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FIP10604 – Text 14 – Impurities and alloys

So far, in our study of magnetic properties of solids we have seen that

� insulating solids exhibit localized magnetic moments, and are described by spin
Hamiltonians ;

� metallic solids exhibit itinerant magnetic moments, characterizing what is usually
termed band magnetism.

However, there is a wide range of compounds in which both types of magnetic moment
coexist. We will see some typical cases.

Magnetic impurities in non-magnetic metals

This is the simplest occurrence of such a coexistence. Typical examples of non-magnetic
metal are Al, Cu, Ag, or Au. Besides the closed atomic shells, these elements have s
and p valence electrons, as in Al, or just s, as in Cu, Ag and Au, being paramagnetic or
diamagnetic. Any of these metals can be a host material into which magnetic impurities
are introduced. The latter are usually transition-metal atoms, such as V, Cr, Mn, Fe,
Co, or Ni, which have the 3d shell partially filled. These atoms, when isolated, present
permanent magnetic moments. A key question is whether these moments remain or not
when the atoms are placed in the metallic host.

Let us consider the dilute limit, where one can suppose that each impurity interacts with
the host but there is no interaction between impurities. From a theoretical point of view,
one can treat the problem of a single impurity, with measurable physical effects including
the impurity concentration as a multiplicative factor.

Anderson Model

The simplest model assumes a conduction band without interaction between the electrons,
and does not take into account the orbital degeneracy of the impurity d levels (which could
be physically realized by the presence of a strong low-symmetry crystal field). This is the
Anderson model, or s-d model, for which we can write the Hamiltonian

H =
∑
kσ

εknkσ + εd
∑
σ

ndσ + Und↑nd↓ +
1√
N

∑
kσ

(Vdk c
†
kσdσ + Vkd d

†
σckσ) . (1)

Note that there is Coulomb repulsion in the impurity d level and hybridization of that level
with the conduction band. The impurity is located at an arbitrary site of the lattice, here
chosen to be the origin of the coordinate system. The condition Vkd = V ∗dk ensures that
the Hamiltonian is Hermitian.
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In the absence of hybridization, band and impurity are decoupled. The situation of interest
is when the d level lies below the band’s Fermi level (εd < εF ) but the addition of one
extra electron would cost an energy εd + U > εF . This makes double occupancy of the d
orbital energetically unfavorable. The impurity behaves, then, as a localized spin 1/2.

To determine what happens to the local magnetic moment when there is hybridization
(which is the realistic situation), we may evaluate the average number of d electrons (with
any spin orientation) in model (1).

At T = 0, we have

〈ndσ〉 =

∫ εF

−∞
dεDdσ(ε) . (2)

If we had just an isolated d level (Vdk = 0) and no interaction (U = 0), the density of d
states would be simply

D0
dσ(ε) = δ(ε− εd) , (3)

independent of spin. This density of states (DOS) can be obtained from the Green’s
function (GF)

G0
dσ(ω) =

1

ω − εd + µ+ iη
, η → 0+ , (4)

using the relationship

D0
dσ(ω) = − 1

π
ImG0

dσ(ω) . (5)

The presence of Coulomb interaction and hybridization with the band makes the problem
substantially more complex, so that we will have to resort to some approximation scheme.

Hartree-Fock approximation

As a first approach, we will treat the Coulomb interaction within the Hartree-Fock approx-
imation. In contrast to what we did in Text 12, here the HF decoupling is made directly
on the product of local number operators, so that the HF Hamiltonian is

HHF =
∑
kσ

εknkσ +
∑
σ

εdσndσ +
1√
N

∑
kσ

(Vdk c
†
kσdσ + Vkd d

†
σckσ) , (6)

with
εdσ ≡ εd + U〈ndσ̄〉 . (7)

Due to the hybridization term, we have four relevant GF’s: Gσ
dd, G

σ
kk′ , Gσ

dk and Gσ
kd. We

will use equations of motion to evaluate these GF’s. The (retarded) GF involving two
generic fermionic operators A and B is defined as

GAB(t) ≡ 〈〈A;B〉〉t = −iθ(t)〈{A(t), B(0)}〉 . (8)
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Evaluating the time derivative ĠAB(t), and taking the Fourier transform, we obtain

(ω + iη)〈〈A;B〉〉 = 〈{A,B}〉+ 〈〈[H, A];B〉〉 . (9)

The limit η → 0+ is implicitly assumed, this parameter being included to ensure the
condition imposed by the step function θ(t) when taking the inverse Fourier transform.

