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We derive a microscopic criterion for the stability of hard sphere configurations and we show
empirically that this criterion is marginally satisfied in the glass. This observation supports a
geometric interpretation for the initial rapid rise in viscosity with packing fraction or previtrification.
It also implies that barely stable soft modes characterize the glass structure, whose spatial extension
is estimated. We show that both the short-term dynamics and activation processes occur mostly
along those soft modes and we study some implications of these observations. This article
synthesizes new and previous results [C. Brito and M. Wyart, Europhys. Lett. 76, 149 (2006);

C. Brito and M. Wyart, J. Stat. Mech.: Theory Exp. 2007, L08003] in a unified view.
© 2009 American Institute of Physics. [DOI: 10.1063/1.3157261]

l. INTRODUCTION

Unlike crystals, amorphous structures are poorly under-
stood on small length scales. This is apparent when one con-
siders the low-temperature properties of glasses such as heat
tmnsport1 and the nature of the two-level systems leading to
a linear specific heat® or the statistics of force chains and
stress propagation in a pile of sand.® Part of the difficulty
comes from the out-of-equilibrium nature of amorphous sol-
ids: To understand their structure and properties, one must
also understand how they are made. This is the difficult prob-
lem of the glass or jamming transition, where a fluid stops
flowing and rests in some metastable configuration. At the
center of this phenomenon lies a geometrical question: By
which processes can a dense assembly of particles rearrange
and how do these rearrangements depend on the particle
packing?

It is surprising that a similar question has been solved in
the 70s on the apparently more complicated problem of poly-
mer entamglement,4 where the objects considered are not
simple particles but long chains forming a melt. In our view
part of the reason for this paradox is the following: In a melt,
the relaxation time scales with the length of the polymers.
This fact can be captured experimentally and is a stringent
test for theories. The situation is very different in glasses,
where the length scales at play appear to be limited.” This
fact makes it harder to distinguish and compare the predic-
tions of different theories. Nevertheless, recent numerics
suggest that the length scales at play may not always be
small. Particles interacting with a purely repulsive short-
range potential display a critical point, corresponding to
jammed packings for which the overlaps between particles
vanish. Near that point, scaling laws characterize the micro-
scopic structure,® elastic®"*!! and transport12 properties,
and relaxation in shear flows."
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A particularly interesting observation is that soft modes,
collective displacement of particles with a small restoring
force, are abundant near this critical point.6 The relation be-
tween the microscopic structure and the characteristic fre-
quency and length scale of these modes was derived, and in
particular the latter was shown to diverge near the
threshold.'* In turn, imposing the stability of these modes led
to the derivation of a nontrivial microscopic criterion for
packing of repulsive particles15 that any mechanically stable
configuration must satisfy. For infinitely fast quench fol-
lowed by adiabatic decompression, it was observed that this
criterion is marginally satisfied:*" Configurations generated
by such a protocol are barely stable. This supported that at
least for an infinitely fast quench, the realization of this mi-
croscopic criterion affects the dynamics and suggested that
soft modes may play a role in the structural rearrangements
of particles. To show that this is the case in the empirically
relevant situation of a slow quench, one would have to study
a supercooled liquid at finite temperature and analyze soft
modes, microscopic structure, and relaxation together. This is
what we perform here using hard spheres, where interactions
are purely entropic and where a critical point also turns out
to be present, allowing a scaling analysis.

The paper is organized as follows. We start by illustrat-
ing the key results on the soft modes and the stability of
packing of elastic particles using a simple model, the square
lattice. In Sec. III, after defining the coordination of a hard
sphere configuration, we establish a mapping between the
free energy of a hard sphere system and the energy of an
elastic network. This enables to apply all the conceptual tools
developed in elastic systems to hard particles, in particular,
we derive a microscopic criterion for the stability of hard
sphere configurations. In Sec. IV we present the numerical
protocol we use, both in the glass and the supercooled liquid,
to identify metastable states and characterize their structural
properties. In Sec. V we show that in those metastable states
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the stability criterion is saturated: Configurations visited are
barely stable mechanically. We confirm this observation in
Sec. VI where the short term dynamics is studied. The mar-
ginal stability of the glass implies in particular an anomalous
scaling for the mean square displacement near maximum
packing, which we check numerically. In Sec. VII it is shown
that only a small fraction of the degrees of freedom of the
system participate in activation events where new metastable
states are visited. Those degrees of freedom are precisely the
soft modes present in the glass structure. Finally we argue
that these observations support a geometric interpretation for
previtrification, which is presented in Sec. VIII.

Il. A CRITERION FOR THE MECHANICAL STABILITY
OF ELASTIC NETWORKS

Studying engineering structures, Maxwell'® established a
necessary criterion for the mechanical stability of elastic net-
works. The key microscopic parameter is the coordination z,
the average number of interactions per particle. For an elastic
network of springs, his criterion reads z>z.=2d, where d is
the spatial dimension of the system. The demonstration goes
as follows. Consider a set of N points interacting with N,
springs at rest of stiffness k. The expansion of the energy is

=2, g[(&ﬁi—éﬁj)~ﬁ,-j:|2+0(5R2), (1)
(if)

where the sum is made over all springs, 7i;; is the unit vector
going from i to j, and SR, is the displacement of particle i. A
system is floppy, i.e., not mechanically stable, if it can be
deformed without energy cost, that is if there is a displace-
ment field for which dE=0, or equivalently (5]3,-—5131-)'@-
=0 Vij. If the spatial dimension is d, this linear system has
Nd degrees of freedom (ignoring the d(d+1)/2 rigid motions
of the entire system) and N,= Nz/2 equations, and therefore
there are always nontrivial solutions if Nd>N,, that is if z
<2d=z,. Finite stiffness therefore requires

z=12d. (2)

Under compression, the criterion of rigidity becomes
more demanding. Here we illustrate this result in a simple
model, but the different scalings we obtain have broader ap-
plications and are valid in particular for random assemblies
of elastic particles.M’15 Consider a square lattice of springs of
rest length o. It marginally satisfies the Maxwell criterion,
since z=4 and d=2. We randomly add a density dz of springs
at rest connecting second neighbors, represented as dotted
lines in Fig. 1, such that the coordination is z=z.+z.
Springs are added in a rather homogeneous manner so that
there are no large regions without dotted springs. The typical
distance between two dotted springs in a given row or col-
umn is then

I~ a/éz. (3)

