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FIP10604 – Text 05 – Exchange interactions

Effect of interactions

We have seen that independent atoms show paramagnetic behavior, obeying Curie’s
law. The examples presented involved certain salts of transition-metal or rare-earth ions.
However, there are many other compounds with this kind of ions, and the behavior observed
experimentally is not in general paramagnetism.

For the moment, we restrict our analysis to insulating solids, that is, only atomic (local-
ized) magnetic moments. Later on, we will study magnetic properties associated to the
spin of conduction electrons (itinerant moments) in metallic solids. From the viewpoint of
comparison with Curie’s law, i.e., focusing on the susceptibility as a function of tem-
perature, the main types of magnetic behavior observed in insulating solids (succinctly
described in Text 01) are summarized in the following list.

� Diamagnetism - The magnetic susceptibility as a function of temperature is essen-
tially a straight line parallel to the T axis and below it. That is, χ is negative and
independent of temperature. As we have seen, this occurs when atoms have closed
shells, not presenting an intrinsic magnetic moment.

� Paramagnetism - This was the case studied in Text 03 (and complemented in Text
04). The plot of χ−1 vs T is a straight line passing through the origin and with
positive slope (Curie’s law).

� Ferromagnetism - The plot of χ−1 vs T in the high-temperature region is still a
straight line. This straight line, extrapolated to low temperatures, intercepts the
T axis at a nonzero temperature θ. The behavior for T � θ is of type χ =
C/(T − θ), which is known as the Curie-Weiss law . As the temperature decreases,
approaching θ, the curve χ−1 deviates from a straight line, intercepting the T axis
at a temperature TC < θ, which is called Curie temperature. The susceptibility
diverges (experimentally, shows a sharp increase) at this temperature, indicating
the establishment of ferromagnetic order for T < TC , which is characterized by a
spontaneous magnetization (non-null at zero field) .

� Antiferromagnetism - The high-temperature susceptibility satisfies a Curie-Weiss
law with θ < 0, and can be written as χ = C/(T + |θ|). Therefore, its extrapolation
reaches the T axis at a negative temperature. However, in the vicinity of a positive
temperature TN (Néel temperature), χ−1 deviates from the straight line and rises
again (i.e., χ decreases). Below TN , an antiferromagnetic order is observed: no
global spontaneous magnetization, but locally the magnetic moments have a nonzero
average value. In the simplest case, the array of magnetic moments can be divided
into two interpenetrating sublattices, with moments oriented in opposite directions.
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� Ferrimagnetism - The high temperature susceptibility follows a Curie-Weiss law,
but θ can be negative or positive, depending on details of the specific system. In both
cases, deviation from a straight line occurs as a reduction of χ−1, which intercepts
the T axis at a positive TC . This is consistent with the picture of two sublattices,
with opposite (θ < 0) or aligned (θ > 0) moments, but of different magnitudes, which
results in a nonzero spontaneous magnetization.

The first two cases of magnetic behavior listed above (diamagnetism and paramagnetism)
can be understood, as we have seen, as the response of independent atoms or ions to
an applied magnetic field. The spontaneous magnetic order present in the other cases
can only be understood as resulting from interaction between the microscopic magnetic
moments, since they present a collective behavior.

Then, the relevant question is: What is the nature of these interactions?

1st hypothesis: dipolar interaction

Although the existence of permanent atomic magnetic moments has been understood via
Quantum Mechanics, we can, as a first hypothesis, start from the classical form of inter-
action between magnetic dipoles.

In classical electromagnetism, the interaction between two magnetic dipoles may be viewed
as the interaction of either one with the magnetic field generated by the other. As can
be found in any textbook of electromagnetism, placing a dipole µ1 at the origin of the
coordinate system (arbitrary point) and a dipole µ2 at a position r with respect to this
origin, the interaction energy between them is

Edip =
1

r3

[
µ1 · µ2 − 3(µ1 · r̂)(µ2 · r̂)

]
, (1)

where r̂ ≡ r/|r|. Note that when the two dipoles align along a straight line joining them the
second term dominates and favors parallel orientation. On the other hand, if the dipoles are
oriented perpendicularly to the line joining them the second term is null and the first one
favors antiparallel alignment. In a system with a large number of dipoles, the competition
between these two terms, and the combined effects of many magnetic moments (due to the
long range of this interaction) often lead to complex configurations.