For the GF’s defined here, and taking into account the explicit form of Eq. (6), one obtains
the following set of equations (with ω replaced by ε):

(ε− εdσ + iη)Gσ
dd(ε)−

1√
N

∑
k

VdkG
σ
kd(ε) = 1 ,

(ε− εk + iη)Gσ
kk′(ε)−

1√
N
VkdG

σ
dk′(ε) = δkk′ ,

(ε− εk + iη)Gσ
kd(ε) −

1√
N
VkdG

σ
dd(ε) = 0 ,

(ε− εdσ + iη)Gσ
dk(ε)− 1√

N

∑
k′

Vdk′Gσ
k′k(ε) = 0 . (10)

Since we are dealing with an effective single-particle Hamiltonian, this system of equations
is closed, allowing to obtain the four GF’s. In particular, isolating Gσ

kd(ε) in the third
equation and substituting into the first, we find the impurity GF

Gσ
dd(ε) =

1

ε− εdσ − 1
N

∑
k

|Vkd|2

ε− εk + iη

· (11)

Separating real and imaginary parts in the last term of the denominator, the real part can
be absorbed as a renormalization of εdσ, but there is a finite imaginary part

∆ = π
1

N

∑
k

|Vdk|2δ(ε− εk) . (12)

Using the equivalent of Eq. (5) yields

Ddσ(ω) =
∆/π

(ε− εdσ)2 + ∆2
· (13)

Assuming that the hybridization is local, we can write Vdk = V (independent of k), so that

∆ = πV 2 1

N

∑
k

δ(ε− εk) = πV 2Ds(ε) , (14)

where Ds(ε) is the conduction-band DOS, which is in general a smoothly varying function
of energy. Thus, for small V , when Eq. (13) restricts the relevant energies to the vicinity of
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εdσ, we can use Ds(ε) ' Ds(εdσ), and ∆ does not depend on energy. Then, the right-hand
side of Eq. (13) has a Lorentzian shape, with center at εdσ and width ∆.

The evaluation of 〈ndσ〉 through Eq. (2) is straightforward, resulting in

〈ndσ〉 =
1

π
cot−1

[
εd + U〈ndσ̄〉 − εF

∆

]
≡ Φ(εd + U〈ndσ̄ − εF 〉) . (15)

We may now verify if there exists a non-zero value of the quantity md ≡ 〈nd↑〉 − 〈nd↓〉,
subject to the condition 〈nd↑〉+〈nd↓〉 = 1. Expressing the two average occupation numbers
in terms of md, we can write

md = Φ(ε̄d − Umd − εF )− Φ(ε̄d + Umd − εF ) , (16)

where ε̄d ≡ εd + U . It is clear that md = 0 is a possible solution. On the other hand,
there is a solution with md 6= 0 if the initial derivative of the right-hand side of Eq. (16)
is larger than unity, since the left side, viewed as a function of md, is a unit-slope straight
line (similarly to what we have seen in other contexts before). From Eqs. (15) and (2), it
follows that Φ(εd +U〈ndσ̄〉 − ε) is the primitive function of Ddσ(ε). So, at md = 0 we have
that −Φ′(ε̄d − εF ) = Dd(εF ), independent of spin. Therefore, the condition for existence
of a solution with md 6= 0 is

UDd(εF ) > 1 . (17)

The above analysis leads to a “local version” of the Stoner criterion. There is a “local
magnetization” md 6= 0 if, for a given U , the density of d states at the Fermi level is
sufficiently large. From Eq. (13), it is clear that ∆ cannot be large (since the total area is
constant). Then, Eq. (14) indicates that a low conduction-band DOS favors the condition
(17). If one assumes that md 6= 0 indicates the existence of an impurity magnetic moment,
this characteristic of the conduction band is consistent with experimental observations for
the 3d impurities mentioned above: they keep their magnetic moments in Cu, Ag, or Au
hosts, but not in Al, for which the DOS at the Fermi level is higher.

Despite this apparent success, the situation described by the HF approximation does not
correspond to what one would expect. Having a localized magnetic moment should not
imply having that moment oriented in a given direction. The physical situation (a single
localized spin 1/2) is actually consistent with md = 0 and 〈nd↑〉 + 〈nd↓〉 = 1, i.e., 〈nd↑〉 =
〈nd↓〉 = 1/2, which means that the localized spin fluctuates between its two orientations.

