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FIP10604 – Text 04 – Atoms in solids

So far, we have analyzed the magnetic response of atoms supposedly isolated from their
environment except for the energy exchanges required for thermal equilibrium. Most sub-
stances that exhibit magnetic behavior are in the solid state and are crystalline (within a
certain length scale). The crystal-environment effects on a particular atom involve various
aspects. Some of them are listed below.

� In insulating solids, usually an atom exchanges charge (electrons) with other com-
ponents, appearing in some ionization state. We then have magnetic ions, as we
saw in the examples of paramagnetic salts mentioned in Text 03 (in that case, Cr3+,
Fe3+ and Gd3+).

� Even if the ions do not interact magnetically with each other, the fact that they are
not in a medium with spherical symmetry affects their magnetic moment (crystal-
field effect), as will be discussed here.

� In most cases there is magnetic interaction between the ions, leading to collective
behavior and magnetic order. In metallic solids, the important interactions are be-
tween electrons (which, by their spin, carry magnetic moment) and/or between them
and magnetic ions that might also be present. For now, we still leave interactions
out, and focus on how the crystal field affects atomic magnetic moments.

Crystal-field effects

Let us go back to the example of magnetic salts given in Text 03. Using Hund’s rules, it is
easy to check (EXERCISE) that the ground-state terms, with the corresponding values
of the gJ product, are those listed below.

Ion conf. term gJ M0(µB/at)
Cr3+ [Ar]3d3 4F3/2 3/5 3
Fe3+ [Ar]3d5 6S5/2 5 5
Gd3+ [Xe]4f7 8S7/2 7 7

The last column shows experimental (rounded) values of the saturation magnetization
M0 expressed as the number of Bohr magnetons per atom. It is, therefore, the maximum
magnetic moment of each ion in units of µB, which should be equal to gJ , from what we
saw in Text 03. This is satisfied for Fe3+ and Gd3+, which have L = 0. But for Cr3+

the observed magnetic moment corresponds to 2S instead of gJ , as if it were also from
spin only, although L 6= 0. This is a crystal-field effect called quenching of the orbital
angular momentum, and happens with most 3d ions. In the following we discuss the
origin of this effect.
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The Coulomb potential felt by the electrons of a given atom or ion is modified by the
presence of other atoms or ions in its vicinity. The spherical symmetry of the atomic
potential is thus broken, since the contribution from neighbors reflects the symmetry of
their positions in space. For example, it is quite common for a transition-metal ion in an
insulating compound (oxide or salt) to be at the center of an octahedron formed by six
oxygen ions. If this octahedron is not distorted, the symmetry group is the cubic group,
that is, the set of operations that leave a cube invariant.

Since the orbital degeneracy in a free-atom subshell (definite l) is due to the potential
being spherically symmetric, we should doubt that this degeneracy would hold in other
symmetries. Consider, for example, the atomic states nd of a transition-metal atom when
the crystal has cubic symmetry. Let us see what Group Theory tells us (more detail can
be found, for example, in V. Heine, Group Theory in Quantum Mechanics).

A spherically symmetric system is invariant under all operations of the rotation group in
three dimensions. The generators of these operations are the angular-momentum com-
ponents. The irreducible representations of the rotation group (with notation D(l)) are
characterized by the quantum number l, and have dimensions (2l + 1). Their basis func-
tions are the spherical harmonics Ylml

(θ, φ). This means that the energy eigenvalues are
degenerate for all values of ml = l, l − 1, . . . ,−l.

Not all rotations are symmetry operations of a cube. The cubic group consists of the
classes {E, 3, 2z, 2d, 4z} plus the same operations associated with inversion. In this
notation, E is the identity operation, n = 2, 3, 4 denote rotations of 2π/n. The subscripts
z and d specify rotation axes respectively perpendicular to the faces and parallel to a face
diagonal; the 3-axes (120◦ rotations) lie along the body diagonals.

The irreducible representations of this group are denoted as

a1g, a2g, eg, t1g, t2g → even with respect to inversion,

a1u, a2u, eu, t1u, t2u → odd with respect to inversion,

with representations aα, eα and tα being respectively one-, two-, and three-dimensional.
Recalling that the parity of a spherical harmonic is (−1)l , we see that irreducible repre-
sentations containing the subscript g apply to l even, which includes the example that we
are analyzing (l = 2).

