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FIP10604 – Text 07 — Magnons

Having discussed the ground state of the Heisenberg model in Text 06, we now turn to its
properties at low but finite temperatures.

We begin by rewriting the Hamiltonian without explicit restriction to nearest-neighbor
interactions, and using the set of operators {Sz, S±}.

H = −
∑
ij

Jij

[
Szi S

z
j +

1

2

(
S+
i S

−
j + S−i S

+
j

)]
= −

∑
ij

Jij
(
Szi S

z
j + S−i S

+
j

)
. (1)

In the second equality, we used the property Jij = Jji, which allows us to exchange the
summation indices in one of the sums, and the fact that spin operators corresponding to
different sites commute.

FM Heisenberg Model at low temperatures

We will first restrict our analysis to the FM case, for which we know that long-range order
exists in the ground state. As we saw in Text 06, the ground-state vector |F 〉 satisfies the
relations Szi |F 〉 = S|F 〉 and S+

i |F 〉 = 0 for any site i in the lattice. The energy of this
state is E0 = −NS2J(0), where J(0) is the Fourier transform of Jij,

J(k) =
∑
i

Jij eik.(Ri−Rj) , (2)

evaluated at k = 0. Notice that the sum on the right-hand side, although only over i, is
independent of j due to the translation invariance of the lattice. For the same reason, the
sum could be over j instead of i.

We can easily check that the z component of the total spin is conserved. Therefore, all
energy eigenstates are characterized by a particular eigenvalue of Sztot =

∑
i S

z
i . As the

eigenvalues of Szi differ by multiples of the unity (remembering that we are using S instead
of S/h̄), the same happens with Sztot. The ground-state eigenvalue is NS. Thus, the
eigenvalue corresponding to the first excited state must be NS − 1.

Consider, first, a spin deviation localized at site l, which we can represent by

|l〉 =
1√
2S
S−l |F 〉 , (3)

where 1/
√

2S is a normalization factor (it is easy to show that 〈l|l′〉 = δll′).

Using the spin-operator algebra, we find that

H|l〉 = E0|l〉+ 2S

[
J(0)|l〉 −

∑
i

Ji l|i〉

]
. (4)
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Therefore, |l〉 is not an eigenstate of H. Given that there are N equivalent states of this
type (the deviation may be at any one of the N lattice sites) any linear combination of
them also corresponds to the same eigenvalue. In order to have an energy eigenstate we
should seek a linear combination possessing the translation symmetry of the Hamiltonian.
This can be done by choosing states of the form

|k〉 =
1√
N

∑
i

e−ik·Ri |i〉 , (5)

where k is clearly a wave vector. As we know, the restriction to finite size (N sites) must
involve periodic boundary conditions, under which the wave-vector components take the
values kα = 2mαπ/Nα, where mα is an integer, α (= 1, 2, 3) indexes the primitive lattice
vectors (or x, y, z for the simple-cubic lattice), and N1N2N3 = N . Hence, there are N
independent vectors k (belonging to the first Brillouin zone).

To check that |k〉 is an energy eigenvector we just apply H to it, obtaining

H|k〉 = [E0 + ε(k)]|k〉 , (6)

with
ε(k) = 2S [J(0)− J(k)] . (7)

The state |k〉 can be interpreted as a spin wave, ε(k) being the excitation energy
associated to its presence, since it is added to the ground-state energy E0.

By analogy with the description of lattice vibrations through the phonon concept, we are
tempted to write the Hamiltonian in the form

H = E0 +
∑
k

ε(k) a†kak , (8)

where a†k and ak would be creation and annihilation operators of a “particle”, called
magnon, which carries an energy quantum ε(k).

Still in analogy with phonons, we would expect the magnons to be bosons, and the Hamilto-
nian (8) would describe a Bose gas. Is this representation correct? To answer this question
we must check whether the magnon operators obey a bosonic algebra (commutation rela-
tions).

