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Abstract 

Nanopores in alumina can be generated by anodization process. Depending on some 

experimental conditions, these nanopores can be hexagonally distributed in the sample, which we 

usually call self-organization. This can be useful for some technological applications and may 

influence some physical properties. Then, to quantify the degree of hexagonal order in these 

samples is an important task. In the first part of chapter we review several methods which appear 

in the literature to quantify the degree of hexagonal order in nanopores alumina arrays (NAA), 

discussing the advantages and the drawbacks of the different approaches. In the second part of 

the chapter we present a new method to quantify order, which is inspired by the theory of two-

dimensional melting. This theory was developed to describe phase transitions in two dimensional 

systems that present liquid-crystal-like structures. Because this new approach has a strong 

support on tools developed in statistical mechanics, one can go beyond a simple characterization 

and interpret the results in terms of phases as in other physical systems. Besides, this approach 

can be trivially extended to characterize other physical systems that form hexagonal packings. 
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1. Introduction 

 Aluminum anodization is a well-controlled technique to fabricate nanoporous alumina 

arrays (NAA), a kind of nanostructures with potential usefulness for diverse device applications.1 

These arrays are suitable templates for fabrication of magnetic storage devices, nanowires and 

ordered carbon nanotube arrays. The controllability of some parameters as pore dimensions and 

the stability of the formation of the pores are features that turn them attractive. An important 

issue for optimizing the performance of the obtained devices is the ordering of this structure. 

 Depending on some experimental conditions, as for example the applied voltage during 

the anodization process, temperature, type and electrolyte concentration2-7 and the conditions of 

the aluminum matrix such as purity and grain sizes,8-12 the spatial distribution of the nanopores 

can be farther or closer to a hexagonal lattice. This closeness to the hexagonal distribution is 

referred to as self-organization. 

 To quantify the self-organization in NAA systems is extremely important due to the large 

number of engineering applications that requires a high degree of nanoporous regularity and 

uniformity, such as high-density magnetic recording media,13 photonic crystals,14 or pattern-

transfer masks15 and superhydrophobicity.10, 16, 17 

 Because of this importance, much effort was employed to quantify order in these samples 

and many different approaches were developed to this end. In this chapter we discuss this issue. 

It is divided into 2 main parts. In the first part we review some methods available in the 

literature, putting in evidence advantages and drawbacks of them. In the second part we 

introduce a method developed recently.18 This approach is inspired in the theory of two-
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dimensional melting, which was developed to describe phase transitions in systems that present 

liquid-crystal-like structures and whose phase transitions are driven by topological defects. The 

use of statistical mechanical quantities developed in this theory to characterize order in NAA is 

useful because: (i) there are no arbitrary parameters, (ii) the proposed implementation is quite 

simple and (iii) it allows making contact with results from model systems, which can further 

open new perspectives on the relevance and influence of the control of the anodization 

parameters in experiments*.19 

2. Review of the Literature 

2.1 Fourier Transform (FT) 

 The Fourier Transform (FT) analysis is probably the most usual method to characterize 

the order in NAA. The advantage of this characterization is the fact that it is directly comparable 

to diffraction experiments20 and it is simple to implement. 

 The result of this analysis can be summarized as follows. The FT of a perfect hexagonal 

lattice has a perfect hexagonal pattern. This is in contrast to what happens with a complete 

disordered packing, for which the FT is a symmetric ring. Although the method is able to 

discriminate between these 2 extreme cases, it fails in the intermediate cases, namely when 

samples have defects. In these intermediate cases – which are in general the ones that are 

experimentally relevant – the FT returns rings with some hexagonal symmetries depending on 

the density of defects, but does not have a clear signature is its pattern, as it can be seen in the 

Figure 1. In these cases it does not allows a quantification of order. 

                                                           
*We created a website where anyone can quantify the hexagonal order of any sample using this methodology. 
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Figure 1: Extracted from the reference.20 The main figures are two SEM images of NAA that clearly present 

differences in the sizes of the hexagonal domains. The insets in (a) and one of the insets in (b) show the FT of the 

respective images. Other insets in (b) are examples of topological defects – point defect and a dislocation – in this 

sample. The FT of the image in (a) is almost a perfect ring while in (b) the pattern has an hexagonal symmetry, 

indicating a difference in the self-organization in both cases. Besides the fact that the FT of the samples are 

qualitatively different, they do not allow for a quantification of the order in these samples. 

