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FIP10604 – Text 15 –
Magnetic order: macroscopic characteristics

So far, we have studied magnetism on ideal systems, uniform and infinite. We included
crystal-field anisotropy, and took into account exchange interactions for localized moments,
or explicitly the Coulomb interaction between electrons in the case of itinerant moments,
but we left aside dipolar interactions.

If such an ideal system existed, below the Curie temperature (for simplicity, we will refer
only to FM order) it would be uniformly magnetized, and its response to an applied
external field would be perfectly reversible. This does not happen in real ferromagnetic
solids.

Figure 1 shows a typical schematic curve M(H) for a sample of ferromagnetic material.
Notice that initially the magnetization is null at zero field, even though the system is
ferromagnetic and well below the Curie temperature (this initial state depends on the
system’s history). The first part (inner curve on the first quadrant) is called initial branch,
starting with a slope that defines the initial susceptibility χ0, and reaching the saturation
magnetization Ms. From there, an irreversibility of the M(H) curve is observed, with
the other branches completing a hysteresis cycle. Mr is the remanent magnetization or
simply remanence , and Hc is the coercive field or coercivity .

It is also common to plot hysteresis curves as B vs H instead of M vs H. Such curves
can be converted into one another in view of the relationship between the three quanti-
ties. Magnetic hysteresis can be understood as a consequence of formation of magnetic
domains and their response to the applied field, as we will discuss in the following.
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Figure 1: Schematic representation of a typical M(H) hysteresis curve for a ferromagnetic
material, showing the remanence (Mr) and the coercivity (Hc).
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Figure 2: Scheme of changes in the magnetic-field lines by subdivision of a ferromagnetic
sample in domains. Internal arrows indicate domain magnetizations.

Magnetic domains

A magnetized sample generates a magnetic field. This field can be seen as the sum of fields
from different (macroscopic) regions of the sample, which are magnetically ordered due to
exchange interactions. Inside the sample, if the magnetization is uniform, different regions
are oriented in a way that is energetically unfavorable with respect to the field created
by other regions. This is due to the magnetic dipolar interaction, which we previously
neglected in comparison to exchange interactions at the microscopic level, but which have
a significant effect when considering macroscopic moments associated to large volumes
within the material.

As seen in Text 05, the dipolar interaction favors parallel ordering of magnetic moments
along a line connecting them but antiparallel if oriented perpendicularly to that line. Fig. 2
illustrates the fact that the magnetostatic energy is reduced if the system is subdivided into
domains with opposite magnetization. However, the number of domains cannot increase
indefinitely, because there must be a balance between the magnetostatic (dipolar) energy,
reduced by the formation of domains, and the energies of exchange and anisotropy, which
increase upon creation of domain walls. Depending on the relative importance of these
latter two interactions, we have the situations described below.

Strong exchange interaction – Microscopic moments change orientation smoothly,
resulting in a wide domain wall. It basically costs anisotropy energy, since magnetic
moments form unfavorable angles with the anisotropy axis throughout the wall, while
neighboring moments are almost parallel [Fig. 3 (a)].

Strong anisotropy – Microscopic moments tend to remain aligned with the anisotropy
axis, resulting in a narrow wall. The energy cost is essentially of exchange, since
moments on opposite sides of the domain wall become antiparallel [Fig. 3 (b)].



M. A. Gusmão – IF-UFRGS 3

Figure 3: Schematic figures representing how magnetic moments reverse their orientation
across a wide (a) or narrow (b) domain wall.

The number of domain walls is determined by a balance between reduction of magnetostatic
energy and cost in anisotropy/exchange energy. It clearly depends on the sample size.
Another important factor appears when the sample is polycrystalline, which is the most
common situation. In this case the system is composed of grains that, in general, have
anisotropy axes with different orientations, and whose interfaces (grain boundaries) are
quite disordered. Depending on the grain size, we have a single domain within it or more
than one. We will return to this point later.

The existence of domains explains the fact that we can have a null global magnetization
although the system is in the FM phase. The remaining details of the M(H) curve will be
discussed later.

Types of anisotropy

Considering the important role played by anisotropy in the formation of magnetic domains,
it is important to review and complement what we know about it. We have essentially
three types of anisotropy, depending on its origin.

1. Magneto-crystalline anisotropy – We have already studied its microscopic origin,
the combined effect of crystal-field and spin-orbit interaction to generate anisotropy
in spin space. Macroscopic approaches usually involve a phenomenological free energy
dependent on the angles between magnetization and symmetry axes.