Anderson model in the atomic limit

The Hartree-Fock approach is expected to give reasonable results when the local Coulomb
interaction is small compared to the conduction-band width. Employing it to a localized
level, even if somewhat broadened by hybridization to a conduction band, is far less justi-
fiable. We now address the opposite extreme, the so-called atomic limit of the Anderson
model. It corresponds to writing the conduction-band term in Wannier representation, and
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choosing the hopping t = 0, so that the impurity is decoupled from the rest of the lattice,
and the “band” is replaced by a local level of energy εc at the impurity site. This site is
described by the Hamiltonian

H = εc
∑
σ

ncσ + εd
∑
σ

ndσ + Und↑nd↓ + V
∑
σ

(c†σdσ + d†σcσ) . (18)

For simplicity, we choose the parameters so as to ensure particle-hole symmetry: εc = 0,
coinciding with the Fermi level for a half-filled band, and εd = −U , which implies εd+U = U
and 2εd + U = 0. The eigenvectors for V = 0 are easily written, and provide a basis to
build a matrix representation of the Hamiltonian.

We are interest in the case of two electrons at the impurity site. The basis states, with
respective eigenvalues of total Sz and energy, are

|d↑, d↓〉 , |c↑, c↓〉 ; Mz = 0 , EV=0 = 0

|c↑, d↑〉 ; Mz = 1 ,
|c↑, d↓〉 , |c↓, d↑〉 ; Mz = 0 ,

|c↓, d↓〉 ; Mz = −1 ,

 EV=0 = εd (19)

In this notation of basis vectors, c and d are labels for the two local levels, the spin
states being indicated by arrows. The states with Mz = ±1 do not hybridize since their
hybridization would generate states that violate the exclusion principle. Therefore, these
states keep their energy εd. They are obviously part a spin triplet. The third member of
the triplet must be the symmetric combination (|c ↑, d ↓〉 + |c ↓, d ↑〉)/

√
2. On the other

hand, the anti-symmetric combination, (|c↑, d↓〉 − |c↓, d↑〉)/
√

2, and the two states with
a doubly occupied orbital form a basis for a representation in the subspace of zero total
spin. The Hamiltonian matrix in this subspace is

(H)S=0 =

 0
√

2V 0√
2V εd

√
2V

0
√

2V 0

 , (20)

whose eigenvalues are

E =

{
0 ,
1
2
(εd ±

√
ε2
d + 16V 2) .

(21)

The ground state is thus a singlet with energy E0 = 1
2
( εd −

√
ε2
d + 16V 2 ), which lies

below the triplet of energy εd, with a difference of the order of V 2/|εd| in the limit of weak
hybridization. This ground-state singlet has one electron in each of the two local levels,
with opposite spins. The important point is that there is no net magnetic moment at
the impurity site. Thus, at the atomic level, the energy is minimized when the spins of the
“conduction” electron and the localized one are opposite. We may say that the (localized)
d-level moment is screened due to its hybridization with the conduction “band”. Does this
effect survive when we turn on the hopping? We will try to answer this in the following.
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Kondo model

In the weak-hybridization limit, i.e., when V is small compared with both U and εF−εd, we
can make a canonical transformation of the Anderson Hamiltonian, Eq. (1), removing the
hybridization term in first order and keeping terms of order V 2. It is known as Schrieffer-
Wolff transformation, and yields a Hamiltonian of the form

H =
∑
kσ

εk nkσ + JK S · s , (22)

where S is the impurity spin, s is the conduction-electron spin density at the impurity site,
and

JK = V 2

(
1

εF − εd
+

1

εd + U − εF

)
. (23)

The Hamiltonian (22) is known as Kondo Model because it was used by Kondo to explain
experimental results about the electrical resistivity of diluted systems. We see that the
Kondo interaction JK reflects virtual processes in which electrons “jump” between the
impurity level (singly or doubly occupied) and states of the conduction band (at the Fermi
level). Since JK > 0, the Kondo interaction favors antiparallel orientation between the
spins of conduction electrons and impurity.

The Kondo model has been studied by many theoretical methods, from perturbative ap-
proaches to rigorous solutions based on the Bethe ansatz. Without going into details, we
present a summary of key findings.

