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FIP10604 – Text 01 – Introduction

The first observations of magnetic phenomena date back to ancient Greece, in particular,
the attraction of pieces of iron by certain stones which are natural magnets. These stones
are generally iron oxides, like magnetite – Fe3O4 (or FeO·Fe2O3). In the last centuries BC
the Chinese knew about orientation of magnets with respect to Earth’s geographical poles,
and already around 1000 AD primitive compasses of floating assembly were being used.

A more quantitative description of magnetic phenomena began only in late 18th century,
with the statement of a law of interaction between magnetic poles (Coulomb, 1795). Un-
derstanding of these phenomena began shortly after, in the first half of the 19th century,
with magnetic fields being associated to electric currents (Oersted, 1820, Ampère, 1822;
Faraday 1831), and culminating in the unification of electromagnetism (Maxwell, 1864).

Microscopic aspects of magnetism began to be addressed by the end of the 19th century,
when diamagnetism, paramagnetism and ferromagnetism were described (Pierre Curie,
1883-5). About 20 years later, a classical statistical theory of paramagnetism was proposed
(Langevin, 1905), and the molecular-field hypothesis was stated (Weiss, 1906). These
approaches already referred to a collective behavior of microscopic magnetic moments, but
without a clear explanation of their origin. This happened only after the experimental
(Uhlenbeck and Goudsmit, 1925) and theoretical (Dirac, 1927) discovery of the electron’s
spin, which allowed to propose the mechanism of exchange interactions (Heisenberg, 1929),
followed by elaboration of theories of antiferromagnetism (Néel, 1936) and ferromagnetism
(Néel, 1948).

In this course, we will restrict ourselves to the study of basic aspects of magnetism in
solids. Our focus will be on understanding its origins at the microscopic level, and the role
of interactions that lead to the macroscopic phenomena observed in experiments.

Basic concepts

Let us begin with Maxwell’s equations (in the International System of Units – SI).

∇ ·D = ρ , ∇× E = −∂B

∂t
,

∇ ·B = 0 , ∇×H = j +
∂D

∂t
. (1)

The involved quantities are

E: electric field, D: electric displacement, ρ: free-charge density
H: magnetic field, B: magnetic induction, j: free-current density.
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Important relations between some of them are

B = µ0(H + M) , D = ε0E + P , (2)

where the magnetization M and the electric polarization P of the medium are introduced.
The constants appearing in Eq. (2) are µ0 = 4π × 10−7 N/A2, the vacuum’s magnetic
permeability, and ε0 = 1/(µ0c

2), the vacuum’s electric permittivity (c being the speed of
light in vacuum).

For homogeneous and isotropic systems (no spontaneous magnetization or polarization), if
the applied fields are sufficiently weak to allow restriction to linear response, we have

j = σE , M = χH , (3)

where σ is the electric conductivity and χ is the magnetic susceptibility.

Generalized susceptibility

Equations (3) are formulated in a very simplified way. The simple form M = χH, with
a constant χ, only applies to the case of a static and uniform field, i.e., independent of
position and time. In a more general case, we expect the response (magnetization) at a
point r and time t to dependent also on the stimulus (magnetic field) at other points in
space, and even other (earlier) times. A generalized susceptibility is defined by the relation

M(r, t) =
∫ ∞
−∞

dt′
∫
dr′χ(r− r′, t− t′) ·H(r′, t′) . (4)

It is implicitly assumed that χ(r− r′, t− t′) = 0 for t′ > t. We also assume (as is generally
verified) that the system is homogeneous and stationary, so that the susceptibility depends
on differences between positions in space or between instants in time. On the other hand,
the susceptibility appears as a tensor to take into account the possibility of a non-isotropic
system.

The convolution form (both in space and in time) of Eq. (4) makes it convenient to use
Fourier transforms of the quantities appearing there. Introducing the Fourier components
of a generic function F (r, t) as

F (k, ω) =
∫
dt

∫
drF (r, t) e−i(k.r−ωt) , (5)

Eq. (4) assumes the simple form

M(k, ω) = χ(k, ω) ·H(k, ω) . (6)

Note that a uniform field has a non-zero Fourier component only for k = 0, and that a
static field has a non-zero Fourier component only for ω = 0. Therefore, the constant
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scalar susceptibility χ of Eq. (3) can be seen as the limit of χ(k, ω) for k→ 0 and ω → 0
in the case of an isotropic system, when the tensor χ reduces to a scalar (multiplied by
the identity matrix).

So far we have considered that a linear relation between M and H is valid. More generally,
one should have a function M(H). In this context, the generalized forms (4) and (6) should
be written for the variations δM and δH, with a field-dependent susceptibility. Then the
susceptibility tensor has components given by

χαβ(H) =
∂Mα(H)

∂Hβ

. (7)

This definition is also appropriate for a system with spontaneous magnetic order, as we
will see later, when the magnetization is non-zero even in the absence of applied external
field.

Magnetization and magnetic moment

In the domain of classical electromagnetism, a planar wire loop enclosing an area A and
carrying an electric current i has a magnetic dipole moment (or, simply, magnetic
moment) of module µ = iA. Its application point is the loop center, and its direction
(perpendicular to the loop’s plane) is determined by the “right-hand rule”. More generally,
the magnetic moment at the center r of a current distribution with density j(r′) confined
to a volume V ′r is given by

µ(r) =
1

2

∫
V ′
r

r′ × j(r′)dr′ . (8)

The magnetization is defined as the magnetic moment per unit volume. So, if dµ(r) is
the magnetic moment associated with an elementary volume dV centered at point r, then
the magnetization at that point is

M(r) =
dµ(r)

dV
. (9)

In this equation, the magnetization appears as a (local) position-dependent quantity, but it
is implied that the “elementary” magnetic moment dµ(r) is macroscopic. In measurements
of magnetic properties of materials, the magnetization is generally determined for an entire
sample, thus corresponding to the ratio between the sample’s net magnetic moment and
its total volume (M = µtot/V ).