How much pressure p can this system sustain before
collapsing? To be mechanically stable, all collective dis-
placements must have a positive energetic cost. It turns out
that the first modes to collapse as the pressure is increased
are of the type of the longitudinal modes of wavelength [* of
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FIG. 1. Square lattice of springs with a density per particle 6z of additional
diagonal springs represented in dotted lines. [*~ o/ &z is the typical dimen-
sionless distance of the segments contained between two diagonal springs
on a given row or column. The arrows represent the longitudinal mode of
wavelength of ~/* of such a segment, 5}?,~~sin(m'cr/ I")é,, following the
notation introduced in the text. The dashed line exemplifies the deformation
of a spring transverse and directly connected to the segment considered; it is
elongated by the longitudinal vibration of this segment. When the pressure is
positive and contacts are under compression, this elongation lowers the en-
ergy contained in those springs. This leads to an elastic instability when &z
becomes smaller than a quantity proportional to the square root of the con-
tact strain of order f/ko.

individual segments of springs contained between two dotted
diagonal springs, as represented with arrows in Fig. 1. These
modes have a displacement field of the form OR;
=2X sin(mio/I*)/\NI*/ 0é,, where i labels the particles along
a segment and runs between 0 and [*/ o, €, is the unit vector
in the direction of the line, and X is the amplitude of the
mode X=1 for a normalized mode. In the absence of pressure
p, springs carry no force. The energy of such a mode comes
only from the springs of the segment and from Eq. (1) fol-
lows 6E~kX?0?/I*?. Note that these modes have a charac-
teristic frequency

o~ A EE=D \/E&. )
m m

When p>0, each spring now carries a force of the order f
~ pa“~!. The energy expansion then contains other terms not
indicated in Eq. (1),15’17 whose effect can be estimated quan-
titatively as follows. When particles are displaced along a
longitudinal mode such as the one represented by arrows in
Fig. 1, the force of each spring directly connected and trans-
verse to the segment considered, represented by dashed lines
in Fig. 1, now produces a work equal to f times the elonga-
tion of the spring. This elongation is simply 513?/ o following
Pythagoras’ theorem. Summing on all the springs transverse
to the segment leads to a work of the order fX?/o. This
finally gives for the energy of the mode OF~kX’c?/I*?
—fX?/ o, where numerical prefactors are omitted. Stability
requires 6E >0, implying that ko> /[*>> f or

8> A(flka) 2 ~ e, (5)

where A is a numerical constant and e is the typical strain in
the contacts. This result signifies that pressure has a destabi-
lizing effect, which needs to be counterbalanced by the cre-
ation of more contacts to maintain elastic stability. Note that
Egs. (3)—(5) are more general than the simple square lattice
model considered here; they apply to elastic network or as-
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semblies of elastic particlesl“’15 as long as spatial fluctuations
in coordination are limited.

lll. AN ANALOGY BETWEEN HARD SPHERE
GLASSES AND ELASTIC NETWORKS

These results on the stability of elastic networks apply to
hard sphere systems. In order to see that, we recall the anal-
ogy between the free energy of a hard sphere glass and the
energy of an athermal network of logarithm springs.18 Con-
sider the dynamics (Brownian or Newtonian) of hard spheres
in a supercooled liquid or glass state, such that the collision
time among neighbor particles 7, is much smaller than 7, the
time scale on which the structure rearranges. On intermediate
time scale ¢, such that 7.<t;<<7, one can define a contact
network by considering all the pairs of particles colliding
with each other, those who are said to be “in contact” (ex-
amples of contact network are shown in Sec. IV). This en-
ables to define a coordination number z. Once the contact
network is defined in a metastable state, all configurations
for which particles in contact do not interpenetrate are equi-
probable, those configurations satisfy H<ij>®(||13,-—13j||—0) =1,
where 0 is the Heaviside function, the product is made on all
contacts ij, and o is the particle diameter that defines our
unit length. The isobaric partition function is then

Z:deHfdﬁ,-H ®(||§i—ﬁj||—a)exp<ﬂ>. (6)

@ k,T

In one spatial dimension (for a neckless of spheres), Eq. (6)
can be readily solved by changing the variables and consid-
ering the gaps h;;=R;—R; between particles in contact. The
mapping is one to one and linear,

[T ar, = Hdh,-jé(z, hij—(V—vo)), (7)
i ij ij

where V,, is the volume of the system at p=c. Equations (6)
and (7) lead to

—ph;;
Z= H dh;; exp(L‘) ) (8)
ij Jhy=0 kp,T

leading to the simple result p=k,T/<{h). In higher dimen-
sions, the situation is far more complicated in general be-
cause the mapping between positions and gaps in not one to
one and not linear. There is nevertheless an exception to that
rule. As was shown by several authors,lg_21 as the pressure
diverges near maximum packing the system becomes isos-
tatic z—z., see footnote™ for a sketch of the argument. As
noted in Ref. 18 this implies precisely that the number of
contact is equal to the number of degrees of freedom, and
that the mapping of particle positions toward the gaps is one
to one. Near maximum pressure this mapping is also linear
as (dR,—dR;)-7i;;=dh;+ O(R?). One gets

Hdl_éi x Hdhij5<2ﬁjhij—P(V— Vo)), )
i ij ij
where f;; is the force in the contact ij. The volume constraint

OZyifijhii—p(V=V,)) generalizes for d>1 the constraint
A(Zj;hi;—(V=V,)). This relation between gaps and volume
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can be derived as follows. In a metastable state, forces must
be balance on all particles. As a consequence, the virtual
force theorem implies that the work of any displacement is
zero: dW=2%,f;:dh;;—pdV=0. Integrating this relation leads
to the relation above. Equations (6) and (9) lead to

Z= H dhije_fijhij/ka (10)
(jy < hyy=0
and
k, T
fij = <Z_> (1 1)
ij

The force is inversely proportional to the average gap be-
tween particles, as we shall confirm numerically in Sec. IV.
The stiffness in the contact ij is then

kij= (ka)/<hij>2- (12)
From Eq. (10) one obtains for the Gibbs free energy G

G=—k,T> In((hy)) ==k, T In(r5) - 0), (13)
(i (ij

where rff is the average distance between particle i and j:
rfﬂ:(”ﬁi—ﬁj”). Thus the Gibbs free energy of a hard sphere
system is equivalent to the energy of a network of logarith-
mic springs. As for an elastic network, one can define a dy-
namical matrix M by differentiating Eq. (13). M describes
the linear response of the average displacement of the par-
ticles to any applied force field. The eigenvectors of M de-
fine the normal modes of the free energy.23

When z=z,, as is the case in the glass phase (see be-
low), Egs. (10)—(13) are not exact. Nevertheless, the relative
deviations to Eq. (11) can be estimated’ and are of the order
0z=7—2.. Numerically these corrections turn out to be small
(smaller than 5% throughout the glass phase'®) and we shall
neglect them. We will check this approximation further when
we study the microscopic dynamics, see Sec. VI. Then, to-
gether with Egs. (5) and (12), the present analogy leads to
the prediction that the minima of the free energy in hard
sphere system must satisfy

[ k T
8= Ave ~ V() o ~ \/L, (14)
o(f)

where (h) and (f) are the typical gaps and forces between
particles in contact, and where Eq. (11) was used to relate
these two quantities.