We can define a local version of the magnon operators using Eq. (5), which allows us to
write

a†k =
1√
N

∑
i

e−ik·Ria†i . (9)

Then, by Eq. (3) we should have

a†i =
1√
2S
S−i ⇒ ai =

1√
2S
S+
i . (10)
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Finally, we would like to identify the product a†iai with ni, the number operator for spin
deviations ate site i. Thus, we would have

Szi = S − a†iai = S − ni . (11)

However, Eqs. (10–11) yield the commutation relation

[ai, a
†
j] =

1

2S
[S+
i , S

−
j ] = δij

Szi
S

= δij(1− ni/S) , (12)

that does not reproduce the appropriate relation for boson operators.

Holstein-Primakoff transformation

Based on the previous discussion, we define a transformation that preserves Eq. (11) and
enforces a bosonic algebra of magnon operators, changing relations (10) in order to be
consistent with the spin algebra. The new relations are

Szi = S − ni ,

S+
i =

√
2S
(

1− ni
2S

)1/2
ai ,

S−i =
√

2S a†i

(
1− ni

2S

)1/2
. (13)

One can check (EXERCISE) that the algebra of spin operators is preserved if [ai, a
†
j] = δij

instead of Eq. (12).

Using the above relationships (known as Holstein-Primakoff transformation), we can rewrite
the Heisenberg Hamiltonian as

H = −
∑
ij

Jij

[
(S − ni)(S − nj) + 2Sa†i

(
1− ni

2S

)1/2 (
1− nj

2S

)1/2
aj

]
. (14)

This Hamiltonian is exactly equivalent to the original one. Its drawback is the presence
of nonlinear terms, i.e., products of any number of operators (expanding the square roots).
We can separate the Hamiltonian as

H = H0 +H1 , (15)

where H0 is a single-particle Hamiltonian,

H0 = E0 + 2S

[
J(0)

∑
i

ni −
∑
ij

Jij a
†
iaj

]
, (16)
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and H1 contains the interaction terms,

H1 = 2S
∑
ij

Jij

{
a†i

[
1−

(
1− ni

2S

)1/2 (
1− nj

2S

)1/2]
aj −

ninj
2S

}
. (17)

Rewritten in wave-vector space, H0 has exactly the form (8), describing the excitations of a
FM Heisenberg system as a magnon gas. Neglecting H1 amounts to neglecting terms with
ni/2S. Since the maximum number of spin deviations at a site is 2S, this approximation
is good if the average number of spin deviations per site is small. This is expected to
happen at low temperatures, when the system is close to the ground state, implying that
the number of magnons is small. We must quantify what we mean by low temperatures.
Clearly, the number of spin deviations per site becomes large as we approach the critical
temperature TC , above which the average spin becomes zero. Thus, a given temperature
T is low if T � TC .

Magnon dispersion relation at low energy

Equation (7) for the magnon energies can be simplified in the low-energy limit, which is
relevant at low temperatures. Since ε(k) → 0 when k → 0, we can expand J(k) around
k = 0. Consider, for example, a generalization of the simple cubic lattice to d dimensions.
In the nearest-neighbor approximation we have

J(k) = 2J
d∑

α=1

cos(kαa) , (18)

where a is the lattice parameter. Expanding to second order in k components, we obtain

J(k) ' J(0)− 2J
(ka)2

2
(19)

and Eq. (7) leads to

ε(k) ' (2JSa2)k2 ≡ Dk2 , (20)

where D is called the spin wave’s stiffness constant. This quadratic dispersion relation may
be used in all calculations involving the magnon gas at low temperatures.

