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ABSTRACT Allosteric proteins transmit a mechanical signal induced by binding a ligand. However, understanding the nature
of the information transmitted and the architectures optimizing such transmission remains a challenge. Here we show, using an
in silico evolution scheme and theoretical arguments, that architectures optimized to be cooperative, which efficiently propagate
energy, qualitatively differ from previously investigated materials optimized to propagate strain. Although we observe a large
diversity of functioning cooperative architectures (including shear, hinge, and twist designs), they all obey the same principle
of displaying a mechanism, i.e., an extended soft mode. We show that its optimal frequency decreases with the spatial
extension L of the system as L�d=2, where d is the spatial dimension. For these optimal designs, cooperativity decays logarith-
mically with L for d ¼ 2 and does not decay for d ¼ 3. Overall, our approach leads to a natural explanation for several observa-
tions in allosteric proteins and indicates an experimental path to test if allosteric proteins lie close to optimality.
INTRODUCTION
Many proteins are allosteric: binding a ligand at an allo-
steric site can affect the properties of a distant active
site, sometimes located on the other side of the protein
(1,2). Predicting the existence of such allosteric pathways
from protein structure alone would be of great interest
(3,4), because they can be used as targets for drug design
(5). Solving this challenge requires making progress on
both physical and biological questions. First, how can
such disordered materials (6) be designed to carry mechan-
ical information specifically over long distances? Are there
fundamental limits to what can be achieved? Second, what
are allosteric pathways really optimized for? What kind of
elastic information do they carry? A physical theory of
allostery should address these points. It should also explain
the following empirical facts. 1) Some allosteric proteins
(7), including hemoglobin (8,9), essentially function as
hinges, whereas others display a ‘‘shear’’ design, in which
two rigid parts are connected by a weak plane (10). This
classification is, however, not exhaustive, as in various
cases, the response to binding a ligand cannot be described
in terms of a simple shear or hinge motion (11–13). 2) The
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response to binding often corresponds mostly to motion
along a few soft normal modes of the protein (14,15).
These modes tend to be conserved during evolution (16).
3) In some cases, the allosteric functional effect at the
active site is significant, whereas the physical mean
displacement induced by binding the ligand is small. It
has been proposed that for these proteins, binding can
affect how particles near the active site fluctuate around
their mean position, while changing the mean itself little
(17–20).

Recently, allostery was investigated using in silico evolu-
tion schemes, in which a system evolves to perform a given
function (21–25). Most relevant here are schemes developed
to solve inverse elastic problems (23–25), in a spirit similar
to the topology optimization used in engineering to design
functional tools from compliant materials (26–28). The
task studied in (23–25) was to design a material whose
response to a specific local strain applied on one of its sides
(the allosteric site) leads to a displacement whose geometry
is prescribed on the opposite side (the active site). Under
broad conditions, these algorithms find solutions that
achieve such ‘‘geometric’’ tasks essentially perfectly. The
corresponding architectures turn out to have surprising
properties: their response almost vanishes in the bulk of
the material and reappears near the active site (23). This
amplification of the elastic signal is caused by the emer-
gence of a powerful lever, made of a soft elastic region
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surrounding the active site, where the system is just con-
strained enough to act as a solid (23,29). Although there is
great interest in finding whether such architectures exist in
nature, an intriguing aspect of this approach is that it does
not generate the well-known allosteric architectures such
as the simple shear and hinge designs, in which the response
remains of similar magnitude between the allosteric and the
active sites.

Here, we show that a simple modification of the task, in
which materials are optimized such that the binding at the
allosteric site lowers the binding energy of another ligand
at the active site, leads to different design principles. In
the context of proteins, this task corresponds to maxi-
mizing the cooperativity of binding two ligands, a central
feature of various allosteric proteins (1). We find that there
is a zoology of architectures achieving such cooperativity,
but they always display a stiff structure (embedded in a
softer elastic matrix) with a single very soft extended
elastic mode or ‘‘mechanism.’’ We lay out the principles
behind such designs and show theoretically that the soft
mode frequency should be neither too large nor too small
to optimize function: its optimal value decreases with the
material size, and scales as L�d=2 in spatial dimension d.
We prove that cooperativity then decays as ln�1(L/c) for
d ¼ 2 and is even independent of L in larger spatial dimen-
sions d R 3, where L is the linear extension of the system
and c the length scale on which binding takes place. This
result is very different from a normal continuous elastic
medium, in which cooperativity rapidly decays with dis-
tance as L�d. Overall, the classification we provide leads
to a natural explanation for the key aspects of allostery
described in (1–3). It also shows that a path of large strain
values connecting the allosteric and active site and
induced by binding is not necessary for cooperativity to
occur, and it makes further testable predictions, including
the locations where a shear or hinge design would be
mostly affected by a mutation and conserved during
evolution.
METHODS