IV. NUMERICAL PROTOCOL

To study if the metastable states visited in the super-
cooled liquid and the glass live close to the bound of Eq. (14)
and if the proximity of this bound affects the dynamics, we
simulate hard discs with Newtonian dynamics: We use an
event-driven code,” particles are in free flight until they col-
lide elastically. We use two-dimensional bidisperse systems
of N=64 256 and N=1024 particles. Half of the particles
have a diameter o, which defines our unit length. Other
particles have diameter 0,=1.40,. All particles have a mass
m, our unit mass. Since for hard particles k,7 is only rescal-
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FIG. 2. Examples of C(g,1,t,) as defined in Eq. (15) vs 7 (a) in the glass and
(b) in the supercooled liquid.

ing time and energy, we chose k,T as our unit of energy. Our
unit of time is then o Vm/k,T. All data below are presented
in dimensionless quantities.

We seek to study both the glass and the supercooled
liquid phase. To generate configurations with large packing
fractions in the glass we use the jammed configurations of
Ref. 6 with packing fraction distributed around ¢.=0.83. At
¢, the particles are in permanent contact. By reducing the
particle diameters by a relative amount €, we obtain configu-
rations of packing fraction ¢=¢.(1—€)>. We then assign a
random velocity to every particle and launch an event-driven
simulation. This procedure enables to study the aging
dynamics of highly dense systems. For ¢<<¢,=0.79, the
system is a supercooled liquid and can be equilibrated.

A. Numerical definition of metastable states

Computing numerically the contact network requires
time averaging on some scale ¢, such that 7. <<t; <7, where 7
is the a-relaxation time of the system, which we define as the
time for which the self-scattering function decays by 70%. In
the supercooled liquid a natural way to proceed would be to
compute 7 and choose #; < 7. Nevertheless this procedure is
not appropriate for the aging dynamics in the glass phase,
where 7 is not well defined, and where the dynamics depends
on the waiting time. As an alternative protocol, we consider
the self-density correlation function not averaged in time,

C((j, t, tw) - <eiq-(R?j(f‘*'tw)_éj(tw)»j’ (15)

where the average is made on every particle j but not on
time, R (2) is the position of particle j at time #, and § is some
wave vector. In what follows, ||l|=27/ ;. For all the system
sizes we consider in the glass phase and for small systems
(for N=64 and to a lower extent for N=256) near the glass
transition, we observe that C(g,?,1,,) displays long and well-
defined plateaus interrupted by sudden jumps, as exemplified
in Fig. 2. In the supercooled liquid, those jumps are of the
order one, indicating that the lifetime of the plateaus are of
the order 7 (a few jumps decorrelate the structure). The ex-
istence of plateaus interrupted by sharp transitions indicates
that the dynamics is intermittent as previously observed.”?¢

J. Chem. Phys. 131, 024504 (2009)

In real space, the plateaus of C(g,1,t,) correspond to quiet
periods where particles are rapidly rattling around their av-
erage position. The jumps indicate rapid and collective rear-
rangements of the particles. In what follows we call “meta-
stable states” those quiet periods of the dynamics. Average
quantities are then computed in a given metastable state by
choosing a time interval [z,7+1,] for which the system lies in
the same metastable state. We find that average quantities do
not vary significantly with the location and the length of the
time interval as long as ¢, > 7... This robustness is proven for
vibrational modes, in particular, in Appendix B. In what fol-
lows we chose #; ~2007,.

This protocol has the advantage to be applicable both to
aging and equilibrated dynamics. On the other hand, it is
limited to rather small systems in the liquid phase. Clearly
for an infinite system C(q,t,1,) is spatially self-averaging
and smooth. Already for N=1024 near the glass transition
plateaus are hardly detectable and our protocol does not ap-
ply (although it does in the glass). For such system sizes, the
more traditional method (computing 7 from the decay of the
smooth self-scattering function and considering some time
scale ¢, < 7) should be used.

B. Contact force network

A straightforward quantity to define in a metastable state
is the average position of the particles,

. t+1) N
R = —J Ri(t")dt'. (16)
hJ,

Central to our analysis is the definition of a contact force
network.'*?"* Two particles are said to be in contact if they
collide with each other during the time interval #;. This en-
ables to define an average coordination number z as z
=2N./N, where N, is the total number of contacts among all
particles of the system. The contact force fij between these
particles is then defined as the average momentum they ex-
change per unit of time,

n=ncq[t]
fijz_ E Aﬁn’ (17)
A n=1

where the sum is made on the total number of collisions
neolt;] between i and j that took place in the time interval ¢,
and Aﬁn is the momentum exchanged at the nth chock. Fig-
ure 3 shows a contact force network obtained using this pro-
cedure and Fig. 4 shows the amplitude of the contact force as
a function of the average gap between the particles in con-
tact.

We define the average contact force of the network (f) as

LN
== 91, (18)

Near maximum packing (f) scales as the pressure p and as
the inverse of the average gap h=(h;), as implied by Eq.
(11). The densest packing fraction ¢y=0.79 we can equili-
brate corresponds to (f)=18. For larger values of (f), the
system is a glass.
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FIG. 3. Contact forces for N=256, (f)=6740, and t,=10* time steps. Points
represent particles centers. Contact forces are sketched by line segments
which link particles that are in contact. The width of these segments is
proportional to the force amplitude. [Ref. 18. Reprinted with permission. C.
Brito and M. Wyart, Europhys. Lett. 76, 149 (2006). Copyright 2006, Insti-
tute of Physics.]

Note that close to maximum packing, at very large pres-
sure, a few percent of the particles do not contribute to the
rigidity of the structure. These “rattlers” appear in Fig. 3 as
particles which do not exchange forces with any neighbors.
In our analysis below we systematically remove such par-
ticles and the procedure we used to do so is presented in
Appendix A.

C. Normal modes of the free energy

As shown in Eq. (13), the free energy in a metastable
state can be written in terms of the average particle positions.
It follows that it can be expanded for small average displace-
ments. For discs (d=2) this reads

7 TTW T T TTTHW T T TTTHW T T TTTHW T T TTTHW T T T TTTT
10'¢ o
F ° <f>=7.6x10 ]
i © <f>=79x10" ]
10°F © <f>=80x10"| 3
: <f>=67x10"] 1
10°¢ E
f ]
10 E
10°F E
2ol v e vl
10 7 6 3 4 3 2
10 10 10 10 10 10
h

FIG. 4. Log-log plot of the amplitude of the contact force vs the gap be-
tween the particles for different values of (f) in a system with N=256
particles. Each point corresponds to a pair of numbers (f;;, (%)) that char-
acterizes a pair of particles in contact. The slashed line is a fit of the theo-
retical relation predicted in Eq. (11). [Ref. 18. Reprinted with permission. C.
Brito and M. Wyart, Europhys. Lett. 76, 149 (2006). Copyright 2006, Insti-
tute of Physics.]
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1 [(5R,— 5R) - iij; ]