It is important to estimate the order of magnitude of the dipolar interaction between two
magnetic moments of module ∼ µB, separated by a distance d approximately equal to the
typical interatomic spacing in crystalline solids. In this case, we have (not worrying about
the sign)

Edip ∼
µ2
B

d3
. (2)

Assuming that d ∼ 3–4 Å, we obtain Edip ∼ 10−18 erg, or

Edip/kB ∼ 0.01 K . (3)
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This should be the order of magnitude of TC , the critical temperature below which inter-
actions dominate and the system becomes magnetically ordered. However, experimental
results in magnetic insulators indicate typical temperatures of 10–102 K, that is, two to
three orders of magnitude higher!

The only possible conclusion is that dipolar interactions are not the source of magnetic
ordering in solids.

Exchange interaction

Our discussion of Hund’s rules in many-electron atoms made clear that the atomic spin
is maximized by a combined effect of Coulomb interaction between electrons and the
exchange antisymmetry of their wave function. We may suppose, as an alternative hy-
pothesis to dipolar interactions, that the same mechanism might work between electrons
of neighboring atoms, in which case it would be the origin of magnetic ordering.

The simplest case is the problem of two electrons interacting with each other and subject
to an external potential, which can be due to a single nucleus or two (fixed) nuclei. This
system’s Hamiltonian can be written schematically as

H = H1 +H2 + V (1, 2) , (4)

where H1 and H2 contain only the coordinates of each electron (here identified by the
numbers 1 and 2), and V (1, 2) contains the coordinates of both electrons, necessarily
including the Coulomb repulsion between them.

Due to the absence of spin-dependent interaction, the wavefunctions (or state vectors) of
this two-electron system is separable in spin and orbital parts. Seeking states with definite
eigenvalues of the total spin and one of its components (z), the possibilities for the spin
part (in obvious notation) are

χαS(1, 2) −→ |χαS〉 =


| ↑↑〉
1√
2

(| ↑↓〉+ | ↓↑〉)
| ↓↓〉

χA(1, 2) −→ |χA〉 =
1√
2

(| ↑↓〉 − | ↓↑〉) , (5)

where S and A indicate symmetry and antisymmetry under particle exchange (1 ↔ 2),
and different values of α identify each of the three symmetric states. The triplet (χαS)
corresponds to a total spin Stot = 1, and the singlet (χA) to Stot = 0.

Including an orbital part, the complete wave functions are

Ψα
t (1, 2) = ΦA(1, 2)χαS(1, 2) ,

Ψs(1, 2) = ΦS(1, 2)χA(1, 2) , (6)
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where the subscripts s and t refer to singlet and triplet. Since both Ψ’s must be antisym-
metric under particle exchange, the orbital functions ΦA and ΦS must be, respectively,
antisymmetric and symmetric.

The simplest approximation, which corresponds to treating V (1, 2) in first order of pertur-
bation, consists in choosing

ΦS(1, 2) =
1√
2

[ϕµ(1)ϕν(2) + ϕµ(2)ϕν(1)] ,

ΦA(1, 2) =
1√
2

[ϕµ(1)ϕν(2)− ϕµ(2)ϕν(1)] , (7)

where ϕµ and ϕν are eigenfunctions of H1 and/or H2.

Once the wave functions are known, we can evaluate the energies of singlet and triplet
states as

Es =
〈ΦS|H|ΦS〉
〈ΦS|ΦS〉

,

Et =
〈ΦA|H|ΦA〉
〈ΦA|ΦA〉

, (8)

the latter with degeneracy 3 due to the spin part.

The energy difference between the singlet and triplet states defines the exchange constant

J ≡ 1
2

(Es − Et) . (9)

Note that J > 0 if the triplet (parallel spins) has lower energy, and J < 0 if the lowest
energy corresponds to the singlet (antiparallel spins).

Next we study some cases arising from different choices of the zeroth-order problem, i.e.,
H1 and H2.

Two electrons of the same atom

This is the situation already qualitatively analyzed for an atomic subshell. Here, H1 and
H2 are identical, being the atomic Hamiltonian of a single electron, and V (1, 2) is the
Coulomb repulsion between the two electrons. In this case, ϕµ and ϕν belong to the same
set of orthonormal eigenfunctions.

