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FIP10604 – Text 08 — Mean-field approximation I

Spin Hamiltonians involving exchange interactions describe an interacting many-body
problem. Hence, very few particular cases exist with exact solution (we will address some
later on). As we saw in Text 07 for the Heisenberg model, it is possible to study the
thermodynamic behavior at very low temperatures based on non-interacting magnon-type
elementary excitations. But this is only applicable when the spontaneous (or sublattice)
magnetization does not depart very much from its maximum value. To achieve a com-
prehensive description of the overall thermodynamic behavior, with a disordered phase at
high temperatures, an ordered phase at low temperatures, and a phase transition from one
to the other, we need to resort to approximation methods.

Among the most common approaches is the Mean Field Approximation, also known as
Mean Field Theory and, for historical reasons, Molecular Field Theory ( or Approximation).
We will study here (and in the next Text) its application to the Heisenberg model.

Heisenberg Hamiltonian with applied field

First of all, we add to the Heisenberg Hamiltonian a Zeeman term, i.e., interaction with
an external magnetic field, writing

H = −
∑
ij

Jij Si · Sj −
∑
i

Hi · Si . (1)

We continue to use the simplified notation introduced in Text 07, with spin measured in
units of h̄ and magnetization in units of −gµB per atom, which leads to the relationship

Mi = 〈Si〉. (2)

Mean-field approximation

The Mean-field approximation consists in using the decomposition

Si = Mi + (Si −Mi) ≡Mi + ∆Si (3)

and neglecting quadratic terms in the spin deviation from its average value, ∆Si. Thus

Si · Sj 'Mi · Sj + Si ·Mj −Mi ·Mj . (4)

The mean-field (MF) Hamiltonian is then

HMF = −2
∑
ij

Jij Mj · Si −
∑
i

Hi · Si +
∑
ij

Jij Mi ·Mj . (5)
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The last term does not contain operators, and may be removed from the Hamiltonian,
since it has no influence on the evaluation of average values (it only needs to be included
when calculating the total energy). With this procedure, the interaction term has been
linearized, and we now have formally a problem of independent spins in the presence of
an effective magnetic field

Heff
i = Hi + 2

∑
j

JijMj . (6)

Note that Eq. (2) is a self-consistency relationship, since we must evaluate the the
spin’s average value in the presence of a “magnetic field” that includes this same average
value (at sites that interact with the reference site).

It should be noted that in Mean Field Theory, when dealing with the paramagnetic phase,
there is no difference between the Heisenberg and Ising models since the MF Hamiltonian
does not depend on spin components perpendicular to the magnetization. This changes in
the ordered phase, when we can apply a field perpendicular to the spontaneous magneti-
zation.

FM case

Let us consider, as usual, the nearest-neighbor approximation. In the FM system we have
J > 0.

Spontaneous magnetization

In the absence of external field (H = 0) but in the presence of ferromagnetic order, and
choosing M = (0, 0,M), Eq. (6) results in the effective field intensity

Heff = 2zJM , (7)

where z is the coordination number.

We can directly apply the solution obtained for independent magnetic moments (Text 03),
which takes the form

M = SBS(2zJSM/T ) . (8)

Note that, besides the already mentioned simplifications in notation, we are also not includ-
ing the Boltzmann constant kB, which means that energies (and in particular the exchange
constant J) are measured in temperature units.

Equation (8) is an implicit relation for M , whose temperature-dependent solution is a
function M(T ). Two graphical solutions are sketched in Fig. 1. For each T , the solution is
given by the intersection point of the curve y1(M) = SBS(2zJSM/T ) with the unit-slope
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Figure 1: Example graphical solutions of Eq. (8).

straight line y2(M) = M . In practice, this solution is obtained numerically by iterations:
for a given value of T , starting from an initial value M1, successive approximations

Mn+1 = SBS(2zJSMn/T ) (9)

are generated. When the number of iterations n is sufficiently large, Mn approaches the
value of M(T ) with the desired accuracy.

Figure 1 shows two distinct regimes:

� T < Tc : initial slope of SBS(2zJSM/T ) > 1 ⇒ intersection in M(T ) 6= 0.

� T > Tc : initial slope of SBS(2zJSM/T ) < 1 ⇒ intersection only for M(T ) = 0.
Note that M = 0 is always a solution, but it is unstable when there is a solution
M(T ) 6= 0.