8G=-2

@ Chy) 2rif
1 ..
+ 2 ——[(8R; - 8R) . 7i;;* + o(R?), (19)
) 2(hj)

where ﬁj is the unit vector orthogonal to 7i;;. Equation (19)
can be written in matrix form

8G = (SR|M|5R), (20)

where |5R) is the dN-dimensional vector Eﬁl, e, 5R;\, and
(SR*| 5RPy=3NSR™- 5RP. M is the dynamical (or stiffness)
matrix. For completeness, note that for discs it can be written

as a N X N matrix whose elements M; ;j are tensors of rank d;
for d=2 this reads

M 0, ( ! it @k L 87 )
== O T ® A — 5 @ iy
j ) Zr?jq(hij) j j 2<hij>2 j j

1
8,3 (o
Yo N2 hyy Y

where ;=1 when particles i and j are in contact and where
the second sum is made on all the particles () in contacts
with the particle i. ® is the tensor product. M describes the
linear response of the average displacement of the particles
to an external force. The eigenvectors of M are the normal
modes of the system and the frequencies are the square roots
of these eigenvalues.29 The distribution of these frequencies
is the density of states D(w). We shall denote |SR®) as the
displacement field of a normal mode of frequency w. These
modes form a complete orthonormal basis {|6R®)}.

® ik L ® 1, )
n:: ———=n; nyl,
ij 2<h”>2 il il

V. MARGINAL STABILITY OF THE MICROSCOPIC
STRUCTURE

According to Eq. (14), the minima of the free energy
must have a sufficiently coordinated contact network. One
may ask if the metastable states generated dynamically sat-
isfy this bound easily or maurginally.18 In order to test this
question, we prepare systems at various pressures and iden-
tify metastable states. Deep in the glass phase, starting from
some initial condition typically three or four states are visited
during aging on the time scales we explore. During aging the
pressure can drop by several orders of magnitude (indicating
the possibility to obtain denser jammed configurations under
recompression, i.e., larger ¢,). For each metastable state vis-
ited, we measure the coordination of the contact force net-
work and the average force (f). The corresponding data are
presented in Fig. 5 together with the measures of the coordi-
nation in the supercooled liquid where equilibrium is
reached.

In Fig. 5 it appears that the fit corresponding to the satu-
ration of the bound of Eq. (14), 5z=A{f)~"", captures well all
our data points. This observation supports that the metastable
states we generate lie close to marginal stability: On the time
scales that can be probed numerically, the configurations vis-
ited by the dynamics have just nearly enough contacts to
counterbalance the destabilizing effect induced by the con-
tact forces. The situation is very different from a monodis-
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FIG. 5. Log-log plot of & vs (f) for N=256 or N=1024 particles. Each
circle corresponds to one metastable state in the glass phase, whereas dia-
monds correspond to averaged quantity among 11 metastable states in the
supercooled liquid. The slashed line is the best fit of the form dz=A{f)"".
[Ref. 18. Reprinted with permission. C. Brito and M. Wyart, Europhys. Lett.
76, 149 (2006). Copyright 2006, Institute of Physics.]

perse hexagonal crystal for which 8z=2 as (f)—cc. Thus
Fig. 5 supports that at least for hard particles, there exists a
fundamental difference in the mechanical stability of a glass
and a crystal. In what follows we provide further evidence
that metastable states lie close to marginal stability and study
some consequences of this property on the dynamics.

VI. MICROSCOPIC DYNAMICS

If a configuration is marginally rigid, then by definition
it must display modes which are barely stable. In this section
we investigate the existence of such soft modes in the free
energy expansion around metastable states. After observing
that these soft modes are indeed present, we show that they
lead to anomalously large and slow density fluctuations on
time scales where the system is still confined in one meta-
stable state, which we refer to as “microscopic dynamics.”

A. Density of states

We compute the density of states D(w) in metastable
state for various pressures following the procedure intro-
duced in Sec. IV C. As the pressure is varied, following Eq.
(12) the characteristic stiffness and therefore the characteris-
tic frequency change. It is therefore convenient to represent
the density of states in rescaled frequencies o’ =w/(f). Re-
sults are shown in Fig. 6. Very similar results have been
recently reported in simplified “mean field” hard sphere
models.* Only the positive part of the spectrum is shown.
Occasionally we observe one or two unstable modes with a
negative frequency of very small absolute value. Those un-
stable directions may appear due to the approximation we
perform when computing the free energy. Alternatively, they
may indicate the presence of saddles (and multiple configu-
rations of free energy minima) or “shoulders” in the meta-
stable state under study.

From Fig. 6 we observe that (i) there is an abundance of
modes at low frequency. For all {f), D'(w’) increases rapidly
from zero frequency to reach a maximum at some frequency
w* before decaying again. In the inset of Fig. 6, D(w) is
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FIG. 6. Densities of states D'(w')=(f)D(w) vs rescaled frequency
o' =w/(f) for different values of (f) in a system of N=256 particles.
Inset: D(w)/w vs  for (f)=18.

normalized by its Debye behavior Dy(w)~ w (plane waves
would lead to a linear behavior of the density of states in two
dimensions). No plateau can be detected at low frequency;
we rather observe a peak in the quantity D(w)/D j(w), which
appears at some frequency wgp significantly smaller than w®.
This indicates that for our system size we do not observe any
frequency range where plane waves dominate the spectrum.
This is confirmed by inspection of the lowest-frequency
modes, which appear to be quite heterogeneous. Two ex-
amples of lowest-frequency modes are shown in Fig. 7 for
two values of (f). Those observations are consistent with the
presence of barely stable soft modes in the spectrum. (ii)
There exists a characteristic frequency w* which scales with
the pressure. We define w* as the frequency at which D(w) is
maximum: D(w*)=D,,,. Figure 8 shows the dependence of
" with the average force (f), where we observe the scaling

w*~(}‘>”2, (21)

which holds well from the glass transition toward our densest
packing up to {f)=10* for our system size. This scaling be-
havior in the vibrational spectrum can be deduced from Egs.
(4) and (14) if marginal stability is assumed throughout the
glass phase.

w/(f) = 0.0027[]

-0

FIG. 7. Examples of two lowest-frequency modes for N=1024 particles for
(f)=7.8%x10° (left) and {f)=330 (right).
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FIG. 8. Characteristic frequency " as defined in the text vs average

force (f).

Both observations (i) and (ii) bring further support on
the marginal stability of the metastable states previously in-
ferred from the microscopic structure.

B. Microscopic dynamics and normal modes

To study the microscopic dynamics, we project the dy-
namics on the normal modes and define for each frequency
,

Colt) = ((BR(1+1,)| 3R®) - (R(1,)| SR?)), . (22)

where |6R(7))=|R(1))-|R.,) is the displacement field
around the configuration corresponding to the average par-
ticle position and where the average is made on all time
segments [1,,,7,,+1] entirely included in a metastable state.

