are far from the phase transition line. If
Pi is in the CB phase, the behavior observed in the point α
disappears and the situation explained in the point β is
dominant. If Pi is far from the transition line but in the W
phase, the dominant behavior is the one discussed in δ point;
the situation shown in γ disapears.

Qualitative Comparison with Experiments. In this
section, we compare the results of our model with some recent
experiments that use reentrant surfaces.21,27,28 We discuss some
features that can be qualitatively described by the model and
the limitations of the global energy approach.

Contact Angle of a Droplet as a Function of θY. In ref 21,
Liu and Kim have shown that while the pillared surfaces could
not sustain the super-repellent character for liquids with surface
tension below σGL ≈ 50 mN/m, the introduction of a simple
reentrance in the surface extend its super-repellent behavior up
to liquids with σGL≈ 20 mN/m and the addition of a double
reentrance in the surface allowed it to become super-repellent
even for liquids with σGL≈ 10 mN/m.
To understand to which extent our model is able to describe

the results reported in ref 21 and better explore the wetting
behavior of the configurations encountered before for different
types of liquids, we select some specific geometries that
produce the five possible wetting relations shown in Table 2 as
a function of θY. Despite the fact that the Young angle is a result
of the interaction between the liquid placed on a flat surface
prepared with a given chemistry, we remind readers that in our
model θY is the only parameter related to the type of liquid. We

Figure 5. Contact angle θC as a function of θY. Different colors correspond to θC for different types of surfaces, as indicated in the legend box. For all
figures, w = h = a = 50 μm and w2 = w3 = 1 μm, which results in a solid fraction ΦS = w2/(w + a)2 ≈ 0.25 and h2* = 25.5 μm. The relations between
geometric parameters of the surfaces are shown in the schema below each figure, and the comparative symbols refer to θC on each surface for the
case θY > 90°. The geometric parameters and the respective condition in parentheses are given by (a) h2 = 10 μm, h3 = 8 μm (h2 < h2*). (b) h2 = 49
μm, h3 = 5 μm (h2 > h2* and h3 < h3*). (c) h2 = 49 μm, h3 = 48 μm (h2 > h2* and h3 > h3*). (d) h2 = 49 μm, h3 = 11.6μm (h2 > h2* and h3 = h3*). For
cases (b)−(d): h3* = 11.6 μm. (e) h2 = 25.5 μm, h3 = 10 μm (h2 = h2*). θY

i is the value of θY which the droplet transit between states for the surface of
type i.
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assume that different values of θY mimics liquids with different
values of surface tension σGL when placed on a surface with the
same chemistry. In other words, θY is an effective way of
changing the type of liquid.
Figure 5 summarizes all possible relations between the

wetting behavior of the three types of surfaces. It shows the θC
of a droplet in the thermodynamic stable state on each surface
as a function of θY. The values of θC were obtained by fixing
each geometry and, for each value of θY, we applied the
minimization procedure.
Considering, for example, Figure 5c, we note that, for very

high value of θY, for surfaces of type 1 and type 3, the
thermodynamic state of a droplet is the CB state. For the range
of θY presented in the figure, a thermodynamic state of a
droplet placed on the surface of type 2 would be W. When θY
decreases, θC on a surface of type 1 would make a transition for
the W state at the θY = θY

1 ≈ 120°, while the thermodynamic
state of droplet placed on surfaces of type 3 would keep the CB
state up to θY = θY

3 ≈ 104°. We stress that the qualitative
behavior shown in Figure 5 is robust in the sense that it would
happen for different values of solid fraction ΦS. However,
depending on ΦS, the same behavior would be observed for a
different range of geoemtric parameters and θY.
Besides the rich variety of the wetting behavior presented by

all these relations, the model is not able to describe the
experimental result shown in ref 21. An important limitation of
the model, based on the global energy minimization, is that it
does not describe the super-repellent behavior for surfaces with
θY < 90°, as it was theoretically discussed for example in ref 16
and anticipated by us in a previous section. Moreover, the
relation between the contact angles of different surfaces found
in ref 21 is the condition shown in Figure 5a, for which θY