� There is a characteristic temperature, called Kondo temperature, given by

TK = W e−1/[2D(εF )JK ] , (24)

which depends on the Kondo interaction and the characteristics of the conduction
band (DOS at the Fermi level and bandwidth W ). This temperature defines a
crossover between the high-temperature regime, where impurities behave as free
spins, and the low-temperature regime, where a Kondo effect is observed, whose
features are discussed below.

� For T ∼ TK , there is a minimum of the electric resistivity, which is one of the
manifestations of the Kondo effect. Above TK , the Kondo interaction is not effective
and the resistivity is typical of a normal metal, dominated by phonon scattering: it
decreases when T is reduced. As the temperature is lowered, the Kondo interaction
becomes effective, and we have a new (spin-dependent) scattering mechanism that
causes an increase in resistivity, resulting in a minimum for a temperature near TK .
Immediately below this minimum, the resistivity has a logarithmic dependence with
temperature. This was first obtained by Kondo evaluating the relaxation time in
perturbation theory to second order in JK . The minimum resistivity had already
been experimentally observed in dilute alloys. For T�TK , the resistivity ceases to
grow, and tends to a finite value, indicating that the mechanism of spin-dependent
scattering disappears. This can be understood by examining the magnetic behavior.
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� At high temperatures, the magnetic susceptibility (χ) presents a Curie-Weiss term,
because the impurities are essentially decoupled from the band and behave as local-
ized moments. Below TK , the susceptibility quickly attains a constant limit. This
indicates the suppression of local moments, since the Kondo interaction, favoring
opposite orientation of conduction-electron and impurity spins, causes screening of
the localized magnetic moments, which is another manifestation of the Kondo
effect. Now the relationship between height of conduction-band DOS at the Fermi
level and existence of localized moments may be reinterpreted through Eq. (24).
This equation shows that a low conduction-band DOS at εF yields a low TK , the
temperature above which local moments can be observed.

� The screening cloud of conduction electrons around the impurity gives rise to an
enhanced DOS (almost localized electrons) at the Fermi level, producing a sharp
structure known as Kondo peak, in addition to broader peaks around εd and εd + U .
The latter have widths defined by the hybridization V (similar to what was obtained
in HF), while the Kondo peak has a width of the order of TK .

Friedel oscillations

Complementary to the screening of an impurity spin by conduction electrons in the Kondo
regime, we may ask ourselves how the density of conduction-electron spins is affected in
the process. Using a mean-field-like approach, we define an effective magnetic field

Heff(r) = −JK S δ(r) , (25)

which acts on the density of conduction-electron spins and is due to an impurity spin S
(at the origin). In wave-vector space, we have

Heff(q) = −JKS . (26)

The conduction-band response to this field is measured by an average spin density

〈s(q)〉 = χ0(q)Heff(q) , (27)

using the independent-electron susceptibility

χ0(q) =
2

N

∑
k

f(εk)− f(εk+q)

εk+q − εk
(28)

(see Text 13). For a parabolic band (εk = k2/2m∗), transforming the sum over k into an
integral, one obtains (in the limit T → 0)

χ0(q) = χPF (q/2kF ) , (29)
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χP being the Pauli susceptibility, and

F (x) =
1

2
− 1

4x
(1− x2) ln

∣∣∣∣1− x1 + x

∣∣∣∣ · (30)

From Eqs. (27)–(30), we can obtain the spin density in position space,

〈s(r)〉 ∼ sin(2kF r)− 2kF r cos(2kF r)

(kF r)
4

−→
r→∞
−cos(2kF r)

r3
· (31)

Hence, there is a long-range polarization of the conduction-electron spins, whose density
oscillates with a wavelength 1/2kF and decays as 1/r3. The region of most intense polar-
ization can be viewed as a screening cloud around the impurity. The oscillating behavior,
known as Friedel oscillations, is an effect of the existence of a Fermi surface (abrupt change
in the occupation of states in k-space). Similar oscillations occur in the electron charge
density when screening an impurity charge.