If the projections of the dynamics were made on longi-
tudinal plane waves rather than on normal modes, C,(¢)
would simply correspond to the decorrelation of the density
fluctuations at some wave vector, which can be probed in
scattering experiments. Examples of C,(¢) for some low-
frequency modes are presented in Fig. 9 at two different
pressures: Deep in the glass phase and in the supercooled
liquid. We observe damped oscillations for most of the spec-
trum.

From C, (), the amplitude A(w) and the characteristic
time m(w) of the oscillations of a mode are readily extracted.

C,0

T T T T T A) T
<f>=8x10" | \

C,y0

<f>=18

FIG. 9. Examples of C,(1)/ C,(0) for low-frequency modes for two different
average contact forces (f) deep in the glass phase (left) and in the super-
cooled liquid phase (right).
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FIG. 10. (a) Average squared amplitude of the modes (A*(w)) vs w at vari-
ous packing fractions in a system of 256 particles both in the glass phases
(f)=260 and (f)=50 or in the supercooled liquid ({f)=18). Each point cor-
responds to one mode. The dashed line corresponds to the fit (A%(w))
~1/w?. (b) Relaxation time 7(w) of each mode vs  for the same packing
fraction. The slashed line corresponds to the relation Hw)~1/w.

The average square amplitude of the normal mode follows
(A%(w))=C,(0). We define the relaxation time scale 7(w) as
the time at which C,(r) has decayed by some fraction s:
C (r(w))=sC,(0). We have tried various definitions at s
=0.3, 0.5, and 0.9 and found a similar scaling for the depen-
dence of H(w) with w. In what follows we present the data
with s=0.9 where our statistic is more accurate.

The dependence of these quantities with frequency is
respectively shown in Fig. 10 for three metastable states at
different pressures. Two configurations are in the glass phase
and one in the supercooled liquid phase. In all cases, these
quantities were computed for each mode of the spectrum. We
observe that the modes display weakly damped oscillations,
whose amplitude and period follow,
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5 1
(A%(w) ~ —, (23)
W
1
m(w) ~ —. (24)
w

These results hold true even for the low-frequency part of the
spectrum, although more scattering is found there.”'

As a consequence, our computation of D(w) gives a
rather faithful distribution of relaxation time scales of the
microscopic dynamics, supporting further the approximation
we used to compute the free energy in Eq. (13), a priori
strictly valid only at infinite pressure. This allows us to iden-
tify the peak apparent in the inset of Fig. 6 as the boson peak,
which appears as a similar hump in Raman or neutron spec-
tra in molecular liquids.32_34 Near the glass transition, this
peak appears at a frequency significantly smaller than ", as
shown by the inset in Fig. 6.

C. Mean squared displacement

In this section we use D(w) to compute the mean square
displacement around an equilibrium position inside a meta-
stable state when (f) is varied. This quantity is directly re-
lated to the Debye—Waller factor accessible empirically with
scattering experiments.

We define 6§[=ﬁi—§?q, where ﬁfq is the average posi-
tion of particle i in a given metastable state as defined in Eq.
(16). Assuming that the dynamics of different modes is inde-
pendent, the fluctuations of particle positions (513?) can be
written as a sum of the fluctuation of all modes,

(6R%) = 2 (A%(0))( SR (w)?), (25)

where A%(w) is the average square amplitude of the ampli-
tude of the mode w and SR;(w) is the displacement of par-
ticle i for the mode w. We then average on all particles and
define (5132)=1/NE,-( 5]3?), where N is the system size. Using
the mode normalization (SR,(w)%),=1/N and applying Eq.
(24) lead to

(5R) ~ f D) 1y = f D(f;))dw. (26)
0o @ "

The inequality accounts for the modes with frequency be-
tween w=0 and " that we have neglected. Accounting for
those modes would not change our conclusion as long as the
soft mode density grows sublinearly at low frequency. As can
be checked for the square lattice, D(w) reaches a typical
value of 1/Vk (~1/ (f) for hard spheres) for = w". This is
more generally true for amorphous packing, as proven in
Ref. 14. Using this fact, the last integral is dominated by the
lowest bound and one gets

D(w")

Pl
w

<5R’2> = <f>—3/2 — /’13/2, (27)
which holds in any dimension d=2 (with corrections of or-
der h? log N for d=2 due to plane waves). We have used the
scaling of the frequency scale w* confirmed in Fig. 8. In
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FIG. 11. Mean square displacement <5R2> vs average contact force (f) for
N=1024 (circles) and N=256 (squares) particles. Diamonds correspond to
the supercooled liquid phase and were computed for a system with N
=256 particles. Slashed line corresponds to the best fit agreeing with our
prediction {S8R?)~ (fy~3"2.

crystals, the fluctuations around a particle position is of the
order of the interparticle gap h: (SR2)~ h? (with log N cor-
rections in two dimensions). Equation (27) shows that near
maximum packing, the amplitude of particle motions is infi-
nitely smaller in the crystal than in the glass. Because of the
marginal stability of the glass, these fluctuations have an
anomalous scaling with the packing fraction.

To check numerically this prediction, we consider vari-
ous metastable states. In each of them, we measure R® and
the mean square displacement around the equilibrium posi-
tion (5I$2>=(1/NE,~51€1-2(I)>,1, where the average is made on
the time interval ¢;. Figure 11 shows this quantity for various
packing fractions. Our numerical result agrees well with our
prediction (SR2) ~ ()32~ h*? throughout the glass phase.

VIl. «-RELAXATION

One long-lasting challenge in our understanding of the
glass transition is the elaboration of a spatial description of
activated events, the rare and sudden rearrangements of par-
ticles corresponding to jumps between metastable states.
These events are collective rearrangements of particles, but
the cause and the nature of this collective aspect are un-
known. Our observation that the glass structure is marginally
stable suggests that the softest, barely stable modes may play
a key role in the activated events that relax the structures. In
what follows we investigate this possibility by projecting the
sudden rearrangements on the normal modes of the free en-

ergy.

A. Aging

During aging, sudden rearrangements or “earthquakes”
appear as drops in the self-scattering function, see Fig. 2(a).
Such earthquakes correspond to collective motions of a large
number of particles and have been observed in various other
aging systems such as colloidal paste or laponite35 and in
Lennard-Jones simulations.”****” Even for our largest nu-
merical box of N=1024 particles, deep in the glass phase
these events generally span the entire system. Examples of
earthquakes in real space are shown in Fig. 14.
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FIG. 12. Straight curve: D'(w')/D},, vs o/{f). Both D(w) and (f) are

computed in the metastable state prior to the earthquake shown in Fig. 2(a).
Dotted curve: g(w) as defined in the text renormalized by its maximum
value g(w')/gmax Vs @/{f). [Ref. 38. Reprinted with permission. C. Brito
and M. Wyart, J. Stat. Mech.: Theory Exp. 2007, L08003. Copyright 2007,
Institute of Physics.]