3 > θY
2

> θY
1. However, in our model, the geometric conditions of the

surfaces that produce such a relation are very different from the
configurations used in ref 21, while in ref 21 the surface of type
2 has high value of h2 and the surface of type 3 has a small h3. In
our case, the value of h2 is small and h3 is relatively big as shown
in the schema below the figure and written in the caption of the
figure. We will show in the next section that if the initial state of
the droplet in the simulations is a CB state, it stays in this
repellent behavior even though the thermodynamics predicts
that the final state should be W. It suggests that there is a
barrier to transit from CB to W state that leads to a
metastability of the CB state and offers an explanation for the
disagreement between the model and the experiment.
Evaporation on the Reentrant Surfaces. In refs 27 and 28,

the authors report evaporation experiments of the droplet on

surfaces with reentrances. In ref 28, they study the influence of
the solid−liquid fraction of the surfaces and the temperature of
the substrate on the evaporation of the droplet placed on a
superhydrophobic surface with reentrant micropillars. The
work in ref 27 focuses on the difference of the evaporation
dynamics for liquids with low and high surface tensions placed
on the surfaces with reentrant mushroom structures on copper
substrates.
To compare our model with these experiments, we mimic

the evaporation dynamics by changing the initial volume of the
droplet. We note that eqs 1−4 are modified when the droplet’s
volume is reduced, since the terms N(i)

s and S(i)
s in these

equations depend on the droplet radius R. Figure 6 shows the
contact angle θC and the basis radius B as a function of the
droplet’s initial radius R0 for specific geometries of the three
different types of surfaces. Vertical lines indicate the passage
from the CB to W state when reducing R0.
Our model does not have quantitative agreement with the

experiments, but it is able to describe qualitatively some
features reported in the experiments:27,28 (i) we do observe a
transition from CB to W state when the volume of the droplet
reduces, (ii) there is a “staircase” behavior of θC and B, and (iii)
the surface of type 3 is able to sustain a high value of the
contact angle for smaller values of volumes for this particular
geometry of the surface we chose. Features (i) and (ii) have
already been reported for pillared surfaces experimentally,38 in
simulations,12,29 and more recently for the reentrant
surfaces.27,28 The staircase behavior in our case is due to the
fact that the energy is minimized and subject to the constraint
that the contact line is pinned. In experimental systems, this
behavior was classified as a complex mode characterized by a
series of stick−slip events.28,38

■ NUMERICAL EXPERIMENTS
The theoretical model discussed in this work takes into account the
global energy of the droplet and allows one to predict its geometrical
properties at the stable thermodynamic state. It is known, however,
that the final state of the droplet may change if it is carefully deposited
or thrown on the substrate.39 This exemplifies that in some situations
the droplet gets trapped in a metastable state and does not reach its
equilibrium state; to transit from one state to another, it is then
necessary to overcome an energy barrier.11,19,25,40

In this section, we perform numerical simulations using the Monte
Carlo method of the cellular Potts model to better understand the
dependency of the initial wetting state of the droplet on its final state.
The details of the model and parameters used in the simulations for
pillared surfaces are explained in ref 29 and in the SI. In this work, we
change the geometry of the substrate and perform simulations for

Figure 6. Base radius B and contact angle θC as a function of initial radius R0. Solid lines correspond to the thermodynamic stable values for the
contact angle. Vertical dashed line marks the passage from CB to W state when the radius reduces. The geometrical parameters are w = 40 μm, a =
50 μm, h = 50 μm, w2 = 10 μm, h2 = 20 μm, w3 = 2 μm, and h3 = 10 μm.
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different geometric parameters of the reentrant surfaces. The analyses
shown here are for θY = 114°.
The simulations do not allow one to measure the size of the energy

barrier, but they allow us to discuss how difficult it is to reach the
thermodynamic wetting state predicted for different geometries when
the initial wetting state changes. To test this dependence on the initial
wetting state, the droplet is initialized in two different wetting regimes.
All the simulated contact angles for each initial state are summarized in
Figure 7, which clearly shows that the final contact angles are different
when initializing in different wetting states. The two wetting states are
generated as follows. One possible wetting initial state is exemplified in
Figure 8a. It is created using a hemisphere with the initial volume V0 ≈
VT = 4/3πR0

3. We refer to this state as an initial Wenzel state, W0. The
second possible wetting state is exemplified in Figure 8f. In this case, a
droplet with the same initial volume V0 as in the W0 state is placed
slightly above the surface and allowed to relax under the influence of
gravity. Because the droplet is not filling the surface, we refer to this as
an initial Cassie−Baxter state, identified as CB0. Due to numeric
resources limitations and the need to span a big range of parameters,
we simulate a droplet of radius R0 = 100 μm which is much smaller
than the size of the droplet considered in the previous sections. The
total run of a simulation is at most 5 × 105 MCS (Monte Carlo steps,
better explained in the SI) for each geometry and the last 1 × 105

MCS are used to measure observables of interest. Even with this long
transient time, for some initial conditions the system does not reach

the thermodynamically stable state and becomes trapped in a
metastable state. At least five different initial conditions are used for
each set of simulation parameters.