In silico evolution scheme

Elastic networks

To model allosteric materials, we consider elastic networks, often used to

describe proteins (14–16). Specifically, N¼ Ld nodes are located on a lattice

(slightly distorted periodically to avoid straight lines, as discussed in Sup-

porting Materials and Methods, Section A and (30,31)), and among all Nc

links of nearest nodes, a subset of Ns pairs are connected by harmonic

springs of stiffness k ¼ 1, as indicated by lines in Fig. 1. We declare that

sa ¼ 1 if a spring is present in the link a and sa ¼ 0 otherwise. Thus,

the network is entirely described by a connection vector jsi made of zeros

and ones, whose dimension is the number of links Nc. We define the average

coordination number zh2Ns=N and average connection s ¼ Ns=Nc and

keep them fixed during evolution. We find that our results do not depend

qualitatively on z as long as z > zc ¼ 2d, the rigidity limit derived by

Maxwell (32).
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Binding

Binding a ligand exerts forces locally that leads to an imposed local strain.

To model this effect at the allosteric site, we choose four adjacent nodes on

one side of the system (shown in purple in Fig. 1) and consider that binding

at that site imposes a displacement
��dRAli on these nodes, as indicated by

purple arrows. (Strictly speaking, this description of binding assumes that

the ligands are rigid. However, we expect our results to hold true qualita-

tively as long as the ligands are not significantly softer than the protein

itself.) Minimizing the elastic energy in the entire system with these

constraints then leads to a response
���dRðsÞAlr i that can be extended (see a

formal expression for this response in Supporting Materials and Methods,

Section B and (23)). The corresponding energy cost associated with binding

is written as follows:

EAlðsÞ ¼ 1

2

�
dRAlr jM j dRAlr

�
; (1)

whereM is the stiffness matrix of the network (whose definition is recalled

in Supporting Materials and Methods, Section B) of dimension Nd � Nd,

which depends on the network considered. The same procedure is used to

model the binding of another ligand at the active site (indicated in blue

in Fig. 1), allowing us to define a binding energy EAcðsÞ. If the two binding
events take place simultaneously, the same procedure leads to the derivation

of a joint binding energy EAc;AlðsÞ.
Cooperativity

We seek to engineer materials in which binding at the allosteric site lowers

the binding energy at the active site as much as possible, as illustrated in

Fig. 2. In the absence of the ligand at the allosteric site, the binding

energy at the active site is simply EAcðsÞ, whereas if present, it is

EAc;AlðsÞ� EAlðsÞ. We seek to maximize the cooperative energy, simply

defined as the difference between these terms:

Ecoop ¼ EAcðsÞ þ EAlðsÞ � EAc;AlðsÞhF ; (2)

which also defines our fitness function.

Cooperativity turns out to differ greatly from the geometric task in which

a displacement imposed at one end of the material must elicit a given

displacement at the other end (23–25) (see below and Supporting Materials

and Methods for a detailed comparison). The architectures associated with

the latter task are very asymmetric; in particular, they are much softer near

the active site than near the allosteric site (23). By contrast, it is clear from

our definition of cooperativity that both active and allosteric sites play a

symmetric role. At an intuitive level, the difference can be understood by

considering the limit of weak elastic coupling between allosteric and active

sites, for which one finds EcoopzhFAc
��dRAl/Aci, where

��FAci is the

external force field generated by the substrate when it binds to the active

site and
��dRAl/Aci is the displacement field induced at the active site by

binding a ligand at the allosteric site. Maximizing cooperativity thus re-

quires having a large and specific response
��dRAl/Aci (which is essentially

what the geometric task accomplishes) and a large force scale
��FAci, which

requires the material to be stiff near the active site. This additional

constraint makes the cooperative task harder than the geometric one.

Evolutionary dynamics

To generate cooperative architectures, we implement an evolution scheme

that selects preferably networks with high fitness. Specifically, we use a

Monte Carlo algorithm in which the relocation of individual springs is

considered, i.e., jsi/js0i, where a randomly chosen vacant link g becomes

occupied ðsg ¼ 0/s0g ¼ 1Þ and a randomly occupied link a becomes

empty ðsa ¼ 1/s0a ¼ 0Þ. The new structure is selected with the probabil-

ity p ¼ min½1;expðFðs0Þ � FðsÞ=TeÞ�, where 1/Te is inverse evolutionary
‘‘temperature’’ characterizing the selection pressure.