Magnetization and specific heat at T → 0

For simplicity, we will assume that the magnetization is just the expected value of the local
spin. This corresponds to defining the magnetization as the average magnetic moment per
lattice site, and associating the magnetic moment directly to the spin, leaving aside a factor
−gµB. With this, the ratio between the magnetization magnitude and its saturation value
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is equal to the ratio between the average value of a spin component and its maximum
value. We then have

M

M0

=
〈Szi 〉
S

=
1

S
(S − 〈ni〉) = 1− 1

NS

∑
k

〈nk〉 . (21)

The equilibrium average energy (ground-state energy plus internal energy of the magnon
gas) is given by

E = E0 +
∑
k

εk〈nk〉 , (22)

and its derivative with respect to temperature gives the magnetic contribution to the
specific heat. Thus we see that both the spontaneous magnetization and the specific heat
at low temperatures depend on the average number of magnons. As the magnons are
bosons, 〈nk〉 for a system in thermodynamic equilibrium at temperature T is given by the
Bose-Einstein distribution

〈nk〉 =
1

e ε(k)/T − 1
, (23)

where we choose a system of units in which energy and temperature are equivalent, i.e.,
kB = 1.

In the limit T → 0, we may use Eq. (20) for ε(k). The deviations ∆M ≡ M0 −M and
∆E ≡ E−E0, when calculated in the thermodynamic limit, may be expressed as integrals:

∆M

M0

=

∫
ddk

(2π)d
1

eDk2/T − 1
,

∆E

N
=

∫
ddk

(2π)d
Dk2

eDk2/T − 1
. (24)

In the above equations, the wave vector k is a dimensionless quantity, corresponding to
the product ka, where a is the lattice parameter of the hypercubic primitive cell. This is
equivalent to choosing a = 1, i.e., a defines the length unit.

Eqs. (24) have integrands that depend only on the magnitude of k, so that the angular
part contributes a constant factor. For T → 0, the upper limit of integration in k may be
extended to infinity because the integrand is exponentially reduced as k increases. So, we
are left with integrals of type

Im(d, T ) =

∫ ∞
0

dk
kd−1+m

eDk2/T − 1
=

1

2

(
T

D

)(d+m)/2 ∫ ∞
0

dξ
ξ(d+m−2)/2

eξ − 1
. (25)

At d = 3, the integral in ξ converges for both m = 0 and m = 2, which determine ∆M
and ∆E, respectively. Therefore,

∆M

M0

∼
(
T

D

)3/2

,
∆E

N
∼
(
T

D

)5/2

. (26)
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The last equality indicates that the magnetic specific heat behaves as

cm ∼ T 3/2 . (27)

In summary, studying the Heisenberg model at low temperatures through magnons shows
that the magnetization decreases from its saturation value following a power law (∼ T 3/2).
The same power law appears for the specific-heat growth (from its null value at T = 0).
These results are exact in the limit T → 0, at which the simplifying assumptions that
were made become strictly correct. Unfortunately, one cannot use this same formalism to
study how these physical quantities behave as T approaches TC .

Effect of dimensionality

We can see that the integral on ξ that appears in Eq. (25) diverges for m = 0 when d = 2
or d = 1. This indicates the absence of spontaneous magnetization for T 6= 0 at these
spatial dimensions. The divergence comes from the k → 0 limit, characterizing an infrared
divergence.

We see thus that the Heisenberg model does not have an ordered phase at finite temperature
in d = 2. This is in contrast to what happens with the Ising model, which does have an
ordered phase, as we will see in detail later on. The difference will become clearer in the
analyses that follow.

Applied magnetic field

In the presence of a uniform magnetic field, we add a Zeeman term, −H
∑

i S
z
i , to the

Hamiltonian. As Szi = S − ni, we have contributions to the ground-state energy and to
the magnon-gas energy. The latter, in the limit k → 0, becomes

εH(k) = H +Dk2 . (28)

It is clear that the field introduces a gap in the magnon dispersion relation. This eliminates
the infrared divergences, allowing for magnetic order at T 6= 0 in any dimension, and leading
to exponential behavior of ∆M and cm with temperature.

It should be noted that the existence of magnetic order does not mean that there is a
phase transition. In the presence of magnetic field, the system evolves continuously to
the state of saturated magnetization as the temperature decreases.