The representation D(2), when rotations are restricted to those allowed by the cubic sym-
metry, is reduced into the representations eg and t2g. This is easily verified if we consider
possible basis functions for these representations:

eg → {x2 − y2, 3z2 − r2} ,
t2g → {xy, xz, yz} ,

where r2 = x2 + y2 + z2. These functions, in terms of their angular dependence for fixed r,
can be written as linear combinations of the spherical harmonics Y2m

l
(θ, φ). In particular,
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d3z2−r2

dx2−y2

dxy,dxz,dyz

Figure 1: Graphical representation (polar form) of the d-orbitals belonging to the eg (left,
center) and t2g (right) irreducible representations of the cubic symmetry group. The reference
plane of the last drawing changes for each of the orbitals as indicated by their subscripts.

3z2 − r2 is proportional to Y20, xz and yz are linear combinations of Y2,±1 (with equal
weights), while x2 − y2 and xy are linear combinations of Y2,±2 (with equal weights).

In summary, the D(2) representation, relevant to d-states in an isolated atom, is reducible
into the representations eg and t2g when the atom is in a cubic (octahedral) environment.
The basis functions of these representations are appropriate linear combinations of spherical
harmonics, and can be viewed as atomic orbitals. In this context, is common to refer to
the d orbitals as d3z2−r2 , dx2−y2 , dxy, etc. Figure 1 shows their graphical representations.

The above discussion shows that a crystal field of cubic symmetry partially lifts the 5-
fold degeneracy of l = 2 states that would be observed in an isolated atom, separating
states belonging to the eg and t2g representations. This effect, which also happens for
other symmetries (with their respective groups), is usually called crystal-field splitting.
Determining which states are lower or higher in energy depends on details of the potential.
Since in general the magnetic ion is positively charged, its neighbors (typically oxygen ions)
tend to have negative charge. Then, for an octahedral environment, electrons occupying
eg orbitals of the magnetic ion have higher energy than those in t2g orbitals since they are
more strongly repelled by neighboring oxygens.

In many solids, the oxygen octahedra are either slightly “stretched” or “shortened” along
one of the principal axes (which we may choose as the z direction). This characterizes a
tetragonal distortion of a cube, which causes new splittings: it lifts the double degeneracy
of the eg orbitals, and separates the xy from the xz and yz orbitals in the t2g basis. So,
these representations are no longer irreducible, and are split into lower-dimension ones.

For most transition-metal ions in oxide compounds, these orbitals are filled according to
Hund’s rules, yielding a high spin configuration. However, if the crystal-field splitting is
large in comparison to the residual Coulomb interaction, the lower-energy states will be
filled with electrons of both spin orientations before starting the occupation of the higher-
energy ones, which leads to a low-spin configuration.
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Quenching of the orbital angular momentum

Since a crystal field implies reduction of rotation symmetry, it often happens that it yields
a non-degenerate ground state (not counting spin degeneracy). Through a purely math-
ematical argument, we can conclude that in such a case any component of L has zero
expectation value. The argument applies to a time-reversal-invariant system, for which
the complex conjugate of an energy eigenfunction ψ(r) is also an eigenfunction corre-
sponding to the same eigenvalue. If the eigenvalue is non-degenerate, we conclude that
ψ(r) is real (except for an arbitrary global phase factor). Then, since any component of
L in coordinate representation involves a factor i, its expectation value, if not null, would
be purely imaginary, which is impossible for an observable. Therefore, 〈ψ|Lα|ψ〉 = 0.

It is less obvious if there is degeneracy, but it is easy to verify (EXERCISE) that any
component of the angular momentum of an electron has zero average value in the basis
functions of the eg or t2g representations. For more than one electron, although the analysis
becomes more complex, the argument can still be applied at least at the Hartree level, so
that in most cases the (total) orbital angular momentum averages to zero.

A zero 〈L〉 implies that the orbital angular momentum does not contribute (explicitly) to
the magnetic moment. This is the previously mentioned quenching of angular momentum.
However, second order orbital effects may exist, as discussed below.

Second-order orbital effects

We will focus on situations where there is quenching of L.

In the absence of a magnetic field and neglecting spin-orbit interaction, the ground state
is degenerate in MS, belonging to a subspace whose basis vectors may be denoted as

|Γγ;SMS〉 = |Γγ〉|SMS〉 , (1)

where S is the total spin determined by Hund’s rules, Γ identifies the irreducible represen-
tation to which the ground state belongs, and γ refers to a specific basis function (orbital)
in the Γ representation.

