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Abstract.  The jamming transition of non-spherical particles is fundamentally 
dierent from the spherical case. Non-spherical particles are hypostatic at 
their jamming points, while isostaticity is ensured in the case of the jamming 
of spherical particles. This structural dierence implies that the presence of 
asphericity aects the critical exponents related to the contact number and the 
vibrational density of states. Moreover, while the force and gap distributions of 
isostatic jamming present power-law behaviors, even an infinitesimal asphericity 
is enough to smooth out these singularities. In a recent work (Brito et al 2018 
Proc. Natl Acad. Sci. 115 11736–41), we have used a combination of marginal 
stability arguments and the replica method to explain these observations. We 
argued that systems with internal degrees of freedom, like the rotations in 
ellipsoids, or the variation of the radii in the case of the breathing particles fall 
in the same universality class. In this paper, we review comprehensively the 
results about the jamming with internal degrees of freedom in addition to the 
translational degrees of freedom. We use a variational argument to derive the 
critical exponents of the contact number, shear modulus, and the characteristic 
frequencies of the density of states. Moreover, we present additional numerical 
data supporting the theoretical results, which were not shown in the previous 
work.
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1.  Introduction

The jamming transition of non-spherical particles is qualitatively dierent from that 
of spherical particles [1, 2]. Several experimental and numerical investigations uncover 
that (i) systems consisting of non-spherical particles are not isostatic at their jamming 
transition point [3], while systems of spherical particles are isostatic [4], (ii) the pair 
correlation of non-spherical particles does not exhibit the power law singularity at the 
jamming transition point [5], while that of spherical particles does [6], and (iii) the 
critical exponents of non-spherical particles are dierent from those of spherical par-
ticles [7, 8].

The theoretical understanding of the jamming of non-spherical particles is challeng-
ing because particles do not hold rotational symmetry. In the previous work [5, 9], we 
proposed a way to bypass this diculty by considering the mapping from non-spherical 
particles to the breathing particles (BP), defined as a system of spherical particles 
for which their radii are allowed to fluctuate [10]. An advantage of the BP particles 
is that the model holds the rotational symmetry, and thus, one can apply the same 
technique developed for the spherical particle without any diculty. Using the BP, we 
theoretically and numerically confirmed that the gap and force distributions of non-
spherical particles are regular and finite even at the jamming transition point, while 
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those quantities exhibit the power law in the case of spherical particles. Furthermore, 
we showed that the critical exponents of several physical quantities, such as the contact 
number, shear modulus, and characteristic frequencies of the density of states, have 
dierent values from those of spherical particles. This confirms that the jamming of 
non-spherical particles belongs to a dierent universality class from that of spherical 
particles.

This paper is a longer version of our previous work [5]. We shall give a more straight 
forward derivation of the scaling functions without mapping to the BP particles, and 
additional numerical data supporting the theoretical results. The organization of the 
remaining paper is as follows. In section 2, we develop a variational argument for non-
spherical particles. In section 3, we discuss the connection between nonspherial particles 
and BP. In section 4, we discuss the universal form of the gap and force distributions 
near the isostatic point. In section 5, we discuss the scaling behavior of the density of 
states of the BP and show that the characteristic frequencies exhibit the same scaling 
as non-spherical particles. In section 6, we summarize and conclude the work.

2. Variational argument

Here we derive the scaling functions of non-spherical particles for a small asphericity 
by using the variational argument [11, 12]. In the previous work [5], we performed this 
calculation by mapping the Gay–Berne potential, which is a model for ellipsoids, to the 
breathing particles (BP), which is the model consisting of spherical particles where the 
radii of particles can vary continuously [10]. In this paper, instead, we present a more 
direct derivation of the scaling functions of non-spherical particles without using the 
mapping to the BP model.