FIGURE 1 Examples of on-lattice elastic net-

works. (A) A hexagonal lattice (d¼ 2)with periodic

boundary conditions along the horizontal axis

(springs crossing the periodic boundary are shown

in dashed lines and are not present when open

boundary conditions are used), mimicking a cylin-

drical geometry. (B) For d ¼ 3, we use a face-

centered cubic lattice with open boundaries. In all

cases, occupied links displaying a spring of stiffness

unity are indicated by lines. The stimulus displace-

ment is shown in purple arrows, and the target

displacement is shown in blue arrows; each are

applied on four nodes. All data are presented for

L ¼ 20 and z ¼ 5.0 in d ¼ 2 and L ¼ 12 and z ¼
8.4 in d ¼ 3. To see this figure in color, go online.
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We find that as the selection pressures increases and Te decreases, there is

a rather sudden transition from nonworking networks with zero fitness to

cooperative ones, as illustrated in the inset of Fig. 3. The fitness then ap-

pears to plateau, and in what follows, we choose Te ¼ 10�4, where this

plateau is reached. Interestingly, in this plateau region, we find that the

fitness landscape is glassy: there are many families of solutions that are

not dynamically connected on the timescale of our runs, implying the pres-

ence of large fitness barriers. The families obtained in a given run are

defined by the respective initial conditions and do not display exactly the

same fitness as shown in Fig. 3. We checked that sequences are much

more similar within a family than between different families. Indeed, in a

single family, the mean overlap between distinct configurations i and j,

qhhsiasja
a

i� s2, is high (with qz0:36), whereas it is small ðqz0:03Þ
for different families (�a averages over links and h�i averages over config-
urations). Glassiness also implies that the architectures slowly evolve in

time, but less and less so as time goes on. In what follows, we study archi-
FIGURE 2 Illustration of cooperativity. With two binding sites, a protein

displays four states. Cooperativity is high if binding a substrate molecule at

its active site is difficult when the allosteric site is empty (i.e., EAc is large),
whereas it is much simpler when the allosteric site is occupied (i.e.,

EAc;Al � EAl is small). To see this figure in color, go online.
tectures only in the last third of the run, when transient effects are weaker

and fitness is nearly stationary. In total, we generated 25 families in d ¼ 2

and 10 families in d ¼ 3.
Analysis toolbox

In this section, we review useful observables characterizing allosteric archi-

tectures. Most of them are known in the protein literature; others are novel

to the best of our knowledge.

Geometry of allosteric response

By computing the structure of proteins crystallized with and without the

ligand bound on their allosteric site, one gets access to the internal

response of the protein induced by binding,
��dRAlr i in our notations. As

recently emphasized in this context (10), a key aspect of this response

is its strain, which must be zero in parts of the proteins moving as rigid

blocks. The strain thus captures where deformation is actually taking

place. The strain tensor e
! ðiÞ can be directly computed from any displace-

ment jdRi ¼ fdRig where i labels particles or nodes, as shown in Support-

ing Materials and Methods, Section C or (33). Removing the trace leads to
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FIGURE 3 Evolution of the fitness F versus the number of Monte Carlo

steps MCS. Different initial conditions resulted in different architectures,

which are analyzed at a sufficiently long time to avoid significant transient

effects (keeping only the data from the last 3.5 � 104 steps out of the 105

MCS in each run, as delineated by the black vertical line in the plot).

The inset shows the fitness F averaged over 25 initial conditions as a func-

tion of the evolution temperature Te for the two-dimensional network with

both open and periodic boundaries. To see this figure in color, go online.
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a local shear tensor g
! ðiÞ ¼ e

! ðiÞ� ð1=dÞtr½ e! ðiÞ�1, where 1 is a d � d

identity matrix. It’s useful to define scalar observables to visualize

the strain, in particular the shear intensity EshearðiÞ (not sensitive to

compression or dilation) and the bulk intensity EbulkðiÞ (sensitive to it)

as follows (10):

EshearðiÞ ¼ 1

2

X
l;m¼ 1

d

½glmðiÞ�2;

EbulkðiÞ ¼ 1

2

X
l¼ 1

d

½ellðiÞ�2:
(3)

Rigidity of the structure

For elastic networks, as understood by Maxwell, an important aspect of

rigidity is the coordination number z(i), counting the local connectivity

(number of springs) attached to a node i. This notion, sufficient in our

model, can be extended to interactions relevant in proteins as discussed

in (34).