If the subshell does not have orbital degeneracy, we can only have ϕµ = ϕν ≡ ϕ, which
restricts us to the singlet state, with total energy 2ε+K (to first order in V (1, 2)), where
ε is the atomic energy of the one-electron problem, and

K =

∫
dr1

∫
dr2 |ϕ(1)|2 |ϕ(2)|2 e

2

r12
. (10)
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This would be, for instance, the only possibility as an approximation for the He atom’s
ground-state. But we can also apply this procedure as a correction to the Hartree ap-
proximation for a many-electron atom, dealing with the last (partially occupied) subshell.
Then, if the subshell is orbitally degenerate, we may choose ϕµ 6= ϕν . Now, the energies
of the singlet and triplet states are

Es = εµ + εν +Kµν + Jµν ,

Et = εµ + εν +Kµν − Jµν , (11)

where

Kµν =

∫
dr1

∫
dr2 |ϕµ(1)|2 |ϕν(2)|2 V (1, 2) (12)

and

Jµν =

∫
dr1

∫
dr2 ϕ

∗
µ(1)ϕ∗ν(2)V (1, 2)ϕµ(2)ϕν(1) . (13)

The usual denomination for Jµν is exchange integral, for obvious reasons. In the present
case it determines the exchange constant, defined by Eq. (9). It can be verified that Jµν ≥ 0,
which implies Et < Es. This is essentially the first Hund’s rule!

Diatomic molecule - molecular orbitals

Now, H1 and H2 remain identical, but correspond to one electron in the presence of two
nuclei. V (1, 2) is still the Coulomb repulsion between the electrons. Although it is a one-
electron problem, determining the individual eigenfunctions (ϕµ and ϕν) is not trivial due
to the two centers. The most common procedure is to build up these functions as linear
combinations of atomic orbitals (LCAO). Taking, for example, the hydrogen molecule,
the molecular orbitals of lowest energies are combinations of 1s atomic orbitals centered
on each atom:

ϕµ(r) =
1√
2

[ψ1s(r−R1) + ψ1s(r−R2)] ,

ϕν(r) =
1√
2

[ψ1s(r−R1)− ψ1s(r−R2)] , (14)

where R1 and R2 identify the positions of the nuclei. The state ϕµ is called binding, because
the corresponding energy (including repulsion between the nuclei) has a minimum value
for a finite interatomic distance. The state ϕν is called antibonding because the energy is
reduced asymptotically to zero with increasing separation between the nuclei.

From here on, the problem is similar to the single-atom case. The energies and Coulomb
integrals are still given by Eqs. (11)–(13), only reinterpreting the single-particle functions.
Strictly for a hydrogen molecule (non-degenerate combinations of 1s atomic orbitals), the
ground state is a singlet, with both electrons occupying the molecular orbital ϕµ and the
first excited state is a spin triplet with an electron in the orbital ϕµ and the other in ϕν .
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For the O2 molecule, however, successive occupation of the molecular orbitals leads to a
ground state in which two electrons have parallel spins (occupying different 2p orbitals).

The above situations, if applicable to a solid, seem to describe both ferromagnetism and
antiferromagnetism. However, in this formulation the electrons are shared by the nuclei,
so that it is impossible to associate a (localized) magnetic moment to each atom.

Diatomic molecule - Heitler-London formulation

In the treatment of a diatomic molecule proposed by Heitler and London,1 both H1 and
H2 correspond to a one-electron atom. In this case, the zeroth-order ground state has
each electron occupying an atomic orbital, with these orbitals centered on separate nuclei.
V (1, 2) contains, in addition to the Coulomb repulsion between the two electrons, attractive
interactions of each one by the other nucleus.

For the hydrogen molecule, we can choose

ϕµ(r) = ψ1s(r−R1) ,

ϕν(r) = ψ1s(r−R2) . (15)

Note that in this formulation, by construction, the electrons tend to “avoid” each other,
since their unperturbed wavefunctions are centered in different atoms. However, these
functions are not orthogonal. Defining the overlap integral

L ≡
∫

drϕ∗µ(r)ϕν(r) =

∫
drϕ∗ν(r)ϕµ(r) , (16)

and using the definitions (7), we have that

〈ΦS|ΦS〉 = 1 + L2 ,

〈ΦA|ΦA〉 = 1− L2 . (17)

Consequently, Eqs. (8) result in

Es = εµ + εν +
Kµν + Jµν

1 + L2

Et = εµ + εν +
Kµν − Jµν

1− L2
. (18)

The corresponding exchange constant, according to Eq. (9), is given by

J =
Jµν − L2Kµν

1− L4
. (19)

1Original article: W. Heitler and F. London, Z. Physik 44, 455 (1927).
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In the previous cases we had L = 0, and therefore J = Jµν > 0. Here, Eq. (19) can lead to
negative values of J , depending on the relative values of Kab, Jµν and L. In the original
calculation of Heitler and London, explicitly for the H2 molecule, J < 0 was obtained, in
agreement with the treatment involving molecular orbitals.

It should be noticed that the method of Heitler and London has some inconsistencies. The
employed wave functions force the electrons to be in separate atoms, but the possibility
of exchange between them is not included in the kinetic-energy term, although taken into
account in the Coulomb interaction. Localizing the electrons is in principle more suitable
to treat atomic magnetic moments. However, the possibility of obtaining J < 0 depends
on the existence of a nonzero overlap between the individual wave functions, which should
also favor the passage of each electron from one atom to the other.