We now include the Zeeman and spin-orbit terms,

HZ = µBH · (L + 2S) , Hso = ξL · S , (2)

as perturbations. A simple projection of these terms on the orbital ground-state involves
the average

〈Γγ|HZ +Hso|Γγ〉 = 2µBH · S , (3)

thus eliminating the orbital part, which reproduces what we obtained for an isolated atom
with the replacement gJ → 2S. Note that we still have a single atom (in the sense that
we are not considering magnetic interactions), but not isolated because it is subjected to
the crystal field.
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Since the “orbital ground state” that we are using does not take into account spin-orbit
interaction or the presence of magnetic field, to get a better estimate of the Hamiltonian
projected on this state we must take into account HZ +Hso in second order of perturbation
theory. We then build the effective Hamiltonian

Heff = 2µBH · S−
∑
Γ′,γ′

|〈Γ′γ′|µBH · L + ξL · S|Γγ〉|2

EΓ′γ′ − EΓγ

, (4)

where EΓγ is the energy of the unperturbed state |Γγ〉. Defining

Λµν ≡
∑
Γ′,γ′

〈Γγ|Lµ|Γ′γ′〉〈Γ′γ′|Lν |Γγ〉
EΓ′γ′ − EΓγ

(5)

and
gµν ≡ 2(δµν − ξΛµν) , (6)

we have
Heff =

∑
µν

(
µBgµνHµSν − ξ2ΛµνSµSν − µ2

BΛµνHµHν

)
. (7)

Heff falls in the category of the so-called spin Hamiltonians (here, for a single atom), since
only spin operators remain. However, orbital effects are present in three features of this
new Hamiltonian: (1) the g factor became a tensor; (2) there is a quadratic spin term,
with different coefficients for different components, that is, an anisotropy in spin space
which is known as crystal-field anisotropy ; (3) the last term shows an induced magnetic
moment in the direction of the field, which characterizes the Van Vleck paramagnetism
(χ > 0 and independent of temperature).

In the (quite common) case of axial symmetry, choosing z as the symmetry axis, the
only non-zero components of the tensor Λ are

Λzz ≡ Λ‖ , Λxx = Λyy ≡ Λ⊥ . (8)

The tensor g is also diagonal, with components g‖ and g⊥. Leaving aside the Van Vleck
term and additive constants, the effective single-atom Hamiltonian can be written as

Heff = g‖µBHzSz + g⊥µB(HxSx +HySy)−DS2
z , (9)

where D ≡ ξ2(Λ‖−Λ⊥). Note that the z axis is an easy axis if D > 0, and a hard axis (or
the xy plane is an easy plane) for D < 0, since the energy is minimized if the eigenvalue
of S2

z in large in the first case and small in the second.

Equation (7), or the particular case described by Eq. (9), still refers to a single localized
magnetic moment. However, it is associated only to spin, with its behavior modified by the
combined effects of orbital angular momentum and crystal field via spin-orbit interaction.
The paramagnetic susceptibility can still be evaluated as in Text 03, but it will no longer be



6 M. A. Gusmão – IF-UFRGS

a scalar in the general case. Nevertheless, it should be noticed that even when quenching
of the orbital angular momentum occurs, the symmetry may be sufficiently high to yield
an isotropic spin Hamiltonian, as, for instance, in the case of a cubic crystal field. Then
we have exactly the same situation analyzed in Text 03, except that the magnetic moment
is exclusively due to the atomic spin.

Rare earth ions

Crystal-field effects on rare-earth ions (incomplete 4f shell) are much weaker than on
transition-metal ions. This is mainly due to the narrow spatial extent of 4f orbitals in
comparison to the occupied 6s orbitals, which implies that the 6s electrons screen the ef-
fect of neighboring atoms on the 4f ones. In consequence, the relative importance of crystal
field and spin-orbit interaction is reversed between transition-metal and rare-earth ions.
For the latter one must first use Hund’s rules to determine the total angular momentum
J of the atom (no quenching) as if in spherical symmetry. Then, as a secondary effect, a
crystal field of axial symmetry splits the levels into doublets with ±MJ . In addition, the
g-factor is not a scalar, presenting a noticeable anisotropy. However, crystal-field effects
on rare-earth ions are weak, being relevant only at very low temperatures.