Another commonly used observable is the B-factor or Debye-Waller fac-

tor (35). It characterizes the mean square thermal fluctuations of the particle

positions. In a harmonic approximation, it can be expressed in terms of the

vibrational modes (neglecting a temperature-dependent prefactor):

BðiÞ ¼
X
u> 0

1

u2
dRuðiÞ , dRuðiÞ; (4)

where the us and dRu are frequencies and the corresponding

vibrational modes that are obtained from the diagonalization of the stiffness

matrix.

B-factors, however, may not pick up the interesting flexibility of the

structure. For example, if a hinge connects two rigid parts, B-factors may

be large in the rigid parts, too, as they are sensitive to rigid motions as

well. Here, we introduce an observable that would reveal the presence of

a hinge, as it characterizes the thermal fluctuations of the strain (which is

therefore zero by construction for a rigid body). We call it the strain B-fac-

tor, which for harmonic dynamics follows

SBðiÞ ¼
X
u> 0

2

u2
½Eshear;uðiÞ þ Ebulk;uðiÞ�; (5)

where Eshear;u and Ebulk;u are the shear and bulk intensities for a given mode

dRuðiÞ, as defined from Eq. 3.

Spectral analysis

The response to binding can be decomposed into the vibrational modes

(16), which form a complete orthogonal basis. We define the overlap

qu ¼ k
�
dRAlr

�� dRu

� k 2�kdRAlr k
2

(6)

that satisfies
P

uqu ¼ 1.

The extendedness of the vibrational modes is characterized by the partic-

ipation ratio, defined as

Pu ¼
 
N
X
i

ðdRuðiÞ , dRuðiÞÞ2
!�1

(7)

for normalized modes
P

idRuðiÞ2 ¼ 1. Translations have a unity participa-

tion ratio. By contrast, if a mode only involves the motion of �N0 particles,

then Pu � N0=N.
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Conservation

We quantify the local conservation of the structure by considering the mean

occupancy, defined over a period of observation t:

hsaih1

t

Xt
t¼ 1

saðtÞ: (8)

If there is no selection pressure on that link, we expect s. We thus define

the conservation
P

to quantify the deviation from this average (23):

Sa ¼ hsailn hsai
s
þ ð1� hsaiÞln 1� hsai

1� s
: (9)

RESULTS

We now document examples of architectures generated by
our scheme, focusing on shear, hinge, and twist designs.
We consider individual families: when average quantities
are presented, they always correspond to a time average
over the last third of our Monte Carlo algorithm, as previ-
ously described. We then emphasize the features common
to all these designs, to be explained in the next section.
Shear design

We start by the two-dimensional case in which visualization
is easier. If periodic boundary conditions are considered on
the horizontal axis (cylindrical geometry), we find that all
25 architectures correspond to a shear design. This is illus-
trated in Fig. 4 A, showing the response to binding: except
for a linear path connecting the allosteric and active sites,
the motion is essentially that of a rigid body (pure rotations
and translations). This is most obvious when plotting the
map of the shear intensity Eshear in Fig. 4 B, which is essen-
tially zero except along that path. Overall, the design is
similar to that of the mint box illustrated in Fig. 4 C,
in which strain also localizes on a hyperplane (a line for
d ¼ 2 and a plane for d ¼ 3). At the structural level, we
find that the strain path corresponds to a softer region with
lower coordination, as shown in Fig. 4 D, and a larger strain
B-factor, as illustrated in Fig. 4 E.
Hinge design

When open boundaries (instead of periodic ones) are used,
we find that �40–50 percent of the families lead to hinge
architectures, and the rest display a shear design. In the
former case, the response exemplified in Fig. 5 A can be
decomposed into the motion of two rigid bodies connected
by a hinge. Again, this is most apparent in the map of the
shear intensity in Fig. 5 B, showing that there is little strain
excepted for two disconnected regions near the allosteric
and active sites. There is thus no connecting path of high
strain between these sites. This design is common in our
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FIGURE 4 Shear design. (A) The average cooperative response dRAlr induced by binding at the allosteric site is shown in black arrows. (B) The average

shear intensity map Eshear reveals strain localization along a path. (C) A mint box that opens by sliding illustrates the shear mechanism. (D) A map of the

average coordination number z is shown. (E) A map of the average strain B-factor SB is shown. (F) A map of the fitness cost of single-site mutation

normalized by its absolute value DF=F is shown. (G) A map of the conservation S in the evolution simulation is shown. (H) The overlap qu between

the response and the vibrational modes, colored as a function of the participation ratio Pu, shows that a single extended mode dominates the response to

binding. To see this figure in color, go online.
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daily life, as illustrated by the clothespin in Fig. 5 C. At the
structural level, the map of coordination shown in Fig. 5 D
and that of strain B-factor shown in Fig. 5 E display an ‘‘H’’
shape with two rather disconnected regions being weakly
coordinated with a high strain B-factor.
Twist design