We will see below how the kinetic-energy term can be included in a description of exchange
integrals that is applicable to crystalline solids with localized moments.

Exchange interactions in a solid

For simplicity, we will focus on a crystal composed of identical atoms, each with a single
electron in the outermost non-degenerate energy level. This simplification is not unrealistic
as it might seem at first sight, in view of our discussion about crystal-field splitting. This
is the starting point to describe a tight-binding band if we allow the electrons to move and
neglect their Coulomb interaction. The most convenient way is to use a basis of Wannier
functions w(r−Ri), obtained from the Bloch functions ψk(r) by a discrete Fourier transform
relating wavevectors k to lattice vectors Ri.

At this non-interacting level, the Hamiltonian in the Wannier representation can be written
as

H0 = ε0
∑
iσ

|iσ〉〈iσ| −
∑
ijσ

|iσ〉tij〈jσ| , (20)

where ε0 = 〈i|H0|i〉 is the local (atomic) energy, in general chosen as ε0 = 0, and the
kinetic-energy part contributes to the hopping integral tij = −〈i|H0|j〉. Including the
interaction between electrons, the Hamiltonian becomes

H = H0 + V , (21)

where

V =
1

2

∑
ii′σ
jj′σ′

|i′σ〉|j′σ′〉Vii′,jj′〈jσ′|〈iσ| , (22)

and Vii′,jj′ can be evaluated using Wannier functions (coordinate representation):

Vii′,jj′ =

∫
dr

∫
dr′w∗(r−Ri′)w

∗(r′ −Rj′)
e2

|r− r′|
w(r′ −Rj)w(r−Ri) . (23)
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Supposing small overlap between different Wannier orbitals (tight-binding limit), the most
important interaction term is Vii,ii ≡ U . We can identify, among other possible terms, the
direct and exchange Coulomb integrals that we saw previously: K = Vii,jj and J = Vij,ji.

Turning to the language of second quantization, and keeping only the local term in the
electron-electron interaction, we have the Hubbard model, described by the Hamiltonian

H = ε0
∑
iσ

niσ −
∑
ijσ

tijc
†
iσcjσ + U

∑
i

ni↑ni↓ . (24)

At this point, it is not obvious that such a model, in principle aimed to describe interacting
conduction electrons, would be relevant to the magnetism of insulators. But an insulating
state is obtained in the limit tij� U . In this case, starting from a global state with one
electron per site, hopping is strongly inhibited because of the energy price payed to have
two electrons at the same site.

To understand the basic mechanism, let us consider initially only two sites (that would be
neighbors in a crystal lattice). The Hamiltonian of this system (choosing ε0 = 0) is

H = −t
∑
σ

(c†1σc2σ + c†2σc1σ) + U(n1↑n1↓ + n2↑n2↓) , (25)

For two electrons, if we choose both with spin up or both with spin down, we must have one
in each site, and hopping is impossible. These states are degenerate, with energy E0 = 0,
and eigenvalues of Sztot equal to +1 and −1, respectively.

There are four possible states with Sztot = 0, which are |2 0〉, |0 2〉, | ↑ ↓ 〉, | ↓ ↑ 〉, where the
two places in the ket refer to the two sites. The Hamiltonian matrix in this subspace (with
the order of basis vectors just shown) is

H↑↓ =


U 0 −t −t
0 U −t −t
−t −t 0 0
−t −t 0 0

 . (26)

Diagonalizing this matrix (EXERCISE), we obtain the following four eigenvalues:

E0 = 0 ,

EU = U ,

E± =
U

2

1±

√
1 +

(
4t

U

)2
 . (27)

The state with energy E0 corresponds to the symmetric combination of one-electron states
at each site. It completes the triplet with the two equal-spin states ((| ↑ ↑ 〉 and | ↓ ↓ 〉).
The states with energies EU and E± are all singlets.
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Note that E− < E0 < EU < E+. If U is significantly larger than t, we have two high-energy
singlets, with energies EU and E+ (both of order U), while the low-energy sector comprises
the singlet with energy E− and the triplet with energy E0. Changing the notation of these
last two energies respectively to Es and Et, the electron Hamiltonian projected onto this
low-energy subspace is equivalent to a Hamiltonian containing only spin operators, in the
form

H = 1
4
(Es + 3Et)− (Es − Et) S1 · S2 . (28)

To prove this equivalence it is sufficient to check that the set of states χS and χA, as defined
in Eq. (5), are eigenstates of the Hamiltonian (28) with eigenvalues Et and Es, respectively.
Keeping the definition of J as half the energy difference between these two states, we have
J = Es < 0 and the ground state is a singlet (zero total spin). Expanding the square root
for E− (= Es) in Eq. (27) to second order in t/U , we obtain

J = −2t2

U
. (29)

From perturbation theory, we can interpret this result as the energy correction of second
order in the hopping to a zeroth-order ground state having one electron per site with
opposite spins. It involves two virtual hoppings (t2) and an intermediate state with both
electrons at the same site (energy U).