System with anisotropy

As we saw in Text 04, a local axial anisotropy appears in the Hamiltonian as a term of
type −K

∑
i(S

z
i )2 (we use K instead of D to avoid confusion with the stiffness constant
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D). Let us concentrate on the easy-axis case, K > 0. In the magnon-gas approximation,
the anisotropy term reduces to −NKS2 + 2SK

∑
i ni. So, in addition to a change in the

ground-state energy, there is a term equivalent to a magnetic field, the anisotropy field
HA = 2SK.

This effect, in a certain way, allows us to understand the difference mentioned earlier
between Heisenberg and Ising models in d = 2, since the Ising model may be seen as
an extremely anisotropic Heisenberg model. However, unlike an actual applied field, the
anisotropy does not eliminate the phase transition at TC because the equivalence with a
magnetic field is only valid in the limit of low number of spin deviations.

Magnons in the AF Heisenberg model

In Text 06 we observed that the ground state of the AF Heisenberg model cannot be
written in a definite form. For this reason, to utilize magnons in this case we use the Néel
state as a reference state.

The system is divided into two sublattices: A, corresponding to spin up, and B, corre-
sponding to spin down. The Néel state, |N〉, is characterized by

Szi |N〉 =

{
S|N〉 , i ∈ A
−S|N〉 , i ∈ B .

(29)

Spin deviations are caused by S−i if i ∈ A and S+
i if i ∈ B. Using the notation i for the sites

of sublattice A and j for those of sublattice B, we can introduce local bosonic operators
for each sublattice, in the linear approximation, by the following equalities:

Szi = S − a†iai = S − nai ,
Szj = −S + b†jbj = −S + nbj ,

S+
i =

√
2S ai ,

S+
j =

√
2S b†i . (30)

The Hamiltonian can then be written as

H = −2
∑
i∈A
j∈B

Jij

[
(S − nai )(−S + nbj) + S(a†ib

†
j + aibj)

]
−K

[∑
i∈A

(S − nai )2 +
∑
j∈B

(−S + nbj)
2

]
.

(31)
Notice the factor 2 in the first term because the sums over sites are restricted to each
sublattice.

Using the nearest-neighbor approximation (with J < 0), neglecting quadratic terms in the
number of local spin deviations, and going to wave-vector space, we obtain

H = Ē0 +
∑
k

{
ε0
(
nak + nbk

)
− 2SJ(k)

[
a†kb
†
k + akbk

]}
, (32)
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where
Ē0 = −N(z|J |+K)S2 , ε0 = HA + 2z|J |S , HA = 2SK . (33)

The sum in Eq. (32) is over N wave vectors, since the Brillouin zone has been reduced to
half its original size.

The Hamiltonian (32) is not diagonal in magnon operators which reflects the fact that the
number of spin deviations per sublattice is not conserved. However, the total number
of spin deviations, as discussed earlier, is conserved. We must then diagonalize the
Hamiltonian, constructing appropriate linear combinations of the operators associated with
the sublattices.

We define

c1k = ukak − vkb
†
k , c2k = ukbk − vka

†
k ,

c†1k = uka
†
k − vkbk , c†2k = ukb

†
k − vkak , (34)

where we choose real coefficients uk and vk. Notice that c1k and c†2k are operators of type
S+, while the other two are of type S−.

Imposing that the new operators satisfy bosonic commutation relations, we obtain

u2k − v2k = 1 , (35)

which allows us to parametrize the coefficients uk and vk as

uk = cosh θk , vk = sinh θk . (36)

Inverting the relations (34), we have

ak = ukc1k + vkc
†
2k , bk = ukc2k + vkc

†
1k ,

a†k = ukc
†
1k + vkc2k , b†k = ukc

†
2k + vkc1k . (37)

Substitution of these operators in the Hamiltonian (32) results in

H = Ē0 +
∑
k

{
ε0

[
(u2k + v2k)(n1k + n2k) + 2v2k + 2ukvk(c†1kc

†
2k + c1kc2k)

]
−2SJ(k)

[
2ukvk (n1k + n2k + 1) + (u2k + v2k)(c†1kc

†
2k + c1kc2k)