2.1.  Interaction potential

For concreteness, we consider the following interaction potential:

VN =
∑
i<j

v(hij),� (1)

where hij denotes the minimal distance between the ith and j th particles, and v(h) 
denotes a purely repulsive and finite ranged potential, such as the harmonic potential 
v(h) = h2θ(−h)/2, where θ(x) denotes the Heaviside function.

2.2. Perturbation around spherical particles

We first derive a convenient expression of interaction potential for a small asphericity. 
Non-spherical particle have rotational degrees of freedom in addition to the transla-
tional degrees of freedom. We assign the vectors xi and a unit vector ui to express the 
position and direction of the ith particle, respectively. The radius σi of a non-spherical 
particle along the direction r̂ varies depending on both ui and r̂. We shall assume that 
there is a small parameter ∆ representing the deviation from a sphere. We expand the 
radius using ∆ as

https://doi.org/10.1088/1742-5468/ab74cb
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σi(r̂,ui) = σ(0) + f(r̂,ui)∆ +O(∆2),� (2)

where σ(0) represents the radius of the reference sphere, and f(r̂,u) represents the 
coecient of the first order term. Following the similar procedure, one can expand the 
gap function, which is the minimal distance between the ith and j th particles. The first 
order correction of ∆ comes from the change of radii of the ith and j th particles along 
the direction r̂ij = (xi − xj)/ |xi − xj|, namely,

hij(∆)− hij(0) = −∆ [ f(r̂ij,ui) + f(−r̂ij,uj)] +O(∆2),� (3)

where hij(0) is the gap function of the reference spherical particles:

hij(0) = rij − σ
(0)
i − σ

(0)
j .� (4)

Substituting this into equation (1) and expanding by ∆, we have

VN = UN +QN ,� (5)
where

UN =
∑
i<j

[
v(h

(0)
ij ) + wij∆

2
]
,

QN =
∑
i

gi(ui).
� (6)

Here wij∆
2 denotes the O(∆2) term of the interaction potential, and we have intro-

duced the auxiliary function as

gi(ui) = −∆
∑
j �=i

v′(hij(0)) [ f(r̂ij,ui) + f(−r̂ij,ui)] .� (7)

From equations (6) and (7), one can show that

QN ∼ gi ∼ p∆,� (8)
where p ∼ −v′(h) denotes the pressure.

To understand the physical meaning of ∆, it is convenient to clarify the relation 
between ∆ and the sphericity A, which represents how far is the shape of a particle from a 
perfect sphere; A = 1 for a perfect sphere and A > 1 otherwise. By definition, A takes a 

minimal value at ∆ = 0, which allows us to expand it as A(∆) = 1 + 1
2
A′′(0)∆2 +O(∆3), 

leading to

∆ ∼ (A− 1)1/2.� (9)

This is a useful relation to compare with numerical and experimental results.

2.3. Variational argument for spherical particles

In this work, we derive the scaling behaviors of non-spherical particles by using the 
variational argument and assumption of the marginal stability. The variational argu-
ment gives a typical amplitude of the minimal eigenvalue near the jamming transition 
point, while the marginal stability requires that the minimal eigenvalue vanishes. For 
spherical particles, this approach can reproduce the correct scaling of the excess contact 

https://doi.org/10.1088/1742-5468/ab74cb
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number and shear modulus [11]. Since our argument is very similar to that of spherical 
particles, we first give a summary of the variational argument of spherical particles.

For spherical particles, the interaction potential is given by the ∆ → 0 limit of 
equation (5). We consider a quadratic expansion of the potential around an equilibrium 
position:

δVN =
N∑

ij=1

δxi
∂VN

∂xi∂xj

δxj =
N∑

ij=1

δxi

[
∂2v(hij(0))

∂hij(0)2
∂hij(0)

∂xi

∂hij(0)

∂xj

+
∂v(hij(0))

∂hij(0)

∂2hij(0)

∂xi∂xj

]
δxj.