Figure 7 shows scatter plots to compare quantitatively the contact
angle of the droplet obtained theoretically and in simulations for the
three different surfaces. The horizontal axis presents the theoretical
values θi , with i = 1, 2, 3 and the vertical axis show the results from
simulations θi

sim. The black line represents points for which θi
sim = θi.

Then, the closer the points are to this line, better is the agreement
between theory and simulation. Each point on the scatter plot is an
average over five simulation runs for a given set of geometric
parameters, and the error bars correspond to the standard deviation of
the average. All the points simulated are shown in Figure S2, together
with its predicted thermodynamic state and θi

sim.
Let us first compare the theoretical predictions with the results of

simulations for the surface of type 1, shown in Figure 7a. When the
initial state is W0 as shown in Figure 8a, θ1

sim presents a good
agreement with the theory, because the simulations are better able to
explore the phase space and to make the transition to the CB state.
However, when the initial state is CB0, Figure 8f, the agreement
between simulations and theory is good only in the region where the
thermodynamically stable state is the CB one. This means that, when
the initial state is W0 and the thermodynamic state is CB, the droplet is
able to change its state (during a simulation run, all samples reach the
predicted state). On the other hand, when the theoretically predicted

Figure 7. Scatter plot of stationary contact angles as a function of the theoretical values for surfaces of (a) type 1, (b) type 2, and (c) type 3. The
(blue) circles correspond to simulations starting in the W0 configuration, while the (red) squares in the CB0 state. The black line is the expected
relation of equality between simulations and theory. Points are averages over five simulation runs for R0 = 100 μm and for various values of geometric
sets. The geometric parameters w = 10 μm, w2 = 2 μm, and w3 = 1 μm are fixed for all points of the three surfaces. The big black circles indicate the
geometric surfaces shown in the cross section of Figure 8, and the big black squares correspond to the geometries shown in Figure 9.

Figure 8. Cross section of the droplet configuration in the final state of the Monte Carlo simulation, starting from the W0 configuration (above) and
from the CB0 configuration (below). The blue line represents the cross section for the minimum energy W configuration, and the red line represents
the cross section for the minimum energy CB configuration. The solid line identifies when the solution is a global minimum. The snapshots
correspond to droplets with R0 = 100 μm placed on a surface with fixed interpillar distance, pillar width and pillar height (a = 10 μm, w = 10 μm, h =
18 μm). Other geometric parameters that defines each type of surface are given by: (c), (h) surface of type 2 with (w2 = 2 μm, h2 = 17 μm), (d), (i)
surface of type 3 with (w2 = 2μm, h2 = 17 μm, w3 = 1 μm, h3 = 2 μm) and (e), (j), surface of type 3 with (w2 = 2μm, h2 = 17 μm, w3 = 1 μm, h3 = 9
μm). It is interesting to note that when the initial state is CB0, the final state of the droplet coincides with the minimum CB configuration, which is a
local minimum.
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thermodynamically stable state is W and the droplet is initialized in the
CB0 wetting state, the droplet is generally not able to overcome the
barrier between the states and becomes trapped in the metastable CB
state. The same behavior is reported in ref 29 for smaller droplets. This
metastability of the Cassie−Baxter state is in agreement with the
observation made in experiments41 and (almost) 2D systems
simulated by means of molecular dynamics of nanodroplets,12,37 and
it is consistent with the existence of a high energy barrier between the
thermodynamical states: as h gets higher, it becomes increasingly more
difficult for the system to go from the CB state to the W state.
The metastability of the Cassie−Baxter state observed for the

pillared surface is also encountered for surfaces with simple and double
reentrances, Figure 7b and c, respectively. Moreover, for these
reentrant surfaces, the agreement between theory and simulations
happens for very few cases even when the initial wetting state is W0:
most of the simulated angles θsim are higher than θi as it is shown by
the points above the line θi

sim = θi. We analyzed the geometries of the
points that are closer to the line θi

sim = θi to understand why the
agreement is better for some geometries. Although it was not possible
to extract a general rule for that, we identified that these points are
more likely to correspond to geometries such that in the pillared
surface the parameters (a, h, w) corresponded to the region of W state.
In other words, if the pillared surface had a repellent behavior (CB
wetting thermodynamic state), adding reentrances does not have the
influence predicted by the model.
Figures 8 and 9 show cross sections of final droplet configurations

for different surfaces and different initial wetting conditions obtained
from MC simulations. To compare with the continuous model, it is
shown together the resultant cross sections that correspond to both
ΔEminW (blue line) and ΔEmin