In three dimensions, we find a rich variety of architectures
whose structures and responses are sometimes hard to
describe. Here, we present the simple case of a twist archi-
tecture, as illustrated in Fig. 6 A with the Rubik Cube. To
visualize this design, we consider the shear intensity in three
sections parallel to the x-z plane as illustrated in Fig. 6 B. We
find that there is little strain except on the central plane con-
necting the allosteric (purple) and active (blue) sites shown
in Fig. 6 C. There is not, however, a homogeneous shear on
that plane: instead, the strain is low at its center and larger
near the boundaries. Further evidence for the twist design
appears in the allosteric response itself, shown in Fig. 6 D
with the same slicing geometry: the two side planes show
reverse rotating motions, whereas the middle plane shows
a more complex displacement pattern. Once again, the struc-
tural analysis confirms this view: we find that the coordina-
tion is large and the strain B-factor is small except near the
boundaries of the central plane, as shown in Fig. 6, E–H.
The middle of the central plane thus acts as a well-
connected joint around which two quite rigid bodies can
rotate.

Universal features of cooperative designs

Our in silico evolution scheme generates different designs,
as illustrated with the examples above. However, all these
designed architectures follow the same principles, which
we list in the following. These principles are systematically
tested by averaging on the 25 families found in two dimen-
sions with periodic boundaries in Fig. 7. The same analysis
holds for other boundary conditions and in three dimensions
as well, as documented in Supporting Materials and
Methods, Section E:

1) The system separates into a rigid and a soft manifold,
as observed in a class of proteins (36) and in protein
models (20).

2) The strain associated with the allosteric response is
small in the rigid manifold (indicating rigid-body or
Biophysical Journal 114, 2787–2798, June 19, 2018 2791



FIGURE 5 Hinge design. (A) The averaged cooperative response dRAlr induced by binding at the allosteric site is shown in black arrows. (B) The shear

intensity Eshear of the response is given. (C) A clothespin illustrates the hinge mechanism. (D) A map of the average coordination number z is shown. (E) A

map of the average strain B-factor SB is shown. (F) A map of the fitness cost of single-site mutation normalized by its absolute value DF=F is shown. (G) A

map of the conservation S is shown. (H) The decomposition qu of the response on the vibrational modes u, colored as a function of the participation ratio Pu,

is shown. To see this figure in color, go online.
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long-wavelength motion), whereas it is large in the soft
manifold. Both properties are apparent in Fig. 7 A,
showing the two-dimensional density of nodes found
with a given strain B-factor (reflecting the local rigidity)
and strain intensity (reflecting the strain induced by the
allosteric response). This histogram displays a branch
of soft nodes, where the strain B-factor is large and posi-
tively correlated to the strain intensity.

3) In all cases, the mutation cost is high precisely in these
locations where the system is soft and the strain intensity
is large, as illustrated in Fig. 7 B.

4) Most importantly, the daily-life examples we provided
all have a common point: they display a single mecha-
nism, i.e., a very soft elastic mode. We observe that
this is also true in our cooperative architectures: there
is always a single soft and extended mode along which
most of the response projects. This fact is already
apparent in the decomposition of the response on vibra-
tional modes shown in Figs. 4 H, 5 H, and 6 K. It is
2792 Biophysical Journal 114, 2787–2798, June 19, 2018
studied systematically in Fig. 7, C and D, showing
respectively the density of vibrational modes D(u, Pu)
and the overlap q(u, Pu) as a function of both frequency
u and participation ratio Pu. Fig. 7 C shows a peak
of extended (large Pu) modes at low u, and Fig. 7 D
shows that most of the response projects precisely on
these modes. We find that essentially one mode governs
the response. This result can also be visualized by
classifying modes for each system by decreasing
overlap q and by representing the cumulative overlap
(the sum of qu for the r modes with the largest overlap)
as a function of the rank r, as illustrated in Fig. 7 E. On
average, the first mode captures more than 90% of the
response.