� (10)
The second term in the square bracket is the so-called pre-stress, which is proportional 
to the pressure and reduces the eigenvalues [13]. If we neglect the pre-stress, the qua-
dratic expansion of the potential can be rewritten as

δVN =
k

2

Nz/2∑
α

δr2α,� (11)

where k denotes the characteristic stiness of the potential, α = (i, j) denotes the con-
tact pair, z denotes the contact number per particle, and δrij = r̂ij · (δxi − δxj). We 
shall start from an isostatic configuration z  =  2d, where the system has a zero mode 
and thus λmin = 0. To obtain a configuration above the jamming transition point, we 
add Nδz/2 extra contacts. With this setting, one can express the minimal eigenvalue 
in a variational form:

λmin ∼ kmin
δxi

∑Nd
α=1 δr

2
α +

∑Nδz/2
α=Nd+1 (δrα − yα)

2

∑N
i=1 δxi · δxi

,� (12)

where yα = ε denotes the rest length of the additional contacts. Combining an appro-
priate linear transformation and finite N scaling, one can estimate the typical ampl
itude of λmin for δz � 1 as [12]

λmin ∼ kδz2.� (13)
So far, we have neglected the eects of the pre-stress. For spherical particles, one can 
show that the pre-stress always gives a negative contribution to the eigenvalues [11]. 
As the pre-stress is proportional to the pressure, ∂v(hij(0))/∂hij(0) ∼ −p, we get

λmin ∼ kδz2 − cp,� (14)
where c denotes a positive constant. At the jamming transition point, δz = 0 and p   =  0, 
meaning that the system is marginal stable λmin = 0. We assume that this marginal 
stability persists even above the jamming transition point; we require λmin ∼ 0 or at 
most λmin ∼ p. From this condition and equation (14), we have [11]

δz ∼ p1/2.� (15)
This reproduces the results of numerical simulations in two and three dimensions [14].

https://doi.org/10.1088/1742-5468/ab74cb
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2.4. Variational argument for non-spherical particles

Now we apply the variational argument to non-spherical particles. We first discuss the 
stability of a system consisting of non-spherical particles. At the jamming transition 
point p   =  0, QN vanishes, and the number of constraints given by VN is

N c
V =

Nz

2
,� (16)

where N denotes the number of particles, and z denotes the number of contacts per par-
ticle. For non-spherical particles, N c

V  is smaller than the number of degrees of freedom, 
meaning that there are unconstrained modes, which we hereafter refer to as the zero 
modes. The number of the zero modes is

N0 = N(d+ drot)−N c
V = Ndrot −

N

2
δz,� (17)

where δz = z − 2d, and drot denotes the number of rotational degrees of freedom 
per particle. For p   >  0, QN has a finite value that would stabilize some of the zero 
modes. QN gives N c

Q = Ndrot number of constraints, the typical stiness of which is 
kR = ∂ui

∂uj
QN ∼ p∆. This indeed suces to stabilize the zero modes:

N c
Q −N0 =

N

2
δz > 0.� (18)

When δz � 1, the system is considered to be nearly isostatic if one only takes into 
account the zero modes. In this case, we can apply the variational argument in [12] to 
the zero modes, as in the case of spherical particles near the jamming transition point. 
By repeating a similar argument used in the previous sub-section, we obtain

λmin ∼ kRδz
2 ∼ c1p∆δz2,� (19)

where c1 is a constant. Here we assume that c1  >  0, which can be validated by the 
explicit calculations for ellipsoids interacting with the Gay–Berne potential, and 
breathing particles [10]. However, this assumption is not validated for some shapes of 
particles. We shall discuss this point in section 6. If we take into account the second 
order term of ∆, we have

λmin ∼ p
[
c1∆δz2 + c2∆

2 +O(∆3)
]
,� (20)

where all terms should be proportional to p , because the zero mode vanishes as p . 
Although the first order term of ∆ can be positive, the pre-stress, in general, destabi-
lizes the system due to the structural buckling [13]. Therefore, it is natural to assume 
that the second order term gives a negative contribution c2  <  0. The marginal stability 
requires λmin ∼ 0, meaning that the first and second terms in the RHS of equation (20) 
should be canceled each other, which leads to the scaling of δz:

δz ∼ ∆1/2 ∼ (A− 1)1/4.� (21)

In figure  1, we compare the theoretical prediction, equation  (21), with the numer
ical results of various shapes of non-spherical particles in [15] where the jammed 
configurations were generated by the binary search combining isotropic compression 
and decompression. We get an excellent agreement with the theory and numerical 

https://doi.org/10.1088/1742-5468/ab74cb
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result, though there are visible deviations for A− 1 � 1, which might be originated 
from the lack of statistics, numerical precision, or finite size eects.

In the ∆ → 0 limit, equation  (21) should be smoothly connected to the result of 
spherical particles equation (15). From this condition, one can decide the scaling form 
of δz as

δz = ∆1/2Z(∆−1p),� (22)

where

Z(x) =

{
const (x � 1),

x1/2 (x � 1).� (23)

Z(x) is a finite and regular function at x  =  0, and thus one can expand it as 
Z(x) = Z(0) + Z ′(0)x+ · · ·, which leads to

z − zJ ∼ p

∆1/2
,� (24)

where zJ = 2d+∆1/2Z(0). This is again consistent with a numerical result of ellipsoids 
[16].

We now turn our attention to the scaling of the shear modulus G. In the standard 
numerical procedure to calculate G, one first imposes the small strain and then mini-
mizes the energy. Comparing the resultant energy with that of the undeformed one, one 
can calculate G [14]. Previous numerical and theoretical investigations prove that the 
square root singularity G ∼ p1/2 appears near the jamming transition of spherical parti-
cles [11, 14]. We here discuss how this scaling is altered for non-spherical particles. We 
assume that the imposed shear excites only the zero modes because the typical energy 
of those modes is much smaller than the other near the jamming transition point. 
When ∆ � 1, the zero modes mainly consists of the rotational degrees of freedom. The 
typical displacement δui caused by the imposed shear strain δγ is roughly δui ∼ δγ/∆. 
After the minimization, the energy dierence caused by the shear can be expressed as

z
−

4

A − 1

Figure 1.  Scaling of the contact number of non-spherical particles. The symbols 
denote the numerical results, and the solid line denotes the theoretical prediction 
z − 4 ∼ (A− 1)1/4. Data for non-spherical particles are taken from [15].

https://doi.org/10.1088/1742-5468/ab74cb
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δVN ∼ δQN ∼ min
yi

N∑
i=1

drot∑
α=1

kα
i (δũ

α
i + yαi )

2 ,� (25)

where ki and δũi denotes the eigenvalue and eigenvector of ∂uα
i
∂uβ

i
gi(ui), respectively. 

yi = {y1i , · · · , ydroti } denotes the vector spanned by the N0 zero modes to be chosen to 
minimize the energy. Using the standard technique of the linear algebra, one can elimi-
nate N0 terms among Ndrot terms in equation (25) (see ch 7 in [17]). Thus, the typical 
amplitude of δVN  is

δVN ∼ kR(Ndrot −N0)

(
δγ

∆

)2

∼ Npδzδγ2

∆
.� (26)

The shear modulus G is then calculated as

G ∼ δVN

Nδγ2
∼ p

∆1/2
.� (27)

The result is consistent with the numerical results of ellipsoids [7]. In the ∆ → 0 limit, 
equation (27) smoothly connects to the result of spherical particles [11, 14],

G ∼ p1/2.� (28)
This requires the following scaling form:

G = ∆1/2G(∆−1p),� (29)

where the scaling function G(x) satisfies

G(x) =
{
x (x � 1),

x1/2 (x � 1).� (30)

In figure 2, we confirm our scaling prediction for ellipsoids interacting with harmonic 
potential, where ∆ can be identified with the aspect ratio, and p ∝ δϕ ≡ ϕJ − ϕ. One 
can see that the data of dierent aspect ratios are collapsed on a single curve, proving 
the validity of the scaling prediction equation (29).