Interacting impurities

Departing from the dilute limit, we can visualize the following physical situation: a mag-
netic impurity (at the origin) polarizes the conduction-electron spins, generating an oscil-
lating spin density 〈s(r)〉; another magnetic impurity, at a position R, “feels” an effective
magnetic field Heff

imp(R) = −JK〈s(R)〉. The result is an effective interaction between im-
purities, known as RKKY (Ruderman-Kittel-Kasuya-Yosida) interaction. It is described
by the Hamiltonian

HRKKY = −JRKKY S(0) · S(R) , (32)

with
JRKKY = J2

KχPF(R) , (33)

where F(R) is the Fourier transform of the function F (q/kF ) [see Eqs. (29) and (30)]
evaluated for r = R. Thus, the RKKY interaction oscillates with position as does the
electron-spin density, according to Eq. (31).

Comparing with our previous study of localized spins, the RKKY interaction can be viewed
as a kind of superexchange mediated by conduction electrons. An important feature of this
interaction is its sign changes due to Friedel oscillations. In a system with randomly
distributed impurities, each impurity will be subjected to competitive interactions with
the others, varying in sign and intensity. This is a basic ingredient for establishment of a
spin-glass state, in which long-range magnetic order is not observed, but each local spin
has a nonzero average value.

Kondo lattice

Turning now to the so-called concentrated limit, we find systems with “one impurity per
site”. They are actually translation-invariant systems, in which localized magnetic mo-
ments and conduction electrons coexist. Typical examples are some rare-earth (or actinide)
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compounds, in which the 4f (or 5f) incomplete shell generates a localized moment, while
the s electrons form the conduction band (together with electrons from other elements
possibly present in the compound).

As far as magnetic properties are concerned, some pure elements that we mentioned at
the beginning of Text 12 (Gd, Tb, Dy, . . . ) can be seen as localized-spin systems with
exchange interactions mediated by conduction electrons (RKKY), thus being described
by the Heisenberg model. Other compounds, however, show a more complex physics,
dominated by a competition between RKKY interaction and Kondo effect. We mention,
for example, compounds containing cerium (CeAl2, CeCu6, CeCu2Si2, CeRh2Si2, etc.) or
uranium (UPt3, UBe13, etc.). They are known as Kondo lattices, for which a generalization
of Eq. (22) yields the Hamiltonian

H =
∑
kσ

εknkσ + JK
∑
i

Si · s(Ri) . (34)

It is also usual to employ the Periodic Anderson Model (PAM), whose Hamiltonian is

H =
∑
kσ

εknkσ + εf
∑
iσ

nfiσ + U
∑
i

nfi↑n
f
i↓ +

∑
k,i

(
Vkeik·Ric†kσfiσ + H.c

)
. (35)

It differs from Eq. (1) in that there is one localized state per lattice site, and one usually
refers to f (instead of d) atomic levels.

The theoretical treatments of this problem are quite complex. We are dealing with strongly
correlated electronic systems, for which the usual methods of perturbation theory do not
give good results. Without going into details, which are outside the scope of this course,
we present some qualitative comments in comparison to the single-impurity problem.

� The basic features of the single-impurity Kondo effect are still observed: minimum
of the electrical resistivity, screening of the local moment, Kondo peak in the DOS.

� A coherent regime appears at very low temperatures, due to the lattice-translation
invariance. In this regime the electrical resistivity decreases again, and (for systems
that do not develop magnetic order) high values are reached by the PM susceptibility
and the specific-heat coefficient γ. These features (consistent with the presence of
a Kondo peak) gave rise to the denomination heavy-fermion systems, since those
quantities are directly related to the Fermi-level DOS, for which a high value reflects
a large effective mass. Within the heavy-fermion regime, the system can become
superconductor, although it happens at very low temperatures (of the order of 1 K).

� The RKKY interaction (not random in this case) tends to induce ordering of the
localized moments. In general, the order is AF (since kF ∼ 1/a) but FM systems also
exist. On the other hand, the same (Kondo) coupling that gives rise to the RKKY
interaction also tends the screen the local moments. This leads to a competition
between Kondo effect and magnetic order which is one of most interesting features
of this type of systems (and most difficult to deal with).
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Other interesting systems

In addition to alloys (diluted or not) and Kondo lattices, there is a variety of systems that
show coexistence of localized and itinerant magnetic moments. Let’s quickly refer to some
features of two classes of systems.

High-Tc superconductors

The so-called high-temperature superconductors where discovered in 1986, starting with
the compound La2CuO4. This is an AF insulator that upon doping (substitution of Ba or
Ca for La in appropriate proportions) becomes superconducting, with TC ∼ 40 K. Other
families of compounds, with TC ’s near or above 100 K, were subsequently synthesized. Ex-
amples are YBa2Cu3O6+x, Bi2Sr2CaCu2O8+x, Tl2Ba2CuO6+x, Nd2−xCexCuO4, etc. Their
common characteristic is the presence of CuO2 planes where, in the absence of doping,
the Cu2+ magnetic moments (S = 1/2) interact via AF superexchange through O2− ions.
Figure 1 shows two structures and the CuO2 planes.