Suppressing the constant term, and using Eq. (29), the Hamiltonian (28) can be written
as

H = −2J S1 · S2 . (30)

In this form, it describes two localized spins with an exchange interaction J .

By construction, the spin operators in the above equation can be identified with the spins
of each atom. In this simple case the atomic spin is 1/2 because there is a single electron
per atom. But the mechanism can be generalized to more complex cases, as in the following
example.

Suppose that a certain transition metal ion, in addition to the closed shells of the ionic
core, has three electrons occupying the (degenerate) 3d-t2g states in cubic symmetry. Fur-
thermore, suppose that the eg states have significantly higher energy. The intra-atomic
exchange interaction (Hund’s rule) ensures an atomic spin S = 3/2. Considering a pair of
these ions, any of the three electrons from one ion can make a virtual hopping to the other,
provided that the specific state to which it jumps is available, that is, if the electrons of the
other ion are occupying states with opposite spin with respect to the jumping electron.
Therefore, a Hamiltonian of the form (30) remains applicable for an S > 1/2.

Up to this point, we only generated antiferromagnetic interactions (J < 0). However, a
multi-orbital case may favor hopping with parallel spins due to the on-site Hund’s rule
effect if there are empty orbitals that are close in energy (or degenerate).
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Superexchange

Another typical situation is to have a closed-shell ion (e.g., O2−) positioned between two
magnetic ions (e.g., transition-metal ions such as Fe2+, Co2+, etc.). A simplified model for
this situation has a single d orbital in each magnetic ion, as in the previous case, plus a s
orbital on the intermediate site. The s orbital has a local energy ∆ > 0 relative to the d
orbitals, and the extent of the local orbitals do not allow for direct hopping between the d
orbitals, but only between them and the intermediate s orbital.

The state of lowest energy for two electrons corresponds to each one occupying one of the
d states, with the s state empty. The degeneracy of spin configurations is lifted by virtual
hoppings to the s state.

The relevant Hamiltonian, choosing Us = 0 and Ud � ∆ > t, is

H = ∆
∑
σ

nsσ − t
∑
i=1,2

∑
σ

(
d†iσcσ + c†σdiσ

)
, (31)

without taking explicitly into account the interaction Ud, but imposing the condition of
no double occupancy on d states, i.e., leaving out doubly occupied d states.

Solving as in the two-site example above, the case of opposite spins now involves a 7 × 7
determinant. Without developing the details, we can say that once more the ground state
is a singlet, the first excited state is a triplet, and the energy difference between them,
expanded in powers of the hopping, yields an antiferromagnetic exchange constant of
the order of t4/∆3. An equivalent result is obtained if we consider the fully occupied p
subshell of the mediating atom (presumably oxygen) instead of the next empty s state,
but this would involve double occupancy of the d level in the intermediate state (Ud not
very strong). Which of these is the physical situation depends on the relative energies of
the involved orbitals in a particular solid.

Our previous comment about the possibility of ferromagnetic exchange remains valid for
superexchange, under the same conditions. Actually, it should be easier to have it in this
case, since the geometry of the intermediate orbitals may favor non-straight-line connec-
tions, thus involving different orbitals on the magnetic sites.

Magnitude of the exchange interactions

From the calculations developed here, the exchange constant is of order t2/U or t4/∆3.
The orders of magnitude of the relevant parameters are typically U ∼ 1–10 eV, ∆ and
t ∼ 1 eV or fractions of eV (with t < ∆). With this, we obtain J ∼ 10−3–10−2 eV,
which means that J/kB ∼ 10–100 K. This is comparable to the critical temperatures of
magnetic order observed in insulators (in contrast to what we obtained with magnetic
dipolar interactions). Thus, we can then say that the relevant magnetic interactions in
solids are exchange interactions. In other words, the interactions responsible for magnetic
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order are actually electric (Coulomb) interactions in association with the Pauli Principle
(antisymmetry of the wave functions). This was seen here for localized (atomic) magnetic
moments, but also applies in the case of metals, although involving more directly the
Coulomb interaction and Pauli Principle, as we will see later.