3. Connection between non-spherical particles and breathing particles

The above argument can be generally applied for models having extra degrees of free-
dom, in addition to the translational degrees of freedom. Besides non-spherical particles, 
another interesting model that belongs to the same universality class is the so-called 
breathing particle (BP) model [5]. The model consists of N polydisperse particles, the 
radii of which can change continuously. The interaction potential of the model is given 
by

VN = UN +QN ,� (31)

https://doi.org/10.1088/1742-5468/ab74cb
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where

UN =
∑
i<j

h2
ij

2
θ(−hij),hij = rij −Ri −Rj,� (32)

and

QN =
k

2

∑
i

(
Ri −R0

i

)2 (R0
i

Ri

)2

.� (33)

We chose the stiness k so that the standard deviation of the radii is proportional to ∆:

∆ ∝
√

1

NR2
0

∑
i

(Ri −R0
i )

2
.� (34)

From the saddle point condition, ∂Ri
VN = 0, one can infer that

k ∼ p

∆
.� (35)

By introducing the new variable ui ≡ (Ri −R0
i )/∆, equations  (32) and (33) can be 

rewritten as

UN =
∑
i<j

h2
ij

2
θ(−hij),hij = rij −R0

i −R0
j +∆(ui + uj),

QN =
kR
2

∑
i

u2
i

(
R0

i

R0
i +∆ui

)2

,

�
(36)

where

kR = ∆2k ∼ ∆p.� (37)

∆
−

1/
2 G

∆−1δϕ

∆ = 0.002
∆ = 0.01
∆ = 0.1
∆ = 0.5
∆ = 1.0

Figure 2.  Scaling plot of the shear modulus of ellipsoids. The symbols denote the 
numerical results. The solid and dotted lines denote the theoretical predictions 
G ∼ δϕ and G ∼ δϕ1/2, respectively. Data are taken from [7].

https://doi.org/10.1088/1742-5468/ab74cb
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Note that kR now has the same order as that of non-spherical particles. Thus, one can 
repeat the same arguments in the previous sections for non-spherical particles, which 
leads to the same critical exponents [5]. The numerical implementation of the BP 
model is rather simpler, and the calculation time is shorter than those of non-spherical 
particles, as the extra degrees of freedom are simple scalar variables. For this reason, 
we shall use the BP in the numerical experiments in the following sections, instead of 
non-spherical particles. To obtain jammed configurations of the BP system, we use the 
FIRE algorithm to find the inherent structures of the potential equation (36). We use 
the Barendsen barostat to find them at a fixed pressure. All the details are explained 
in [5].

4. Universal scaling of the gap and force distributions near isostatic point

Here we show that the gap and force distributions exhibit the universal scaling behav-
ior near the isostatic point.

4.1. Definition of the distribution functions

Here we investigate the gap distribution

ρ(h) ≡ 1

N

〈∑
i<j

δ(hij − h)

〉
.� (38)

At the zero temperature T  =  0, ρ(h) has a gap at h  =  0 [14]. For this reason, it is con-
venient to define distributions for the positive and negative h, separately. We define a 
positive gap distribution

g(h) ≡ θ(h)
ρ(h)∫∞

0
dhρ(h)

,� (39)

and a force (normalized negative gap) distribution

P ( f) ≡ θ(−h)
ρ(h)dh

df∫ 0

−∞ ρ(h)dh
df
df

,� (40)

where θ(x) is the Heviside function, and f   =  −h/p . It is well known that at the jamming 
transition point of spherical particles, g(h) and P ( f) exhibit the power laws for small 
h and f  [6, 18]:

g(h) ∼ h−γ ,

P ( f) ∼ f θ.
� (41)