The boundary between these two regimes, which occurs at T = TMF
C , corresponds to

SBS(2zJSM/T ) with initial slope exactly equal to 1. Making the expansion of SBS(x)
for x→ 0,

SBS(x) =
S + 1

3
x+O(x3) ,

we have

TMF
C =

2

3
zJS(S + 1) . (10)
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Paramagnetic susceptibility for J > 0

In the paramagnetic phase, where there is no spontaneous magnetization, the relation
M = χH holds in the presence of a sufficiently weak applied magnetic field H. On
the other hand, the mean-field approximation views M as the response of independent
moments to an effective field, i.e., M = χ0H

eff , where χ0 = C/T , as obtained in Text 03.
In our unit system the Curie constant is simply C = S(S+ 1)/3. Using these two forms of
writing the magnetization and considering that the effective field, Eq. (6), takes the simple
form Heff = H + 2zJM , we obtain

χ =
χ0

1− 2zJχ0

=
C

T − θ , (11)

where θ = 2zJC. This equation reproduces the Curie-Weiss law, which agrees with exper-
imental observations for T � TC . However, in mean-field theory this form holds for any
T > θ, that is, in the entire paramagnetic phase, since θ = TMF

C [see Eq. (10)]. Note that
C and θ are easily obtained from a straight-line fitting of experimental data for χ−1 at
high temperatures. This allows to obtain the exchange interaction J . Furthermore, given
that the “true” Curie constant depends also on the g factor, we can infer the value of this
quantity if the atomic spin is known.

Figure 2 qualitatively summarizes the mean-field results (M and χ−1) for a FM system.
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Figure 2: Magnetization and inverse paramagnetic susceptibility as functions of tempera-
ture for a FM system in the MF approximation.
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AF case

For a bipartite lattice, the system is divided into two identical sublattices, A and B, so
that Ri+δ ∈ B if Ri ∈ A. Assuming a Néel-type magnetic order, by choosing Mi ≡ M
for i ∈ A we have Mi+δ = −M . Here M is called sublattice magnetization instead of
spontaneous magnetization. In the absence of external field, the effective field at a site i is
Heff
i = 2zJMi+δ. Remembering that J < 0, the effective field at sites of the A sublattice

is Heff
A = 2z|J |M , while in the B sublattice we have Heff

B = −Heff
A . Thus

M = SBS(2z|J |SM/T ) . (12)

This equation has the same form as in the FM case [Eq. (8)]. Therefore, the Néel temper-
ature has the same value as TMF

C for J ’s of the same absolute value, being given by

TMF
N =

2

3
z|J |S(S + 1) . (13)

Paramagnetic susceptibility (J < 0)

In the PM phase, the effective field still has the form Heff = H + 2zJM . However, since
J < 0 the mean field due to nearest neighbors now opposes the external field. With the
same development as before, we obtain

χ =
χ0

1− 2zJχ0

=
χ0

1 + 2z|J |χ0

=
C

T + |θ| . (14)

A plot equivalent to Fig. 2 for the AF case is shown in Fig. 3.
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Figure 3: Magnetization and inverse paramagnetic susceptibility as functions of tempera-
ture for the AF case in the MF approximation.
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As previously remarked, the uniform susceptibility of an AF system does not diverge at
any physically meaningful temperature (T > 0) because there is no transition to uniform
magnetic ordering.

Ferrimagnetic case

Let us consider the same geometry of the AF case but with the two sublattices containing
spins of different magnitudes, SA and SB, while J may be positive or negative.

We will restrict ourselves to the paramagnetic case. In the presence of an applied field H,
the magnetizations of the two sublattices are given by the set of equations

MA = χA0 [H + 2zJMB] ,

MB = χB0 [H + 2zJMA] , (15)

resulting in

MA =
χA0 [1 + 2zJχB0 ]

1− (2zJ)2χA0 χ
B
0

H ,

MB =
χB0 [1 + 2zJχA0 ]

1− (2zJ)2χA0 χ
B
0

H . (16)

The net magnetization (per unit cell) is M = (MA + MB) and must satisfy the general
relation M = χH. Thus,

χ =
χA0 + χB0 + 4zJχA0 χ

B
0

2[1− (2zJ)2χA0 χ
B
0 ]

. (17)

Using χA0 = CA/T and χB0 = CB/T , it follows that

χ−1 =
T 2 − (2zJ)2CACB
C̄T + 2zJCACB

, (18)

where C̄ ≡ (CA + CB).

Equation (18) shows that, for any sign of J , χ−1 vanishes at

TMF
c = 2z|J |

√
CACB =

2

3
z|J |

√
SA(SA + 1)SB(SB + 1) . (19)

It reproduces the transition temperature of the FM or AF cases when SA = SB.

For high temperatures, neglecting terms of order T−1 or higher in Eq. (18), we obtain

χ−1 =
1

C̄

[
T − 2zJ

CACB
C̄

]
. (20)
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Figure 4: Inverse PM susceptibility as a function of temperature for a ferrimagnetic system.
The spins are SA = 1 and SB = 1. Two cases are shown for the same absolute value of J ,
choosing the scale such that TMF

c = 1.

It can be seen that the ferrimagnetic susceptibility at high temperatures has the FM form
χ = C̄/(T − θ) for J > 0 and the AF form, χ = C̄/(T + |θ|) for J < 0. In both cases,

|θ| = 2z|J |CACB
C̄

= TMF
c

√
CACB
C̄

. (21)

We can see that |θ| ≤ TMF
C , the equality happening only when the spins are identical, i.e.,

when the FM or AF cases are reproduced.

The behavior of χ−1 for both signs of J is illustrated in Fig. 4.