]}
. (38)

The condition that non-diagonal terms are null implies that

ε0ukvk − SJ(k)(u2k + v2k) = 0 . (39)

Dividing by u2k, and using the parametrization (36) we obtain that θk is determined by

tanh(2θk) =
2SJ(k)

ε0
. (40)
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On the other hand, the diagonal part of the Hamiltonian (38) may be written as

H = Ē0 −
N

2
ε0 +

∑
k

ε(k)[n1k + n2k + 1] , (41)

with

ε(k) = ε0(u
2
k + v2k)− 4SJ(k)ukvk . (42)

Eliminating the coefficients uk and vk through Eqs. (36) and (40), the Hamiltonian becomes
a sum of a ground-state energy and a (two-species) magnon gas,

H = E0 +
∑
k

ε(k)[n1k + n2k] , (43)

where

E0 = Ē0 −
N

2
ε0 +

∑
k

ε(k) (44)

and

ε(k) =
√
ε20 − [2SJ(k)]2 . (45)

In the absence of anisotropy (K = 0), these quantities take a simpler form,

E0 = −Nz|J |S(S + 1) +
∑
k

ε(k) ,

ε(k) = 2S
√

(zJ)2 − J2(k) = 2z|J |S
√

1− γ2k , (46)

where

γk ≡
1

z

∑
δ

eik·δ . (47)

There are z vectors δ connecting a site to its z neighbors. All these vectors have magnitude
a (the lattice parameter) in a cubic lattice. Then, in the limit k → 0, expanding γk up to
order (k · δ)2, we obtain

ε(k) ' (2
√

2z |J |Sa) k . (48)

Therefore, unlike the FM case, in an antiferromagnet we have magnons with a linear
dispersion relation. This is exactly what happens to phonons, allowing us to predict the
same type of behavior for the low-temperature specific heat, i.e.,

cm ∼ T 3 . (49)
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Ground state energy

Equation (44) shows that there is a zero-point magnon contribution to the AF ground
state. That equation may be rewritten in the form

E0 = −Nz|J |S2

(
1 +

λ

S

)
, (50)

where we defined

λ = 1− 2

N

∑
k

√
1− γ2k . (51)

E0 would coincide with the average energy of the Néel state (EN) if we had λ = 0. A
numerical calculation for the simple-cubic lattice results in λ ∼ 0.1, showing that E0 < EN .

Sublattice magnetization at T = 0

We know that the Néel state is not the ground state (and not even an eigenstate) of the
AF Heisenberg Hamiltonian. Therefore, the sublattice magnetization at T = 0 should not
be saturated. This magnetization is given by

M0 = 〈SziA〉0 =
2

N

∑
i∈A

(S − 〈nai 〉0) , (52)

where 〈...〉0 indicates that the average is taken on the ground state. Then

M0 = S − 2

N

∑
k

〈nak〉0 ≡ S −∆M0 . (53)

As nak = a†kak, using the transformations (37) we obtain

nak = u2kn1k + v2k(n2k + 1) + ukvk(c†1kc
†
2k + c1kc2k) . (54)

After taking the ground-state average (zero magnons), we are left with

〈nak〉0 = v2k = sinh2 θk =
1

2

[
ε0
ε(k)

− 1

]
. (55)

Using ε(k) from Eq. (46), and substituting in Eq. (53), we arrive at

∆M0 =
1

N

∑
k

[
1√

1− γ2k
− 1

]
. (56)

Numerical calculations for the simple-cubic lattice indicate that ∆M0/S ∼ 10%.
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On the other hand, for the one-dimensional case in the thermodynamic limit, choosing
an arbitrary k0, small but nonzero, Eq. (56) yields

∆M0 ∼
∫ k0

0

dk

k
+ (finite terms) . (57)

The integral diverges at the lower limit of integration (infrared divergence). Therefore, the
AF Heisenberg model in d = 1 does not show long range order even at T = 0. This limit
will be discussed in more detail in another Text.