To analyze these displacement fields, we measure the
average particle positions and the contact network in the
metastable state prior to the earthquake and compute the nor-
mal modes of the free energy. We also compute the earth-
quake displacement |6R¢) defined as a difference between
the average particle position in two successive metastable
states [ and m: |SR®)=|R™)—|R'). We then project |SR¢) on
the normal modes and compute ¢, = (SR¢| SR®)/(SR¢| SR?).
The c,, satisfy Ewci):l since the normal modes form a uni-
tary basis. To study how the contribution of the modes de-
pends on frequency, we define

g(w)=(cl), (28)

where the average is made on a small segment of frequencies
[w, w+dw]. Figure 12(a) shows g(w) for the earthquake
shown in Fig. 2(a). The average contribution of the modes
decreases very rapidly with increasing frequency, and most
of the displacement projects on the excess modes present
near zero frequency. This supports that the free energy bar-
rier crossed by the system during a rearrangement lies in the
direction of the softest degrees of freedom.

To make this observation systematic, introduce the label

i to rank the ¢ by decreasing order: ¢;>c¢,, ..., >coy. We
then defined a k,,, such that
ki
+ =1/2. (29)

i=1

Physically, k), is the minimum number of modes necessary
to reconstruct 50% of the displacements relative to the earth-
quake. Figure 13 shows F,,=k;,/(2N) for the 17 cracks
studied and indicates that 0.2% < F,,, <2% for all the events
studied throughout the glass phase. We thus systematically
observe that the extended earthquakes correspond to the re-
laxation of a small number of degrees of freedom of the
order of 1% of the modes of the system.

In Fig. 14 we illustrate the spatial consequence of our
analysis. Two examples of earthquakes at different packing
fractions are compared to the linear superposition of 1% of
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FIG. 13. F,), vs {f) for N=256 (circles) and N=1024 (diamonds) particles.
[Ref. 38. Reprinted with permission.C. Brito and M. Wyart, J. Stat. Mech.:
Theory Exp. 2007, L08003. Copyright 2007, Institute of Physics.]

the modes that contribute most to them. The similarity is
striking: The complexity of the structural relaxation is indeed
contained in the soft degrees of freedom of the system along
which yielding occurs. Thus, in this regime only a small
fraction of the degrees of freedom of the system participate
in the relaxation of the structure.

B. Structural relaxation in the equilibrated supercooled
liquid

We equilibrate the system for a range of density 0.77
= ¢=0.786. Also in this regime, the dynamics is heteroge-
neous in space and in time and sudden rearrangements still
occur on time scales of the order of 7.*° An example of this
rearrangement that can be identified as a drop in the self-
scattering function is shown in Fig. 2(b). In real space, this
displacement corresponds to a collective event, as one can
observe in the examples of Fig. 16 (left) and Fig. 18 (above).
To study these events in an equilibrated supercooled liquid,
we extend the procedure used in the aging regime: We iden-
tify the metastable states visited by the dynamics and com-
pute their averaged configuration. We then define the normal

FIG. 14. Above: Two examples of earthquakes in the glass phase for differ-
ent average contact force (f) for N=1024 particles. Displacements were
multiplied by four for visibility. Below: projection of earthquakes on the 1%
of the normal modes that contribute most to them.
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FIG. 15. (F,,5) vs ¢ for two different system sizes. [Ref. 38. Reprinted with
permission. C. Brito and M. Wyart, J. Stat. Mech.: Theory Exp. 2007,
L08003. Copyright 2007, Institute of Physics.]

modes in the metastable state and the displacement field cor-
responding to the relaxation events. For each relaxation
event, we compute Fy,.

We start with a system with N=64 particles. For each
packing fraction, F,, is computed for six relaxation events.
Then this quantity is averaged on all events. The results of
these (F,,) are shown in Fig. 15 as a function of the packing
fraction. We find that (F,,,) =5% for all ¢ studied, support-
ing that only a small fraction of the low-frequency modes
contribute to the structural relaxation events also in this re-
gion of the supercooled liquid. This fraction decays signifi-
cantly as ¢ gets closer to ¢y, suggesting a rarefaction of the
number of directions along which the system can yield near
the glass transition. Figure 16 exemplifies this conclusion:
For this particular case, the relaxation event shown on the
left projects almost entirely on one normal mode, which is
shown on the right of this same figure. This mode turns out
to be the lowest-frequency normal mode of the free energy.

To study finite-size effects, we measure F,, for 12 re-
laxation events at each of the five packing fractions using
N=256 particles. Results are shown in Fig. 15. Finite-size
effects are present and (F,,,) appears to be roughly 0.5%
higher in the larger system for all packing fractions. Most of
this difference in behavior is explained by the observation
that the glass transition occurs at smaller packing fraction in
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FIG. 16. Left: displacement field for a system with N=64 particles corre-
sponding to a relaxation event. Arrows were multiplied by 1.2. Right: nor-
mal mode that contains 80% of the projection of the real displacement field.
This normal mode has the lowest frequency of the spectrum. [Ref. 38. Re-
printed with permission. C. Brito and M. Wyart, J. Stat. Mech.: Theory Exp.
2007, L08003.. Copyright 2007, Institute of Physics.]
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Wyart, J. Stat. Mech.: Theory Exp. 2007, L08003. Copyright 2007, Institute
of Physics.]

the N=64 system, as previously observed.* The inset of Fig.
17 shows that this is the case in our system as well. If (F,,»)
is plotted as a function of relaxation time, as in Fig. 17, the
curves become similar for the two systems and (F,,,) is sys-
tematically smaller for a system with N=256 particles. Thus,
even for larger systems, collective rearrangements relaxing
the system are “soft:” They project mostly into a small por-
tion of the vibrational spectrum. We verify spatially this ob-
servation in Fig. 18. Three examples of relaxation events at
different packing fractions are compared to the vector field,
which is a linear superposition of the modes that contribute
most to them. This relation between soft modes and relax-
ation has been recently supported by the observation that
regions where structural relaxation is likely to occur and said
to have a high “propensity” also display an abundance of soft
modes.