2. Magnetoelastic anisotropy - It is due to the phenomenon of magnetostriction,
i.e., strains or stresses in response to applied magnetic fields; or, conversely here, the
effect of these strains and stresses on the magnetic interactions. From a microscopic
point of view, it has its origin also in the spin-orbit interaction.
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3. Shape anisotropy - It is due to the demagnetizing field, which originates from
dipolar interactions (see below) and depends on sample shape and size.

Demagnetizing field

The demagnetizing field is defined as the difference between the magnetic field existing
within the material and the applied (external) magnetic field. To understand this concept,
let us consider a simple case: a film, i.e., an infinite system in two of its dimensions and
finite in the third. Assuming that the film is uniformly magnetized in the presence of an
applied field Ha perpendicular to its plane, we have the situation sketched in Fig. 4.

Ha is the applied field; Bo is the magnetic induction outside the material; M, Bi and
Hi are the three magnetic vectors within the material, and Hd is the demagnetizing field.
Starting with the basic (SI) relations

B = µ0(H + M) , ∇ ·B = 0 , (1)

we have
Bo = Bi ⇒ Ha = Hi + M . (2)

Therefore,
Hi = Ha −M ⇒ Hd ≡ Hi −Ha = −M . (3)

The + and − signs in Fig. 4 are a representation of “magnetic charges” attributed to the
poles (respectively, N and S) of a magnet (magnetized object). In this type of representa-
tion, lines of H begin in positive “charges” and end in negative ones, unlike the lines of B,
which are always continuous. The demagnetizing field can be seen as the magnetic field
created by these charges inside the material.

In general, for a system with uniform magnetization M, we have

Hd = −NdM , (4)

Figure 4: Scheme of internal and external magnetic vectors for a ferromagnetic film with
perpendicular magnetization, including the demagnetizing field Hd.
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where Nd is the demagnetization factor. Thus, a film has Nd = 1 for perpendicular mag-
netization.

In general, one cannot define a single demagnetization factor for objects of arbitrary shape
because the magnetization is not uniform. Objects in the form of a revolution ellipsoid
may be uniformly magnetized, and the demagnetization factor can be calculated exactly
(solving the field equations with the appropriate boundary conditions at the object’s sur-
face). Calling a, b and c the three orthogonal semi-axes of the ellipsoid (with a and b of
the same length), one obtains the exact relation

Na
d +N b

d +N c
d = 1 . (5)

Strictly speaking, the relationship between demagnetizing field and magnetization should
be written as

Hd = −Nd ·M , (6)

with the different demagnetization factors defining a tensor.

Some relevant geometries may be viewed as special cases of an ellipsoid:

� Sphere - The three semi-axes are equal, which results in a single demagnetization
factor Nd = 1/3.

� Large diameter disc - We have an “ellipsoid ” with a = b→∞ and c finite, which
is equivalent to the film that we analyzed before. We then have N c

d ' 1, Na,b
d ' 0.

� Long cylinder - It can be viewed as an “ellipsoid” with c → ∞ and a = b finite,
which leads to N c

d ' 0 , Na
d = N b

d ' 1.

Note the appearance of shape anisotropy: magnetization is favored along directions for
which Nd = 0, e.g., parallel to the axis of a long cylinder or in the plane of a flat film.

In addition to shape anisotropy, the demagnetization factor is important in determining the
initial susceptibility (as we will see later), and must be taken into account when extracting
microscopic information about a system from magnetic measurements.

Hysteresis curve and irreversibilities

We have seen that the absence of a net magnetization in a macroscopic FM system is due
to the formation of domains. We also discussed the energy balance for this in terms of
magnetostatic energy, exchange interaction, and various types of anisotropy. But why is
there a hysteresis curve?

A hysteresis indicates the presence of irreversibilities, which occur in the magnetization
processes under the external field and relaxation when it is removed.