γ does not depend on the spatial dimensions d for d � 2 and follows the mean-field 
prediction γ = 0.41 [19], while θ exhibits the weak d dependence due to the localized 
excitations [20]. Below, we discuss that the power law is generally truncated at finite h 
and f  if the system is not isostatic.

https://doi.org/10.1088/1742-5468/ab74cb
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4.2. Finite size scaling

Here we first describe the distribution functions of spherical particles when the number 
of particles N is finite. Then, in the next subsection, we show that the scaling of finite 
N can be generalized to the scaling of non-isostatic systems, including non-spherical 
particles at the jamming transition point.

The minimal gap hmin of the N particle system is calculated by using the extreme 
statistics [21]

∫ hmin

0

g(h)dh ∼ h1−γ
min ∼ 1

N
⇒ hmin ∼ N− 1

1−γ .� (42)

When h � hmin, g(h) quickly decreases, implying that the power law divergence of g(h), 
equation (41), is truncated at h ∼ hmin. Thus, the scaling form of g(h) at finite N would 
be [21]

g(h) ∼
{
Nµγp+0 (hN

µ) (h � N−µ),

h−γ (h � N−µ)
,� (43)

where p+0 (x) is a regular and finite function, and

µ =
1

1− γ
.� (44)

We perform the numerical simulation for two-dimensional harmonic spheres to 
test the above conjecture. Instead of g(h), we observe the cumulative distribution 

Z(h) =
∫ h′

0
dh′g(h′) to improve the statistics. From equation (43), Z(h) should satisfy

Z(h) ∼
{
Np+0 (hN

µ) (h � N−µ),

h1−γ (h � N−µ)
.� (45)

In figure 3, we plot Z(h) and its scaling form for several N. The excellent scaling col-
lapse justifies our scaling argument.

4.3. General scaling form of the distribution functions near isostatic point

We want to generalize the above argument for more general systems close to the iso-
static point δz � 1. For this purpose, we shall consider some function F (h) which has 
the following scaling form for δz � 1:

F (h) = δzαF(δzβh),� (46)

where α and β denote the critical exponents we want to determine from the finite size 
scaling. The extensive numerical simulations of spherical particles prove that the scal-
ing like equation (46) persists up to δz = 1/N [22, 23], suggesting that for a finite size 
system at the jamming transition point, we have

F (h) = N−αF(N−βh).� (47)

In other words, the scaling for δz � 1 can be obtained by substituting N = δz−1 into 
the result of the finite size scaling. From equations (43) and (45), we have

https://doi.org/10.1088/1742-5468/ab74cb
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g(h) ∼
{
δz−µγp+0 (hδz

−µ) (h � δzµ)

h−γ (h � δzµ)
,� (48)

and

Z(h) ∼
{
δz−1p+0 (hδz

−µ) (h � δzµ)

h1−γ (h � δzµ)
.� (49)

We propose that the above equations hold for any system suciently near the isostatic 
point, i.e. δz � 1. We shall test this conjecture for the BP at the jamming transition 
point, at which we have shown that δz ∼ ∆1/2 [5]. In figure 4, we show Z(h) and its 
scaling form of the BP at the jamming transition point. The excellent scaling collapse 
justifies the validity of equations (48) and (49). Note that the same equation of equa-
tion (48) holds exactly in the case of the mean-field model of non-spherical particles 
[5, 9] and the spherical particles slightly above the jamming transition point, where 
δz ∼ p1/2 [24].

For the force distribution P ( f), one can apply a similar argument, leading to

P ( f) ∼
{
δzθνp−0 ( fδz

−ν) ( f � δzν)

f θ ( f � δzν)
,� (50)

where p−0 (x) denotes a finite and regular function, and we have introduced the critical 
exponent by

ν =
1

1 + θ
.� (51)

The numerical justification of P ( f) is rather tricky because one should carefully sepa-
rate the localized and extended modes to compare them with the theoretical prediction 
[20], which we leave for future work.