Interestingly, the soft modes that characterize marginally
stable structures are in general rather extended objects, as
can be observed from the examples presented here. Theoreti-

FIG. 18. Above: relaxation events in the supercooled liquid for different ¢,
indicated in the figure, and N=256 particles. Displacement fields are res-
caled by 4, 1.5, and 1.2, respectively for visibility. Below: projection of the
relaxation events on the normal modes that contribute the most. The fraction
of the total number of modes used is indicated in each figure and corre-
sponds to the fraction necessary to recover 50% of the relaxation event. As
indicated in Fig. 15, this fraction of modes tends to increase as ¢ decreases.
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FIG. 19. Phase diagram for the stability of hard sphere configurations in the
coordination &z vs average gap h plane. The marginal stability line delimits
stable and unstable configurations. The dashed line corresponds to equilib-
rium configurations for different ¢. As ¢ increases, i decreases and the two
lines eventually meet. This occurs at the onset packing fraction ¢, where
dynamics become activated. At larger ¢, viscosity increases sharply as con-
figurations visited become more stable. For a finite quench rate the system
eventually falls out of equilibrium. More stable and more coordinated re-
gions cannot be reached dynamically, and as ¢ is increased further, the
system lives close to the marginal stability region, as indicated in the dotted
lines. The location of the out-of-equilibrium trajectory depends on the
quench rate. In the limit of very rapid quench, the out-of-equilibrium line
approaches the marginal stability line.

cally this is what one expects both in the square lattice, as
justified by Eq. (3), and in amorphous packing.'*'* In this
light it does not seem surprising that activated events are
collective.

VIil. A GEOMETRIC INTERPRETATION
OF PREVITRIFICATION

A. Previtrification

We have shown both from its microscopic structure and
microscopic dynamics that the hard sphere glass lies close to
marginal stability. In this section we propose an explanation
for this observation. This requires a single assumption,
namely, that the viscosity increases very rapidly when meta-
stable states appear in the free energy landscape. In the loga-
rithmic representation of the plane coordination versus the
typical gap between particles in contact (dz,h), there exists a
line corresponding to the equality of Eq. (14), which sepa-
rates a region where configurations are stable and unstable,
as sketched in Fig. 19. At any packing fraction ¢, equilib-
rium configurations correspond to a point in the (8z,%) phase
diagram. As ¢ is varied equilibrium states draw a line in this
plane represented by the dashed lines (red online) in Fig. 19.
At low ¢, gaps among particle are large and configurations
visited are unstable. As ¢ increases, the gaps narrow and
configurations become eventually stable. This occurs at some
Donset When the equilibrium line crosses the marginal stability
line. At larger ¢, the viscosity increases sharply, so that on
our numerical time scales equilibrium cannot be reached
deep in the regions where metastable states are present. As a
consequence, the system falls out of equilibrium at some ¢
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close but larger than ¢,,.; Configurations visited must
therefore lie close to the marginal stability line, as repre-
sented by the dotted lines in Fig. 19, since more stable,
better-coordinated configurations cannot be reached dynami-
cally.

In this view, ¢, corresponds to the onset temperature,
where activation sets in and the dynamics becomes intermit-
tent. When intermittency appears, the a-relaxation time scale
7 is still limited and has increased roughly of one order of
magnitude from the liquid state. This is consistent with the
observation that the configurations we probed in the super-
cooled liquid, for which 7 is larger but still limited, are al-
ready stable: The free energy expansion has in general a
positively defined spectrum. Note that at ¢, 6770, and
the characteristic length of the soft mode [* is finite. We think
of those modes as involving a few tens of particles.

B. Ideal glass and random close packing

To put our work in a broader context it is useful to think
about the phase diagram in Fig. 19 with an extra dimension
added. For any configuration one can associate the packing
fraction ¢, corresponding to the jammed packing that would
be obtained after a rapid (:omprf:ssion.3()’4l’42 At equilibrium
¢, is an increasing function of pressure.“’44 In the three-
dimensional phase diagram (4, &z, ¢,), marginality is now
represented by a surface. Its main feature, the scaling relation
between coordination and typical gaps expressed in Eq. (14),
holds irrespectively of the value of ¢, according to our the-
oretical analysis in agreement with the data presented in Fig.
5. Marginality and related properties are therefore adequately
discussed in the simpler two-dimensional phase diagram pre-
sented in Fig. 19. Some other aspects of the dynamics and
thermodynamics of hard spheres nevertheless benefit from
introducing the extra dimension ¢,.

1. Ideal glass

For molecular glasses the presence of an ideal glass tran-
sition where the configurational entropy vanishes at finite
temperature has been proposed and is still debated.*>*® For
hard spheres this view implies that the viscosity diverges at
some finite 7> 0,’**! for which the equilibrium curve ¢,(h)
reaches a constant value. Our work does not address the
issue of the existence of an ideal glass, but it supports that if
it exists, it is not responsible for the slowdown of the dynam-
ics in the previtrification region that we can access empiri-
cally, neither in the aging regime we could observe in the
glass, since such a scenario would not explain the marginal
stability of the microscopic structure we observe. Some au-
thors have used diverging fits of the relaxation time to argue
in favor of the opposite view.* Nevertheless, establishing the
existence of an actual divergence from such fits is question-
able even in molecular liquids,47 where the number of de-
cades of viscosities accessible is two to three times larger.

2. Random close packing

Empirically it is observed that for various protocols of
compression (such as pouring metallic balls in a container),
the final packing fraction obtained is ¢,.=~0.64 for monodis-
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perse hard spheres. This fact can be expressed as follows:
For each protocol one can associate a line 8z(h), ¢.(h) char-
acterizing the configurations visited during compression. Iso-
staticity implies 6z— 0 as h—0. Furthermore, for a wide
class of protocols ¢.(h)— 0.64 as h— 0. The explanation for
this observation is debated.® An interesting hypothesis is
that ¢.~0.64 corresponds to the limit reached by infinitely
rapid compressions. If typical protocols are fast in compari-
son with the relevant time scales of the dynamics, they
should generate packings with a similar packing fraction.

IX. CONCLUSION

We conclude by a brief summary of our results and a few
remarks. We have derived a geometric criterion for the sta-
bility of hard sphere configurations and we have shown that
in a hard sphere glass this bound is nearly saturated. This
supports that previtrification occurs when the coordination is
sufficiently large to counterbalance the destabilizing effect of
the compression in the contacts. Nearly unstable modes are
collective displacement fields, whose spatial extension is
governed by the coordination. Once metastable states appear
in the free energy, activation occurs mostly along a small
fraction of these soft modes. This observation supports that
these modes are the elementary objects to consider to de-
scribe activation. It also implies that structural relaxation
must be cooperative, since the soft degrees of freedom are
collective.

We have observed that less and less modes participate to
the structural relaxation as the packing fraction increases
near ¢, It is tempting to speculate that as the number of
degrees of freedom allowing relaxation is reduced, the size
of the cooperatively rearranging regions grows to eventually
saturate at the extension of the softest modes /*. Neverthe-
less, a quantitative description of the relationship between
soft modes and dynamical length scale remains to be built
and tested. Other factors, such as the possible presence of
locally favored structure of high coordination or some other
spatial heterogeneities of the structure, may also have to be
taken into account.