It is interesting to note that many properties of materials
optimized to be cooperative, whose specific property is to
display a single soft elastic mode controlling function, differ
from materials studied previously optimized to propagate a



FIGURE 6 Twist design. (A) An illustration of a Rubik Cube and its twist mechanism is shown. (B) Two-dimensional sections of the shear strain

intensity are shown. The allosteric and active sites are shown in purple and blue, respectively. (C) The shear intensity Eshear in the central section is

shown. (D) The response dRAlr to binding in the same three distinct sections, organized from left to right as in (B), is shown. Maps of the average coordination

number z on (E) the three sections and (F) the central section are shown. The strain B-factor SB is shown on the three sections (G) and the central one (H).

The fitness cost of single-site mutation normalized by its absolute value DF=F on (I) the three sections and (J) the central one is shown. (K) The decom-

position qu of the response on the vibrational modes versus the mode frequency u, colored as a function of their participation ratios Pu, is shown at

two different time points during the run. In three dimensions, most of the spectral decomposition resembles the right panel, in which several vibrational

modes project on the response, although we can always identify time points at which a single mode contributes, as shown on the left panel. To see this

figure in color, go online.
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given strain—below, we will refer to both cases as ‘‘cooper-
ative’’ and ‘‘geometric’’ designs. An extensive comparison is
performed in Supporting Materials and Methods, Sections F
and G. Salient differences include that 1) the magnitude of
the response is essentially constant in space in cooperative
designs (it decays by fivefold or more in geometric designs);
2) the cooperative design is symmetric: binding at the
allosteric or at the active site leads to a very similar response
(whereas elastic information cannot propagate from the
active site to the allosteric site in geometric designs);
3) the cooperative design responds much more specifically
than the geometric ones (in the latter case, imposing a strain
anywhere in the material typically leads to a strong displace-
ment at the active site); and 4) for geometric designs, the
response does not correspond to a single soft elastic mode
but to a few of them, as already apparent in Fig. 7 E.

To explain the universal features of cooperative designs
and to predict the frequency of the soft extended mode con-
trolling the response, we now investigate the optimality of
designs.
Biophysical Journal 114, 2787–2798, June 19, 2018 2793



FIGURE 7 Histogram of network nodes display-

ing (A) a given strain B-factor SB and shear inten-

sity Eshear (showing that most of the strain induced

by the response to binding occurs in regions where

the material is soft) and (B) a given shear intensity

Eshear and normalized fitness cost �DF=F
(showing that mutations are costly where the

response strain is localized). The color bar indi-

cates the relative abundance of the data points.

(C) The density of vibrational modes D(u, Pu)

and (D) the overlap q(u, Pu) is shown as a function

of both frequency u and participation ratio Pu,

revealing the presence of a soft extended mode

on which most of the response projects. For

(A–D), the statistics is done over all 25 families

of solutions found in the cooperative task in two

dimensions with a periodic boundary. (E) The cu-

mulative overlap on the first rmodes with strongest

overlap, where r is denoted the rank, is shown.

Results are shown both for the cooperative and

the geometric tasks, for all dimensions and

boundary conditions. To see this figure in color,

go online.

Yan et al.
DISCUSSION

Absence of design

We now argue that in a continuous elastic medium—where
no design is involved—cooperativity decreases very rapidly
with the distance L between the allosteric and active sites.
Any imposed local strain can be decomposed into multipole
moments (dipole and higher), and the slower decaying
response in the far field—sufficiently distant from the
source—is dipolar, because higher multipoles decay faster.
To model the perturbation induced by ligand binding, we
may thus consider without loss of generality two dipoles
each of magnitude fc, where f is the applied force and c
the distance over which these are exerted. Here we give
a simple scaling argument for a medium with elastic
modulus G. As mentioned earlier, for L[ c, we have
2794 Biophysical Journal 114, 2787–2798, June 19, 2018
Ecoop � hdRjFi, where jdRi is now the dipolar response
induced by the first dipole of magnitude
dRðrÞ � ðfc=rd�1GÞ, and jFi the force field of the second
dipole. Because jFi is dipolar, its scalar product on jdRi
acts as a derivative taken at r ¼ L, and one obtains
Ecoop � ðf 2c2=GLdÞ � L�d, i.e., a very rapid decay with dis-
tance. This result is confirmed numerically for the case of a
crystalline network in the Supporting Materials and
Methods, Section D.
Illustration of optimal cooperativity: shear
architecture

We now show that cooperativity can be greatly improved if
the material presents a very soft extended mode. For illustra-
tion, we consider the geometry of Fig. 8, in which a cylinder
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FIGURE 8 In a cylindrical geometry, a mechanism—or zero mode—can

be constructed by slicing the cylinder, as can be achieved by creating a cut

of length L and width c. One then obtains an object with the topology of a

square, which now displays an additional zero mode corresponding to a

rigid rotation. If the cut is filled up with a soft elastic material, the mode

gets a finite frequency. As long as it is small, imposing a local displacement

as indicated in the figure at the allosteric or at the active site will be

dominated by this mode and will lead to essentially the same response.