 It is possible to be more quantitative when the radial direction of the scattered intensity of 

the signal of the FT and the width of this peak is taken into account.20-23 However, the differences 

between very different samples are not very prominent. 



7 

 

2.2 Radial Distribution Function (RDF) and Angle distribution Function (ADF) 

 The Radial Distribution Function (RDF) (or Pair Distribution Function - PDF) is applied 

to characterize the degree of hexagonal order because it can well identify two extreme cases: 

when the sample have a perfect hexagonal order, the RDF presents well defined peaks, while  for 

disordered samples it displays a flatter pattern. Although the signature is very different in these 

two cases, the RDF does not present a clear feature when samples have defects.  Moreover, the 

information one obtains from the curves cannot be converted into a single number. Then again 

this method is not able to quantify the degree of order in the case where the sample is not 

completely disordered or completely hexagonal. 

 Another quantity computed to characterize the order in a sample is the Angle distribution 

function (ADF). This is based on the idea that if the pores form a hexagonal network, the 

neighbors of a given nanopore shape a hexagon which is composed by regular triangles. Since 

these triangles have internal angles of 60°, in a perfect hexagonally distributed sample of 

nanopores the ADF would have a peak at this value. All deviations from a perfect hexagonal 

lattice would create a deviation in this value and the ADF. 
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Figure 2. Figures extracted and adapted from the Ref.24 Hillebrand et al24 used Delaunay triangulation to define a 

network of pores in contact and compare it with a perfect hexagonal network using different methods. (a) and (b) 

represents the samples in a real space with a clear visual difference in its hexagonal order. (c) shows the PDF, (d) 

presents the ADF and (e) the histogram of the grain size – explained in this section – for the sample (a). Below, (f), 

(g) and (h) presents respectively the PDF, the ADF and the histogram of the grain size for the sample (b). The PDF 

of the sample (a) has more pronounced peaks than for the sample (b) and the ADF of the sample (a) has a higher 

peak in 600 than the sample (b), both measures indicate that the sample (a) has a bigger hexagonal order than (b). 

The histogram of the grain size shows that the sampl (a) has bigger hexagonal domains than sample (b). 

 Pichler et al25 also proposed a method based on autocorrelation functions which could be 

applied to a wide range of superstructures, but the order parameters proposed rely on purely 

empirical fitting procedures of autocorrelations. 

 The approaches presented here are important as complementary analysis of 

characterization of the samples, but they alone are not enough to quantify the degree of 

hexagonal order. They reveal patterns that basically allow for a qualitative identification of the 

lattice type, but the relation with the underlying long-range ordering of the NAA lattice is not 
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revealed. This limitation can be partially bypassed by more quantitative methods, as it will be 

explained in the next sections. 

2.3 More quantitative methods 

2.3.1 Matefi-Tempfli and Hillebrand 

 Two similar approaches were proposed by Matefi et al26 and Hillebrand et al.24 The idea 

can be summarized as follows. The first step is to define pores in contact by using Delaunay 

triangulation. If the distributions of pores were completely hexagonal, triangles defined by 

neighbors pores would be equilateral and then all the distances between neighbors pores would 

be the same and all the angles between them would be 60°. The authors established that, if any 

triangle has angles or distances different from a “quality threshold”, these triangles would not be 

“perfect” and then one has a visual map of the regular regions and can also compute the 

distribution of distances and angles26 or can determine quantitatively regions where there is 

hexagonal order.24 Triangles considered as nearly perfect belong to the same domain, allowing 

for a quantification of grain sizes in a sample.24 Examples of the distributions of the grain sizes 

are shown in the Figure 2 for two different samples. 

 The main problem of these approaches is the dependence on an arbitrary threshold. 

Recently, Abdollahifard et al27 proposed a different way to select  this threshold, improving the 

method. 

2.3.2 Variance of the intensity signal 

 Pourfard et al28 recently proposed an approach based on processing the image to obtain 

information about the order in the NAA. They compute the intensity of each pixel and then the 

average and variance of this intensity in x and y directions. The variance of the signal shows the 
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dominant orientations of the nanopores. The results are curves of intensity as a function of the 

distance in each direction, indicating peaks when the image has orientations and is flat when 

there is disorder. While being an original approach, it is more indicated to identify the directions 

of each domain, but it is not useful to quantify order in the sample. 