CB (red line). Note that one of these two
states is the global minimum and it is identified by the continuous line,
while the dashed line represents the local minimum. The initial wetting
state, W0 or CB0, is indicated by the first image of each line. These
snapshots are useful to visualize the solutions and illustrate some of the
observations we draw based on our simulations: (i) θ2

sim > θ1
sim (only

one exception is observed) irrespective of the theoretical predicted
relation between the theoretical angles. It happens for both initial
wetting states W0 and CB0, although this effect is more important
when the initial wetting state is W0. (ii) θ3

sim ≈ θ2
sim for most of the

geometries. Cases where θ3
sim > θ2

sim are more likely to happen for
geometries with big values of h3. An example can be visualized in
Figure 8: when the initial state is W0, θ3

sim > θ2
sim > θ1

sim. Moreover, the
contact angle θ3

sim increases when h3 increases, Figure 8d,e. (iii) For the
surface of type 2, if parameters (a, h, w, w2) are fixed and h2 increases,
θ2
sim decreases. An example of the role of h2 on the final state of the
droplet is shown in Figure 9. It is interesting to observe that, in both
examples, Figures 8 and 9, when the initial wetting state is CB0, the
final state of the droplet does not reach the global minimum, but it
coincides with the minimum CB state, which is a local minimum.

■ SUMMARY AND CONCLUSIONS

In this work, we extend a simple model previously applied to
pillared surfaces29 for reentrant surfaces of the type shown in

Figure 1. The model is developed to understand the wetting
state of a three-dimensional droplet when placed on a pillared
and reentrant surfaces based on the analysis of the total
interfacial energies associated with the two possible wetting
states, W and CB.
From the analysis of the equations of the model in the limit

where the droplet volume is big compared to the roughness of
the surface, we are able to derive analytically the geometric
relations between the energy of the droplets on each type of
surface that would enhance the CB state. These analyses show
that the wetting behaviors of the three surfaces are governed by
some nontrivial relation between the height h2, h3 and the
width w2, w3 of the reentrances, which are summarized in the
Table 2. Due to the minimization procedure, we find the stable
wetting state for each geometry and the corresponding contact
angle θC of the droplet in this state. We then span the
geometric parameters for each type of surface and, by
comparing the thermodynamic contact angle that the droplet
would have if placed on these surfaces, we find the type of
geometries that most enhances the apparent θC of the droplet.
Both the theoretical analysis and the minimization process
allow us (i) to quantify the differences in the θC for all possible
relations between the three surfaces as a function of the type of
liquid, as summarized in Figure 5, and (ii) to find some
geometries that enhance the thermodynamic contact angle and
keep the super-repellent behavior for liquids with smaller
surface tension as for the example shown in Figure 5c.
The global energy approach is known to have limita-

tions2,16,34−36,42 and success, describing, for instance, qual-
itatively the dependency of the wetting state on the initial
volume of the droplet.29,31,32 In the context of the reentrant
surfaces, the thermodynamic approach fails in describing the
super-repellent behavior of surfaces built from materials for
which θY < 90°, as it has been shown to be possible
experimentally for different groups.18,19,21 Recent MD simu-
lations have shown that simple reentrant surfaces do increase
the barrier to pass from the CB to W state even for the case
where θY < 90°, which can explain why, even though W is the
thermodynamic state, dynamic barriers make it difficult to reach
the most stable state promoting the metastability of the
repellent behavior.1,18,22 To address this important debate, we
implemented Monte Carlo simulations. Although our simu-
lations do not allow one to measure the size of the barrier
between the repellent and wet states, we can observe the
difficulty to bypass the barrier between the two wetting states
by changing its initial wetting state. For all types of surfaces
studied in this work and θY > 90°, we observed that, once
initialized in the CB0 state, the droplet gets trapped in the local

Figure 9. Snapshots correspond to droplets with R0 = 100 μm placed on a surface of type 2 with fixed interpillar distance and pillar width and pillar
height (a = 10 μm, w = 10 μm, h = 18 μm, and w2 = 2 μm) and varying h2. The notation for different cross sections is the same as that in Figure 8.
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minimum that corresponds to the minimum of the CB state
predicted by the theoretical model. When the droplet is
initialized in the W0 state, the agreement between theory and
simulations is good in the case of pillared surfaces, but for
reentrant surfaces we observe that the final contact angle of the
droplet in the simulations is higher than predicted by the model
for most of the geometries that we considered.
It would be useful to quantify the size of this barrier as a

function of the geometric parameters of the reentrant surfaces.
A possible way to do a quantitative estimation of the barrier
using Monte Carlo simulations is to implement, for example, a
method such as ”umbrella sampling”.43 Another improvement
of our model would be to take into account the curvature of the
hanging liquid−air interface that in our model is considered
flat.44 It would also be interesting to take into account in the
case of the reentrant surfaces the role of pressure that the liquid
volume exerts to impale the surface14 and some analysis of the
barrier for liquid impalement.25
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