Z
( h

)

h

N = 16

N = 64

N = 256

N = 1024

N = 8192

N
Z

(h
)

Nµh

∝ h1−γ

∝ h

Figure 3.  Cumulative gap distribution (left) and its scaling plot (right). Symbols 
are results of numerical simulations of the harmonic potential at the jamming 
point for dierent system sizes, and the lines are theoretical predictions.
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5. Vibrational density of states

The vibrational density of states D(ω) characterizes the low temperature physics of 
solids [25]. In this section, we investigate D(ω) of the BP model near the jamming 
transition point, which exhibits the same scaling as non-spherical particles. The results 
shown in the following are made for a system with N  =  484 particles.

5.1. Characteristic frequencies

We first describe the qualitative shape of D(ω) and define the characteristic frequen-
cies. In figure 5(a), we show the typical behavior of D(ω) of the BP model. D(ω) con-
sists of the three separate parts: (i) the lowest band at ω0, (ii) the intermediate band at 
ω1, and (iii) the highest band starts from ω2. In figure 5(b), we show the ∆ dependence 
of the characteristic frequencies, ω0, ω1, and ω2. The characteristic frequencies are well 
fitted by the following power laws (see solid lines):

ω0 ∼ ∆1/2, ω1 ∼ ∆, ω2 ∼ ∆1/2.� (52)
In figure 5(c), we show the p  dependence of ω0. We found that

ω0 ∼ p1/2,� (53)
while ω1 and ω2 remain constant (not shown). The above scaling is the same as ellip-
soids if we identify ∆ with the aspect ratio [8], which is another evidence that the BP 
and ellipsoids belong to the same universality class.

Using the previous theoretical analysis [5, 9], we can understand the above scalings 
in the three regions. (i) The lowest band corresponds to the zero modes stabilized by 
the positive part of the pre-stress. As the pre-stress scales as kR ∼ p∆, equation (37), 
the characteristic frequency of the mode is ω0 ∼

√
kR ∼ p1/2∆1/2. (ii) The intermediate 

Z
(h

)

h

∆ = 0.1
∆ = 0.01
∆ = 0.002
∆ = 0.001
∆ = 0.00033
∆ = 0

∆
−

1/
2 Z

(h
)

∆−µ/2h

∝ h1−γ

∝ h

Figure 4.  Cumulative gap distribution (left) of non-spherical particles and its 
sclaing plot (right). Symbols are results of numerical simulations of the BP system 
for dierent values of variance of the radii ∆ and a system with N  =  8192 particles. 
Lines are the theoretical predictions.
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band corresponds to the breathing motion of the BP or the rotation of ellipsoids. 

Therefore, the characteristic frequency is ω1 ∼
√
∂2
RVN ∼ ∆. (iii) The highest band cor-

responds to the translational degrees of freedom. As in the case of spherical particles, 
the characteristic frequency is proportional to δz [17]. Using equation  (21), we get 
ω2 ∼ ∆1/2. Herewith we recover the above numerical results. To give further evidence 
to support the above picture, we calculate the weights of each band by numerically 
integrating D(ω). If the above description is correct, one should have the following 
equations:

ω0

ω1

ω2

D
(ω

)

ω

ω

∆

ω0
ω1
ω2

ω

p

ω0

Figure 5.  (a) Density of states D(ω) for the BP system at ∆ = 10−3 and p   =  10−4 
and the definition of the characteristic frequencies. (b) The ∆ dependence of the 
characteristic frequencies. Lines are the theoretical predictions, ω0 ∝ ∆1/2, ω1 ∝ ∆, 
and ω2 ∝ ∆1/2 (c) The p  dependence of the characteristic frequencies. Line is the 
theoretical prediction, ω0 ∝ p1/2.