3. New Methodology 

3.1 Hexatic order parameter 

As demonstrated with some examples in the previous section, there are several methods 

to characterize the order in a sample of NAA but none of them is fully satisfactory. None of the 

previous methods returns a phase order parameter, an absolute number which varies from 0 to 1 

depending on the degree of order. This implies that it is always necessary to compare with a 

reference sample. Also, very often they do not allow for a quantitative classification. 

It is important to have a method that returns an absolute number to quantify order, that 

would be simple to implement and of wide applicability to different structures. Moreover, it 

should give meaningful information, which could be compared and predicted from model 

systems. From this point of view, it is important to get in contact with observables from 

statistical mechanics. 

We propose an approach which is inspired in the theory of two-dimensional melting, or 

KTHNY theory, after the names Kosterlitz-Thouless-Halperin-Nelson-Young, who pioneered in 

the statistical description of phase transitions in two dimensional systems mediated by 

topological defects. Reviews of this theory can be found, e.g., in references.29, 30 In the next 

subsection we summarize the main ideas of the theory that are important to the method we 
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developed to be applied in NAA. The methodology is then explained in detail in the section 3.3 

and applied for NAA in the section 3.4. 

3.2 Some ideas about the KTHNY theory 

Systems which can form crystal-like superstructures, like NAA or colloidal nanocrystals, 

may develop two different kinds of order. The positional order, representing the translational 

invariance of the center of mass of the unit cells of the structures, e.g. pore centers, and 

orientational order associated with rotational invariance of bonds or edges connecting vertices of 

the crystal lattice and the orientation of the sides of triangles or hexagons as in self-assembled 

NAA. Both kinds of order can be characterized through suitable order parameters and associated 

correlation functions. For two dimensional structures, the KTHNY theory gives a 

comprehensible description of the onset of order. 

A crystalline structure, without any defects, presents both positional and orientational 

order. Positional order can be conveniently quantified by means of the radial distribution 

function (RDF), which shows distinct peaks at the positions of the density maxima when the 

system is in a crystal phase. As soon as the structure presents topological defects, as for example 

dislocations, positional order is disrupted and the RDF decays exponentially. Nevertheless, these 

defects do not destroy the orientational order completely. An intermediate phase, called “hexatic 

phase”, with short range positional order and quasi-long-range orientational order is possible. In 

the hexatic phase, positional correlations decay exponentially, but orientational correlations 

decay much more slowly, as a power law of the distance from any fixed point in the lattice. A 

suitable orientational order parameter is the so called “hexatic parameter”, which will be defined 

in section 3.3 and will be used to characterize orientational order of NAA. 

Correlations of the hexatic order parameter at two points in the sample can quantify the 



12 

 

extension of hexagonal order in the lattice. At still higher degrees of disordering, other kind of 

topological defects, i.e. isolated disclinations, can appear. These are isolated particles with 5 or 7 

nearest neighbors. When isolated disclinations proliferate, orientational correlations decay 

exponentially, and the system loses both translational and orientational order, like in a fluid 

phase. 

Since NAA form hexagonal networks, we define a hexatic local order parameter (LOP) 

which is an order parameter for hexagonal packing that is a natural quantity in the theory of two 

dimensional melting. Suitably defined correlations of the hexatic order parameter allows further 

quantification of the degree of order in the lattice. 

3.3 Methodology for quantitative characterization of hexagonal packing system 

In this section we describe a method to characterize the degree of hexagonal order of a 

hypothetical points distributed in a two dimensional space and in the section 3.4 we apply the 

method to NAA. Let us suppose that one has the coordinates of N points distributed in a sample 

in 2-dimensions. To quantify the orientational order of this sample, the following steps are 

necessary: 

3.3.1 Determination of nearest-neighbors 

To define nearest-neighbors of a point i we construct the Voronoi Diagram of the 

sample.31 This procedure associate, for each point i, a corresponding Voronoi cell, namely the set 

of all points whose distance to i is smaller than their distance to the other points. This allows to 

define unambiguously the  nearest-neighbors of each point i. In Figure 3a it is shown the 

Voronoi diagram for a hexagonal lattice. 
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3.3.2 Computation of a local order parameter (LOP) parameter,  

For each point i, we compute it’s LOP: 

,         (1) 

where  is the number of nearest-neighbors of point i and  is the angle between the lines 

which connects the sites i to j and i to k, as exemplified in Figure 3a by the point i and its 

neighbors j = 2 and k = 3. If the point i forms an hexagon with its neighbors, . 