Thus EAczEAlzEAc;Al and EcoopzEAl. To see this figure in color, go

online.
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of elastic modulus G is cut on its length L, by a band of
width c. This generates a zero mode corresponding to the
rotation of a square. If displacements at the active or allo-
steric sites of size d are imposed, as illustrated in Fig. 8,
they will only couple to that mode (because it costs no en-
ergy) and lead to the same response. This statement will
be true even if the band of width c is filled up with soft ma-
terial of elastic modulus Gw, as long as it is small enough
(see below). Thus, we have EAczEAlzEAc;Al implying
EcoopzEAl, which can be readily estimated as the amount
of elastic energy stored in the soft band, i.e.,
Ecoop � ðL=cÞGwd

2.
This result implies that Ecoop ¼ 0 when the material pre-

sents a mechanism (i.e.,Gw¼ 0) but increases withGw. This
argument eventually breaks down, however, when it be-
comes more favorable to deform the rigid material and to
couple to other modes in the system. This takes place
when the energy of deforming a continuous medium of
modulus G, Econt � Gd2=lnðL=cÞ, becomes smaller than
the energy associated with the soft mode ðL=cÞGwd

2.
Comparing these two expressions, we get a crossover for
Gw ¼ G�w with

G�w �
cG

L lnðL=cÞ: (10)
For Gw [G�w, the role of the soft mode becomes negli-
gible, and the system will respond as a homogeneous elastic
material (whose cooperativity is small, as described above).
Thus, cooperativity will be maximal for GwzG�w, leading to
an optimal cooperativity of order

E�coop �
Gd2

lnðL=cÞ: (11)
This result is confirmed numerically in the Supporting
Materials and Methods, Section D.

The small energy of the response to binding for large L
described by Eq. 11 implies the presence of a soft elastic
mode, which is relevant experimentally. It can be detected
in the vibrational spectrum of the protein and implies large
thermal fluctuations. Such fluctuations, in a harmonic
approximation, are inversely proportional to the correspond-
ing eigenvalue of the stiffness matrix of order
l�zE�coop=kdR k 2, where kdR k 2 is the square norm of the
allosteric response. For the shear mode considered, the
following relation holds kdR k 2 � L2d2 because all particles
are moving by a distance of order d, leading to
l� � 1=ðL2 lnðL=cÞÞ. For the vibrational spectrum, such a
small eigenvalue will lead to a low frequency u�. Assuming
for simplicity that all the particles have identical mass leads
to

u� �
ffiffiffiffiffiffiffiffiffiffi
l�=m

p
� 1

L ln1=2ðL=cÞ; (12)

which is thus much softer than the lowest-frequency plane
wave modes, of frequency 1/L. We expect this result to
hold both for the vibrational spectrum of the protein, or
for that of the protein-ligand complex, for which the fre-
quency of the soft mode is higher but of similar magnitude
in our framework.

It is straightforward to extend these results to three di-
mensions in the geometry of a shear plane, where we find
E�coop � Gcd2, which does not decay with distance, and
u� � L�3=2, which is now even much smaller than plane
wave modes, thus justifying why the spectrum of our mate-
rials show an isolated soft extend mode at low frequency.
These results are tested in Fig. 9 for d ¼ 2, which confirms
that cooperativity is optimal for a finite frequency of the soft
extended mode.
Principles of optimal cooperativity

Overall, the common principle emerging from this study is
that optimal cooperativity results from the following antag-
onist effects. On the one hand, the architectures are such that
they nearly present an extended mechanism. Because this
mode is much softer than others, an imposed strain strongly
couples to it, thus allowing the transfer of the elastic infor-
mation over long distances. On the other hand, if this
extended soft mode is too soft, the elastic costs associated
with binding become too small, leading to a small coopera-
tive energy. As a result, there is an optimal frequency scale
for cooperativity.

This idea leads to a natural explanation for the empirical
facts listed in the introduction. Indeed, shear and hinge de-
signs (observation 1) are clear realizations of this principle,
which implies the presence of a soft extended modes at low
frequency, consistent with observation 2.
Biophysical Journal 114, 2787–2798, June 19, 2018 2795
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FIGURE 9 (A) We build a shear architecture

using a triangular lattice with a soft band, where

the springs have a stiffness kw � k ¼ 1 such

that the network modulus is proportional to the

spring stiffness Gw/G ¼ kw/k. The imposed

displacement at the allosteric site is shown in pur-

ple arrows and the associated response in black.