Units

From the “definition” of magnetic moment, Eq. (8), we see that its SI units are Am2.
It then follows that the magnetization is measured in A/m. These are also the units of
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magnetic field, since M and H have the same physical dimension, as seen in Eq. (2). On the

other hand, the magnetic induction B is measured in tesla (T), with 1 T =
µ0

4π
×107 A/m .

It is quite usual in the field of Magnetism (partly for historical reasons) to employ the
so-called Gaussian units, based on the CGS system. Then, Maxwell’s equations take the
form

∇ ·D = 4πρ , ∇× E = −1

c

∂B

∂t
,

∇ ·B = 0 , ∇×H =
4π

c
j +

1

c

∂D

∂t
, (10)

and relations (2) are replaced by

B = H + 4πM , D = E + 4πP . (11)

Therefore, the Gaussian quantities B, H, and M all have the same physical dimension.
Nevertheless, units with distinct denominations are employed: gauss (G) for B, oersted
(Oe) for H, and emu/cm3 for M, with emu (electromagnetic unit – equivalent to erg/gauss)
being the unit of magnetic moment µ. The following table summarizes the magnetic units
introduced above for both unit systems (we use H, B, M , and µ to denote magnitudes of
the respective vectors).

Quantity symbol SI unit Gaussian unit conversion factor
magnetic induction B tesla (T) gauss (G) 1 T = 104 G
magnetic field H A/m oersted (Oe) 1 A/m = 4π × 10−3 Oe
magnetic moment µ A m2 emu 1 A m2 = 103 emu
magnetization M A/m emu/cm3 1 A/m = 10−3 emu/cm3

Note that the numerical value of a magnetic field measured in oersted is the same as
that of the corresponding magnetic induction measured in gauss. It is also usual to quote
a measured magnetic field by the corresponding value of µ0H in tesla. For conversion
purposes, it is worth keeping in mind that µ0H = 1 T corresponds to H = 10 kOe.

It is also worth remarking that the magnetic susceptibility is dimensionless in both unit
systems, but the numerical value of χ in SI is 4π times larger than its Gaussian value when
the susceptibility in the latter is expressed in its “natural” units (emu/cm3 Oe). However,
in experimental measurements of susceptibility it is usual to quote the molar susceptibility,
with its value in m3/mol (SI) or emu/mol Oe (Gaussian)), which corresponds to defining
the magnetization as the magnetic moment per mol of the substance and not per unit
volume.

In this course, especially when dealing with microscopic models, we will use the Gaussian
formulation, since in the absence of a magnetization it allows to exchange the vectors B
and H without worrying about factors of µ0.
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Diamagnetism and Paramagnetism

The denomination diamagnetic applies to substances that, not presenting magnetization
at zero field, exhibit a magnetization opposite to an applied field, that is, a negative
magnetic susceptibility. On the other hand, substances that do not present spontaneous
magnetization but become magnetized parallel to the applied field, i.e., have a positive
magnetic susceptibility, are called paramagnetic.

Intuitively, the existence of microscopic electric charges in a substance (although globally
neutral), and taking Lenz’s Law into account seems to explain diamagnetism. In fact, the
situation is more complex, since the diamagnetic response is observed for static magnetic
fields. Paramagnetism can only be understood if we consider the existence of permanent
microscopic magnetic moments, even though the substance does not show an overall
magnetization at zero field. It is known from classical electromagnetism that a magnetic
dipole minimizes its potential energy when oriented parallel to the applied field. We will
see later how a quantum-mechanical treatment and the existence of the electron spin allow
us to understand both kinds of behavior.

Magnetic order

The very origin of Magnetism as a “discipline”, as we have mentioned earlier, is due to
the existence of substances that exhibit spontaneous magnetization. These substances are
called ferromagnetic, and their best-known example is obviously iron. However, ferro-
magnetic substances do not always have a net non-zero magnetization, but remain magne-
tized after application and removal of a sufficiently intense magnetic field. To understand
these phenomena we have to assume the presence of interactions between microscopic
magnetic moments favoring their parallel alignment, as we will see during this course.

The behavior of another type of substances may be understood only by considering that
they have locally oriented magnetic moments, as in the case of ferromagnetism, but that al-
ternately reverse their orientations throughout the system, so that the net magnetization
is zero. Such substances are called antiferromagnetic.

Other types of magnetic order are also observed, as ferrimagnetism (similar to antiferro-
magnetism, but with non-equivalent opposing moments), helimagnetism (ferromagnetic
order in “layers” with a non-zero angle between the magnetizations of successive layers),
etc.

It is worth mentioning a kind of magnetic system know as spin glass . In such a system,
there exist permanent microscopic magnetic moments but they are not ordered. However,
they do not individually average to zero, as it happens in paramagnetism, but are frozen
at randomly oriented directions with respect to one another.

These briefly described phenomenological aspects of magnetism will be explored in more
detail throughout the course, starting from a microscopic point of view, and seeking to
understand the observed phenomena at the macroscopic level.