3.3.3 Computation of the spatial correlation of the LOP, C6 

A field of the LOP is defined when  is calculated for all points i in the sample. One can 

compute the spatial correlation of this field as defined bellow: 

,       (2) 

where the  indicates an average over all  points that are at a distance between r 

and r + dr from the point i (ring in Figure 3b) and then this value is averaged over the whole 

sample: 

          (3) 
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Figure 3: (a) Example of a determination of nearest neighbors for a hexagonal lattice. In this case, the Voronoi cells 

are hexagons and the neighbors of a given point i are the j points that are in the neighbor cells. The angle  is 

defined between the lines which connects the sites i to 2 and i to 3. (b) Sketch of the computation of the spatial 

correlation . Circles represent the centers of the points distributed in a hexagonal lattice and the (red) color the 

value of  of each point. The  is a measure of the correlation between the particle i and all  particles 

inside of the colored ring. 

We now exemplify the method by considering two extreme cases: (i) a hexagonal lattice 

of points and (ii) a completely random network of points. The results are summarized in Figure 

4a,b respectively. 
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Figure 4. (a) Voronoi diagram and the map of  for all points in the hexagonal lattice and (b) in a completely 

random case. The color code on the right of each figure corresponds to the value of . (c) The distribution of LOP, 

. The slashed line represents the Gaussian distribution fitted to the randomly spaced points. The blue vertical 

line at  marks the distribution of the hexagonal lattice. (d) The spatial correlation of , . The x-axis 

is normalized by the mean distance between the points in a sample. (e) The distribution of the number of neighbors, 

which has a peak in  for the hexagonal packing (blue line) and a Gaussian distribution around 6 in the case 

of the random distribution of points. 

A visual difference between the samples are expressed by the Voronoi diagram and the 

color coded map of , Figure 4a,b. In the random distribution case, Figure 4b, the Voronoi cells 

are irregular. This is in contrast to what happens in the hexagonal lattice, Figure 4a, where cells 

are regular and the values of  are unique, . The distribution of ,  quantifies the 

degree of (in)homogeneity, which is an important measure to characterize the degree of 

hexagonal order in a sample. For the hexagonal case, the distribution will be peaked at,  
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while the random case displays a Gaussian distribution with an average given by , as 

shown in Figure 4c. 

To go beyond this local analysis of the order, we compute the spatial correlation of the 

, C6. The quantity C6 is a measure of how far the local order parameter is correlated in space. 

The correlation functions for the two examples considered are shown in Figure 4d. For the 

perfect hexagonal lattice, where all sites have  , it does not matter how far two points i 

and j are, the correlation between the LOP of both sites will be 1. However, if points are 

randomly distributed, C6 decays to zero very fast, indicating that even very close neighbors 

points have their LOP uncorrelated. At large distances, when the sites are not correlated 

anymore, the asymptotic value of C6 is . 

The most valuable information that can be extracted from C6 is the way it decays, i.e. its 

functional dependence. When C6 decays exponentially, this decay is related to the typical sizes of 

the regions where  have the same value. This is related with the typical grain size of a sample. 

A third quantity that can be extracted from this analysis is the distribution of neighbors, 

shown in Figure 4e. For a perfect hexagonal lattice, each point has exactly 6 neighbors, while in 

any other case the number of neighbors is distributed around this value: the deviation from this 

value increases with the disorder. In a hexagonally ordered array, points with 5 or 7 neighbors are 

related to topological defects of the lattice. Depending on the neighborhood they can form 

dislocations or disclinations, and their presence characterize hexatic or disordered structures, 

with specific form for the decay of orientational correlations. 

As described in section 3.2, there are two kinds of order to completely characterize 

hexagonal phase in a real solid,29 the positional order and the orientational order. In our samples 

the orientational correlations decay at best as a power law of the distance from a particular site. 
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In this case it is expected that positional correlations, which are more sensitive to defects, decay 

faster, typically exponentially fast. We have indeed verified this computing the RDF for our 

samples. Then, this quantity would not discriminate between different levels of order in the 

samples and for this reason we did not include an analysis of RDF in our work. 