Here kw ¼ 0.05, L ¼ 16, and c ¼ L/10. (B) The

energy of simultaneous binding EAc;Al and cooper-
ative energy Ecoop versus kw for L ¼ 32 is shown.

We confirm that Ecoop depends nonmonotonically

on kw. (C) The overlap between the response and

the eigenmodes qu versus mode frequency u at

optimal k�w ¼ 0:036 for L ¼32 and c ¼ L/10,

colored as a function of their participation ratio

Pu, is shown. To see this figure in color, go online.
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We expect that our main result, i.e., the existence of an
optimal vibrational frequency for cooperativity, will hold
true when nonlinearities are taken into account. This predic-
tion can be tested using a combination of molecular dy-
namics and experiments. Molecular dynamics can be used
to measure the effect of point mutations on the thermal fluc-
tuations along the relevant normal mode, and experiments
can measure the effect of the same mutation on cooperativ-
ity. In the spirit of Fig. 9 B, we predict that there is an
optimal magnitude of fluctuations for cooperativity to func-
tion properly. It would be very interesting to test if proteins
function close to this optimum.
Fluctuation-driven cooperativity

Finally, as pointed out in (18,20), the existence of a soft
extended mode of frequency u� leads to the possibility of
a cooperative effect with no mean displacement at play
once thermal effects are accounted for (observation 3).
Indeed, binding at the active site will hinder motion and in-
crease the soft mode frequency, leading to an entropic cost
that can be diminished if binding already took place at the
allosteric site. Let us define uAl, uAc, and uAc;Al as the
frequencies of the soft mode after binding at the allosteric
site, active site, and both, respectively. We can estimate
these quantities as u2

Al ¼ u� 2þ eAl, u2
Ac ¼ u� 2þ eAc,

and u2
Ac;Al ¼ u� 2þ eAlþ eAc, where eAl ðeAcÞ character-

izes the additional energy required for the mode to move
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when a ligand is bound at the allosteric (active) site.
Assuming harmonic dynamics, the entropy of a normal
mode of frequency u reads S ¼ kBlnðkBT=ZuÞ. Using this
expression, one can now estimate the cooperative free
energy DDF ¼ � TDDS ¼ kBT lnðuAc;Alu�=uAluAcÞ ¼
� kBT lnð1� eAceAl=ðu� 2þ eAlÞðu� 2þ eAcÞÞ, which
can indeed be large if u� 2 is small compared to both eAl
and eAc.
CONCLUSIONS

We have used in silico evolution to design materials which
are highly cooperative. Strikingly, the architectures found
differ greatly from materials optimized to propagate a
geometrical information over long distances. The latter
architectures are based on the emergence of a lever that
amplifies the mechanical signal where it is desired, which
may be relevant in proteins whose task is to trigger large
motions when a ligand binds—e.g., to close an ion channel.
By contrast, we predict that proteins optimized to be coop-
erative should display different architectures, including
shear and hinge designs, which are well known in the
literature. Intriguingly, we find that there is a great variety
of possible functioning architectures, especially in the
three-dimensional case. However, they all function along
the same principle: they nearly display an extended mecha-
nism, whose frequency should be neither too large nor too
small for optimal function to occur.
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Our approach rationalizes several empirical observations
on allosteric proteins and also makes testable predictions. In
particular, we predict that a single soft extended mode,
whose frequency should decrease with protein size, contrib-
utes to function. We find that this prediction is hard to test
stringently from a spectral decomposition of the allosteric
response alone, because localized soft modes (typically
near the surface of the system) can hybridize with the rele-
vant mode if they lie at similar frequencies. As a result, the
response appears to project on a few modes (despite the
localized modes being irrelevant for function) instead of
one.

Recent methods have been developed in computer sci-
ence to clean up spectra of localized modes—see, e.g.,
(37)—in the field of community detection. An exciting
path forward is to adapt these methods to proteins, allowing
one to test if a single extended mode indeed contributes to
allostery. Ultimately, this suggests a mechanical approach
to discover de novo allosteric proteins, such as those in
which a single extended mode lies at low frequency in the
cleaned-up spectrum. Such an analysis would further predict
where mutations would affect function: we have observed
that most damaging mutations hinder the allosteric response
and take place where the extended mode generates high
shear.
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