∆

f0

f1

f2

p

f0

f1

f2

Figure 6.  The weights of the three bands of the D(ω) as the example shown in 
figure 5(a). Symbols denote the numerical results for the BP system, and the solid 
lines denote the theoretical predictions, see main text. (a) The p  dependence at 
fixed variance ∆ = 10−1. (b) The ∆ dependence at fixed pressure p   =  10−4.
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N0 = N

(
1− δz

2

)
, N1 =

Nδz

2
, N2 = dN ,� (54)

where Ni denotes the number of the modes included in the ith band. Since the total 
number of modes is 3N, the fraction f i of modes in each band is given by fi = Ni/3N. 
In figure 6, we show the ∆ and p  dependencies of f i and compare with the theoretical 
prediction equation (54). We obtain quite good agreement.

6. Summary and discussions

In this paper, we investigated the jamming transition of non-spherical particles and 
breathing particles. Using both numerical and scaling arguments, we confirmed that 
the critical behavior of the jamming of non-spherical particles and breathing particles 
is qualitatively dierent from that of spherical particles. In the left panel of figure 7, we 
summarize our scaling prediction for the shear modulus G. Note that, for non-spherical 
particles (∆ > 0), G always shows the linear pressure p  dependence suciently near 
the jamming transition point (p � ∆), while it exhibits the square root dependence for 
spherical particles (∆ = 0). This means that the critical exponent of G changes discon-
tinuously at ∆ = 0 from one to one half; in other words, the small asphericity is enough 
to change the universality class of the jamming transition. We also show that non-
spherical particles and breathing particles are not critical at the jamming transition 
point in terms of the gap distribution g(h), see the right panel of figure 7. The power 
law divergence of g(h) is truncated at finite h, and thus the gap distribution is finite 
and analytic even at the jamming transition point. This is a sharp contrast to spherical 
particles, where the power law divergence of g(h) persists up to h  =  0. Furthermore, we 
fully characterized the scaling of the characteristic frequencies of the density of states 

Figure 7.  Summary of the scaling prediction. ∆ denotes the linear deviation from 
the spherical particles. (left) The shear modulus G as a function of the pressure p . 
G exhibits the linear scaling G ∼ p for p � ∆, while G ∼ p1/2 for p � ∆. (right) 
The gap distribution g(h). g(h) exhibits the power law g(h) ∼ h−γ for h � ∆µ/2, 
while it converges to a finite value for h � ∆µ/2.
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near the jamming transition point, which are again dramatically dierent from those 
of spherical particles.

There are still several open questions. A tentative list is the following:

	•	 �It is important to understand the rheological properties of the system near the 
jamming transition point. It has been shown that the divergence of the viscosity 
is strongly connected to the lowest excitation of the density of states [26]. As dis-
cussed in section 5, the density of states of non-spherical particles is very dierent 
from that of spherical particles, which would change the critical exponent of the 
viscosity compared to that of spherical particles. A further study of this point is 
left as an open problem.

	•	 �In this work, we assumed that the pre-stress gives a positive contribution for 
the first order of ∆, c1  >  0. This assumption is violated for non-spherical parti-
cles consisting of spherical particles, such as dimers. In this case, the rotational 
motions of non-spherical particles can be identified with the translational motions 
of particles that consists non-spherical particles. Therefor, the system becomes 
isostatic and exhibits the same scaling of that of spherical particles [16, 27]. 
Furthermore, Platonic solids are also known to be isostatic at the jamming trans
ition point [28]. Further studies are necessary to uncover when the assumption 
c1  >  0 can be validated.

	•	 �In this work, we assumed that the two particles could have at most one contact. 
This assumption is correct for particles of convex shape. However, for particles 
of non-convex shape, the two particles can have more than two contacts. The 
extension of our work for such non-convex shape particles is an interesting future 
work. We believe that the study along this direction would be a promising way to 
introduce the eect of the friction, which is considered to be originated from the 
surface roughness of the constituent particles.
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