3.4 Quantification of the hexagonal order in a NAA: results and discussion  

In this section we apply the quantities explained in the previous section for the 2 extreme 

cases in the samples of NAA. Before computing the LOP and its spatial correlations, it was 

necessary to obtain the coordinates of the nanopores center. To do so, we adjust ellipses for each 

nanopore totalizing 1245 nanopores for S1, 484 for S2 and 977 nanopores for S4. This allows the 

definition of the center of mass of each nanopore, and the values of the major and minor semi 

axes of the ellipses are related to the size of the pores. It was done with a standard software 

package, in our case we used ImageJ.32 The center of the nanopores and other measures like the 

distribution of nanopores diameter can be obtained with this software. In the reference18 we 

explained in details for one sample how to extract the center of the pores and to fit the ellipses 

using this software. 

 Three different samples of NAA structure were prepared by anodization process. The 

process was carried out in two anodization steps, in a conventional 2 electrode cell using a Cu 

sheet as a cathode. The anode is made of Al with two different degrees of purity, i.e., high purity 

Al Bulk (99.999 %) and commercial Al (99.5 %). After each anodization step the samples were 

dipped in a 5 wt% H3PO4 solution at 35 ± 1 °C for different times to remove the alumina formed 

in the first anodization step. A second anodization step was performed to allow the opening of 

nanopores. Table 1 summarizes the anodization conditions and the name that will be used for 

each sample. After the anodization process the morphological nanoporous structure was 
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characterized by Scanning Electron Microscopy (SEM, JEOL JSM 6060) operating at 20 kV 

acceleration voltages. More details of the anodization process can be seen in reference.18 

Figure 5a-c shows the SEM images of the S1, S2 and S3 samples, respectively, prepared 

with different Al characteristics and anodization parameters, as described in the Table 1. The 

anodization of the S1, S2 and S3 yielded NAA with different average diameters, as it can be 

verified in the Table 1, leading to different visual levels in nanopores order. The Voronoi diagram 

and the map of  are visual tools to identify the degree of order of the different anodization 

systems, as shown in Figure 5d-f. It shows much more red points (corresponding to  in 

the color code) and that they are concentrated in regions where the Voronoi cells are hexagonal. 

Moreover, it is possible to observe that the hexagonal order is decreasing from S1 to S3 samples, 

and for the last ones there are very few red points. Then this visual inspection clearly indicates 

that S1 and S2 samples have higher ordering level of NAA, compared with S3. This result is due 

to the higher purity of the Al matrix in S1 and S2 samples, while the S3 sample presents more 

impurities, which hampers the formation of NAA with hexagonal order. 
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Figure 5. SEM images of the experimental samples of alumina nanopores, where (a) S1, (b) S2 and (c) S3. The 

figures (d), (e), (f) represent the quantitative map of the  and the Voronoi diagram for the respective samples. The 

colors indicate the value of  for each nanopore. The colour code is below each figure. 

Table 1. Anodization conditions used for the 3 different alumina nanoporous samples. 

sample 

name 
material 

anodization steps 

1st 2nd 

condition Etching (min) condition Etching (min) 

S1 Al (99.999%) a 50 a 10 

S2 Al (99.999%) b 90 b 30 

S3 Al (99.5%) a 30 a 10 

a 0.3 M H2SO4, 25 V at 3±2 °C for 12 h; 

b 0.3 M H2C2O4, 30 V at 15±2 °C for 12 h; 

 

Figure 6a-c summarizes the quantitative analysis of nanopores ordering with the 

distribution of the local order parameter , correlations C6 and the distribution of the number of 
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neighbors , respectively. For sample S1, has  and the distribution is 

completely asymmetric, indicating that most of nanopores form hexagons with their neighbors. 

Sample S2 is also asymmetric and has most of the nanopores with a large value of , which 

results in a relatively large average, , but the standard deviation, , that 

indicates more disorder than in sample S1. The S3 sample shows a more symmetric distribution 

around . This indicates that the sample is much more disordered than the previous 

cases (S1 and S2 samples), but it still has around 27 % more order than the completely random 

case, for which . The dashed Gaussian curve drawings in Figure 6a-c represents the 

distribution for a random set of points discussed in the section 2 and is a benchmark of such 

completely disordered case. 