The usual theoretical model is in hole representation, because the stoichiometric system
has closed ion shells except for one hole per unit cell (nominal configuration 3d9 of copper).
The simplest model is described by the Hamiltonian

H = εd
∑
iσ

ndiσ + U
∑
i

ni↑ni↓ + εp
∑
jσ

npjσ − t
∑
ijσ

(d†iσpjσ + H.c.) . (36)

It is known as Emmery model, or the three-band Hubbard model, as there are three atoms
per unit cell. In fact, one of the linear combinations of px and py orbitals of oxygen does
not hybridize with copper’s dx2−y2 orbital, forming a decoupled (purely p) “zero-width
band”. The other combination does hybridize, allowing connection between copper ions at
different sites. So, the model has effectively two bands.

Figure 1: Schemmatic representations of the LaCaO and YBaCuO structures, and of the
CuO2 planes common to both.
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Assumed values of the system parameters are t ∼ 1 eV, ∆ ≡ εp − εd ∼ 3 eV, U ∼ 8 eV.
With respect to the d-band, we have a Mott insulator. But the effective gap is a charge-
transfer one, with a bare value ∆. In hole-doped systems (e.g., substitution of Ca2+ for
La3+), the additional holes occupy states immediately below the (renormalized) charge-
transfer gap, in a band of dominantly p character. We begin, then, to have coexistence of
the itinerant moments of this band with the more localized moments of the d-band. But
the hopping involves d levels, so that both bands have hybrid character. Further increase of
doping gradually reduces the stability of the AF phase. This phase disappears at a certain
critical doping, above which there is a doping range where superconductivity is observed.

Colossal-magnetoresistance manganites

Another interesting class of compounds are manganites that exhibit large magnetoresis-
tance (variation of electrical resistance as an effect of applied magnetic field), here called
“colossal” due to the intensity of the effect.

The typical compound is La1−xCaxMnO3. For zero doping (LaMnO3), we have La3+ and
O2− with closed shells, and Mn3+ with configuration [Ar]3d4.

The crystal has cubic symmetry, so that crystal-field splitting of the Mn d orbitals leaves
three lower-energy t2g levels and two higher-energy eg levels. Hund’s rule is strong, which
means that there is a localized spin S = 3/2 (three electrons with parallel spins) in the
t2g levels, the remaining electron occupying one of the eg levels, also with spin parallel to
the other three. Even though the eg levels form a band, the system is a Mott insulator
due to Coulomb interaction, and shows AF order. Doping with Ca (Ca2+ in place of La3+)
reduces the number of eg electrons, leaving nominally Mn4+ sites. The existence of Mn3+

and Mn4+ “neighbors” (separated by an oxygen) allows the eg electron to pass from one to
the other through a mechanism called double exchange. This can be viewed as a process in
which an electron of the intermediate oxygen jumps to an orbital eg of the Mn4+ and the
eg electron of the Mn3+ jumps to the hole left in the oxygen, as depicted in Fig. 2. Due to
Hund’s rule, this process is possible when the total spins of the two Mn ions are parallel.

Figure 2: Schematic representation of the double-exchage mechanism in manganites, with
the d-level occupation of two Mn ions, and the highest orbital of an intermediate O2− ion.
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Therefore, the doped system has low-temperature FM order and is metallic. At high
temperatures, thermally induced spin disorder inhibits the double exchange mechanism,
suppressing FM order and leading to an essentially insulating PM state. Near the Curie
temperature, even a weak magnetic field polarizes the spins, thus switching on double
exchange and causing a large increase in conductivity, which characterizes a colossal (neg-
ative) magnetoresistance. The maximum intensity of this effect occurs for x ∼ 0.33. For
x > 0.5 the number of eg electrons becomes small and their FM effect is overridden by the
AF superexchange between t2g spins. The system is then an antiferromagnetic insulator.

Closing this text, it is important to remark once more that we presented here only a few
examples of the rich variety of behavior observed in a wide range of compounds in which
localized magnetic moments and conduction electrons coexist.