Our analysis of the structural relaxation at equilibrium
applies to the previtrification region, corresponding to the
intermediate viscosities that can be probed numerically.
Similar time scales are accessible experimentally in shaken
granular matter and colloidal glasses. Our work does not
address the behavior of the equilibrium dynamics for a very
large packing fraction. As a consequence, it is possible that at
much larger viscosities than those we probed, in particular
near the glass transition in molecular liquids, our observa-
tions on the nature of the structural relaxation may not apply,
and soft modes may play no role in the dynamics. Neverthe-
less several observations support that soft modes and dynam-
ics are related even for those large viscosities. In particular,
the intensity of the boson peak, which indicates the presence
of soft modes in the spectrum, strongly correlates with the
glass fragility,48 a fact which is not captured by current theo-
ries of the glass transition.

Finally, our geometric approach to previtrification is
consistent with Goldstein’s* views, who proposed 40 yr ago
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that the glass transition is related to the emergence of meta-
stable states in the energy landscape. Other more recent de-
scriptions of the glass transition, such as the mode coupling
theory (MCT) of liquids,” make a similar prediction,®*'~?
and it is interesting to compare this approach to ours. Here
we indicate several differences and analogies in the respec-
tive conclusions. (i) In MCT the predicted location of the
elastic instability corresponds to the onset packing fraction.>
This is consistent with our observation that when the dynam-
ics becomes intermittent (= @,,se), the configurations vis-
ited have in general a positively defined spectrum, displaying
no unstable modes. This is also supported by previous results
showing that the dynamics is dominated by activation in this
parameter range.55 Nevertheless, MCT predicts diverging
time scales™ and dynamical length scales™ at the onset pack-
ing fraction, which are not observed. Fitting empirical data
with such divergences57 leads to a critical packing fraction
dyer significantly larger than ¢,,... The interpretation of the
extra fitting parameter ¢ycr and its relation with the free
energy landscape are at present unclear. (i) In MCT the dy-
namics is computed via a resummation of a perturbation ex-
pansion in the nonlinear interaction among modes around a
point where plane waves are uncoupled. In our case, we use
a variational 21rgument14’15 to capture the properties of the
linear soft modes whose stability is at play. This argument
applies as well in covalent’ and attractive glasses.7’58 This
leads to an estimation of a length scale [* characterizing soft
modes, which depends on the coordination. This length scale
has not yet found a correspondence within MCT, where non-
trivial length scales appear from the dynamics56 but diverge
near the elastic instability unlike [*. (iii) In our approach, the
key microscopic parameters determining the location of the
transition are coordination and pressure. In MCT, an impor-
tant parameter is the area under the first peak of the pair
correlation function.”” These two views bear similarities, as
the latter quantity can be considered as a rough measure of
coordination. It remains to be seen if MCT can capture the
critical behavior of the marginal stability line observed at a
very large pressure. Exploring this possibility may clarify the
physical meaning of the approximations that characterize
MCT.
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APPENDIX A: DETERMINATION OF THE RATTLERS

Near maximum packing, a few percent of the particles
are trapped in large “cages” on which they apply a minuscule
force in comparison with the typical contact forces in the
system. Such particles, called rattlers, do not participate to
the rigidity of the structure: If removed, stability is still
achieved. When we compute, e.g., the coordination of the
microscopic structure, we do not take these particles into
account.
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FIG. 20. Histogram of the distribution of f*/F* (see definition in the text)
for various average force.

To identify rattlers we measure the average number of
shocks per contact for each particle. We compute how many
shocks ng,,. and how many contacts n,. each particle has
during the interval of time #; and define: f“=ng,./n. if n.
=2 and f*=0 otherwise. This quantity is normalized by the
average number of shocks per contact that all particles have
during t;: F*=Ng./N,, where N, is the total number of
shocks and N, is the total number of contacts in the system.
We then plot the distribution of f*/F* for different packing
fractions, Fig. 20. At large (f), we observe the emergence of
a peak near zero. When (f) is intermediate, (f)=5.2X% 103
and (f)=9.2 X 102, the peak vanishes. This peak corresponds
to the rattlers. In this work we consider that all particles for
which f*/F*=2% are rattlers. This criterion is represented
by the arrow in the inset of Fig. 20. To check the robustness
of our results, we test if the relation between the excess of
coordination &z and the average force (f) depends on this
criterion. We vary the threshold bellow which we consider a
particle as a rattler and plot in Fig. 21 the comparison be-
tween three different criteria: f*/F* =0.01=0.02=0.05.
We observe that relation 8z=A(f)~""? holds irrespectively of
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FIG. 21. &z vs (f) for three different criteria of definition of rattlers as
explained in the text. The legend “all particles” indicates that no rattlers are
excluded for this measure. Dotted curve: fit of the relation dz=A(f)~"/2.
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(b) 10 20 30 40 50 60 70 80 90

FIG. 22. Matrix of scalar product C as defined in the text for the 100
lowest-frequency modes for N=256. The color bar indicates the value of the
scalar product. Time intervals lasted #,=5007,. Left: (f)=6700. The intervals
t, and t, are separated by 10°7,. Right: ¢=0.782. The intervals #, and #, are
separated by 10*7,, which is of the order of the relaxation time.

the criterion. It fails when the rattlers are not removed from
the analysis. In this case, for high values of (f) one finds
0z<0.

APPENDIX B: PERSISTENCE OF THE NORMAL
MODES IN A METASTABLE STATE

Here we show that our numerical computation of the
normal modes is robust to different choices of time intervals
as long as they lie in the same metastable state. To achieve
that we compute the normal modes for two distinct nonover-
lapping time intervals. |SR{’) denotes the normal modes of
frequency w, computed on some time interval labeled as t,.

We then compute the matrix of scalar product
Cw,w/=<5R;‘;|5Rf; ). (B1)

If the two sets of normal modes are identical, C is the iden-
tity matrix. In general this must not be exactly true, as shown
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in Fig. 22, since our protocol requires time averaging and is
therefore noisy to some extent, and also because some non-
trivial dynamics may still occur within metastable states. Our
observations below show that those effects are small even if
the two time intervals considered are separated by a time
scale of the order of the lifetime of metastable states. To
quantify the difference between C and the identity matrix,
we follow the procedure we used before to compare a relax-
ation event to the normal modes of the structure. We define
F,»(w) as the minimal fraction of normal modes computed
on 1, sufficient to represent 50% of a normal model of fre-
quency w computed on ¢,. We then define (F,,) as the aver-
age of F,,(w) on the 20 lowest-frequency modes computed
on t,. (Fy,) is 1/2N if C is the identity matrix and should be
small if our procedure is robust to different choice of time
interval. This is indeed the case: In the supercooled liquid
((f)=18) we find (F,,;)=0.4%, which is small for all practi-
cal purposes discussed in this article. For this measure the
time intervals lasted ¢;=5007,, and the time separation be-
tween 7, and 7, was 10*7,, which is of the order of the relax-
ation time 7~3 X 10*,. For the glass ((/)=6700) F,(w) is
close to 1/2N, as is obvious in Fig. 22.
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