In the middle column of Figure 6a-c, C6 indicates how far  is correlated in space. The 

x-axis is normalized by the mean distance between the nanopores. We note that in the sample S1 

the correlation decays very slowly: after 20 nanopores (which corresponds to more than half of 

the system size in this case) and, the correlation is about 60 % of the nearest neighbor value. For 

sample S2, although the absolute value of the correlation is smaller than in S1 case, the decay of 

C6 is also slow, while for sample S3 the decay is very fast. In the case of S3, after a distance 

equivalent to 2 average distance between nanopores, the correlation is so small that one can 

conclude that the LOP of nanopores are not correlated anymore. This suggests that the grain size 

is comparable to the size of a pore.9 

The distribution of neighbors shows that the dispersion around the value  

increases from S1 to S3, also pointing to an increase of the disorder and indicating that there are 

more topological defects in S3 than in S1. 
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Figure 6. First column: distribution of , . Second column: correlation of , . Third column: 

distribution of the number of neighbors, . In each line we show all the quantities for different samples, from 

(a) to (c), in the same order as in Figure 3. In all figures we plot dashed curves that represent the random distribution 

of points discussed in Section 2 and are used here to be compared with the samples of NAA. 

3.5 Interpretation of the results in terms of the KTHNY theory 

One can rationalize the results obtained for these samples in the light of the theory of 

two-dimensional melting, or KTHNY theory.29, 30 The most ordered sample analyzed here, S1, is 

not a perfectly ordered sample. The presence of defects is evident from the distributions  

and . Since the correlations of the order parameter decay slowly, the behavior is analogous 

to the hexatic phase. Sample S2 has also a behavior of its correlation function analogous to a 
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hexatic phase although it has more defects than the sample S2. The picture changes for sample 

S3. In this case, the system has still more defects and they are enough to destroy completely the 

correlation of . As can be seen in Figure 6c, C6 decays very fast, typically exponentially with 

the distance from any point in space. If a fit to an exponential decay, , would be 

possible, xi might be interpreted as a typical grain size of the sample, which is too small in this 

case, being only about 2-3 interpore distances. This result can be interpreted as a result of the 

impurities present in the Al matrix. 

4. Conclusions 

In this chapter we discussed some methods to quantify the hexagonal order in NAA. In 

the first part of the chapter we presented some methods found in the literature. We first discussed 

the Fourier Transform and correlation functions of position and angles and pointed out that these 

are very qualitative methods. They do not return a number to quantify order and are not able to 

discriminate quantitatively between cases where the samples have defects. We then presented 

more quantitative methods, where the idea is to quantify the difference between a given network 

of points and a hexagonal lattice. Hillebrand et al24 and Matefi et al26 proposed useful methods 

that allow for a determination of the grain size, although they rely on a threshold parameter. We 

also discussed briefly a recent approach based on an analysis of the intensity of the signal of a 

given image, which can be useful to identify the directions of different domains, but not to 

quantify order of the whole sample.23 

In the second part, we proposed a new method to quantitatively characterize hexagonal 

arrays of NAA. The approach presented is inspired in a statistical mechanical theory developed 
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to describe phase ordering in two dimensional systems. For each nanopore, its neighbors are 

defined using Voronoi tessellation and then a local order parameter (LOP) called the hexatic 

order parameter is defined, , to quantify how close a given nanopore is from a perfect 

hexagon. The correlation of this parameter at two different points of the array, C6, informs how 

long the local orientational order spreads in the sample. 

We first presented the method for a hypothetical network of points and computed the 

defined quantities for two extreme cases, a perfectly hexagonal network and a completely 

random distribution of points. Then, the developed tools were applied to the NAA. We showed 

that the average value of  quantifies the degree of orientational order in a sample and its 

standard deviation is a measure of how heterogeneous is this local order. The correlation of this 

hexatic order parameter characterizes the range of the local order and allows a determination of 

the size of highly ordered domains in the sample. 

We emphasize that this method can be easily extended to characterize any kind of system 

that presents hexagonal networks. If the experimental images can be treated to define the center 

of mass of the pores, the method is quite general, easy to implement and has no arbitrary 

parameters. We expect that this way of characterizing order in NAA and the analogy with other 

physical systems showing hexagonal packing arrays will help to improve the theoretical 

modeling to better understand how long range order in the NAA and similar systems develop, 

and from which better suited experiments can be proposed and devised. 
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