In a perfect crystal, domains naturally formed by the competing interactions yield zero net
magnetization at zero field. Let us suppose that an external magnetic field is then applied,
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and its intensity is slowly increased. Domains with favorably oriented magnetization grow,
while those with other orientations shrink in size. We may also have rotation of the
magnetization away from a possible anisotropy axis to align itself with the field when it
becomes strong enough. If experimentally possible, the entire sample becomes a single
domain, with all magnetic moments parallel to the field when saturation is reached. Now,
reducing the field intensity, these processes should revert, and the zero-magnetization state
should be recovered at zero field. For such a system, the M(H) curve would be reversible
(no hysteresis). This does not happen in real systems due to crystal-structure defects that
cause pinning of domain walls, preventing their movement. Therefore, the ideal domain
pattern is not recovered, and a non-zero magnetization remains when the field is turned
off.

From the above analysis we see that the characteristics of natural magnets depend on their
history, like the occurrence of variations in temperature and magnetic fields to which the
rocks have been subjected.

Soft and hard magnets

In most cases, the grains of a polycrystalline sample develop independent domain struc-
tures. According to the size of a given grain, we have two different scenarios:

� Large-size grain ⇒ multidomain (MD) - When the field is applied, favorably
oriented domains grow at the expense of size reduction of the others, which takes
place by wall motion. When the magnetization approaches saturation, the grain has
been reduced to a single domain. Then the final stage follows what happens in the
next scenario.

� Small grain size ⇒ single-domain (SD) – The external field causes rotation
of the magnetization from an initial orientation (defined by the anisotropy) towards
alignment with the field.

The first process (domain growth) is, in general, easier, leading to a soft behavior, in which
saturation is quickly reached. The second process (magnetization rotation) requires more
energy, resulting in a hard behavior in which very intense fields are needed to approach
saturation.

MD grains, being soft, tend to have low coercivity. The schematic behavior of coercivity
as a function of the grain size (often called “diameter”) is shown in Fig. 5, exemplifying
with grain sizes in two iron compounds (notice that the length scales are quite different).

Two new situations appear:

Pseudo single domain (PSD) - It happens in the transition region between SD and
MD, where a metastable SD configuration exists in a region preferably MD (and vice
versa). The possibility of changing from one to the other by effect of the applied field
can lead to low coercivity with high remanence.
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Figure 5: Behavior of the coercive field as a function of grain size, indicating the length
scales for two naturally occurring iron compounds.

Super-paramagnetism (SPM) - When the grain is very small it tends to be roughly
spherical. Then the anisotropy can be easily overcome by temperature, allowing the
grain’s (nearly saturated) magnetic moment to rotate instead of having a fixed ori-
entation. It thus behaves as a (very large) paramagnetic moment. The leading
role here is played by the dependence of relaxation time on anisotropy, grain volume,
and temperature. The temperature dependence is exponential, producing large vari-
ations of relaxation time for not very large temperature changes. A reversible M vs
H curve, characteristic of paramagnetic behavior, is observed for high temperatures
(but still less than TC), while a hysteresis is obtained at lower temperatures. The
boundary between these two regimes defines a blocking temperature.

Initial susceptibility

On the initial branch of the M vs H curve (Fig. 1), we begin with a linear regime, which
defines the initial susceptibility χ0 = M/H. Notice, however, that this is not a paramag-
netic response since the moments are aligned inside domains. The magnetization processes
involve, as we have seen, displacement of domain walls (rotation of the spins in these walls)
or rotation of saturated single-domain magnetizations. Therefore, the initial susceptibility
is closely related to the transverse component of the microscopic susceptibility in the
ferromagnetic phase. Inside the material we must relate response, i.e., magnetization, with
internal magnetic field. Then, in the linear regime one should have a relationship of the
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type M = χiHi, where χi is an intrinsic susceptibility of the material and Hi is the inter-
nal magnetic field. To determine the initial susceptibility χ0, which measures the sample’s
response to the external field, we must take into account the demagnetizing field. We
have, therefore,

χ0 =
M

H
=

χiHi

Hi +NdM
=

χiHi

Hi +NdχiHi

, (7)

resulting in

χ0 =
χi

1 +Ndχi

. (8)

Materials of high intrinsic susceptibility (“strong” ferromagnets) present χ0 ' 1/Nd. This
does not occur, however, when the field is applied along a direction for which Nd ' 0,
showing that the initial susceptibility is strongly dependent on sample geometry.

On the other hand, given that χ0 is the measured quantity, we can invert Eq. (8) to obtain
the intrinsic susceptibility as

χi =
χ0

1−Ndχ0

. (9)

It is worth remarking that this last equation holds not only in relation to the initial
susceptibility of a hysteresis cycle, but also to direct measurements of susceptibility in the
case of a system that is not in the ordered phase.


