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FIP10601 – Text 18

Phonon effects on electronic properties

Phonon effect on the electrical conductivity

Our first analysis of the electrical conductivity of metals was based on the Boltzmann
equation (Texts 7 and 8). In the linearized version of that equation the collision term can
be written as (

∂f(k)

∂t

)
col

=

∫
d3k

(2π)3
W(k,k′) [f(k′)− f(k)] δ(εk′ − εk) , (1)

where W(k,k′) is the cross section for elastic scattering of an electron between the states
k and k′. In a scattering event involving the electron-phonon interaction, the emitted or
absorbed phonon has a much smaller energy than that of relevant electrons (near the Fermi
level), justifying the use of a linearized form valid for elastic scattering. At thermodynamic
equilibrium, we can write (using the notation k′ = k + q),

W(k,k + q) =Wa(q) b(q) +We(−q) [b(−q) + 1] , (2)

whereWa(q) andWe(−q) are intrinsic probabilities of, respectively, absorption and emis-
sion of a phonon with the indicated wavevector, and b(q) is the Bose-Einstein distribution
(average number of phonons in mode q). Note thatW(k,k+q) does not depend explicitly
on k, but the distribution functions in Eq. (1) ensure the restriction to electrons near the
Fermi surface.

Inspecting the electron-phonon part of the general Fock-space Hamiltonian for electrons
and phonons, Eq. (26) of Text 17, we see that the intrinsic absorption and emission prob-
abilities are equal, and given by

Wph(q) = |Γq|2 . (3)

From the form of Γ(q), Eq. (25) of Text 17, we can deduce that

Γq ∼
√
q ⇒Wph(q) = γq, (4)

where γ is a constant that can be treated as a phenomenological parameter. This form
comes from considering that V (q) should be nearly constant due to the local nature of
a screened electron-ion interaction, and that the frequencies of acoustic phonons can be
approximately taken as linearly dependent on q ≡ |q|.
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In the relaxation-time approximation we obtained (Text 7)

1

τ
=

1

(2π)3

∫
SF

dSk

h̄vF
W(εF , θ) (1− cos θ) , (5)

where W(εF , θ) is a simplified notation for W(k,k + q) when calculated for k and k + q
both on the Fermi surface, θ being the angle between these wavevectors. From Eqs. (2)–(4),
we have

W(εF , θ) = γq [2b(q) + 1] , (6)

where we use the fact that the Bose function depends on q through ω(q), which is invariant
under inversion of the wavevector. Dependence on the scattering angle θ is determined by
the transferred wavevector q. A simple geometrical construction shows that

q

2kF
= sin(θ/2) . (7)

We are interested in determining how the relaxation time depends on temperature. This
dependence comes from the Bose function b(q). Without keeping track of multiplicative
constants (since we already have one phenomenological parameter), but concentrating on
the functionality with temperature, we first note that dependence on T appears in the
combination ω(q)/T . Assuming a linear dispersion relation, ω = c q, and turning functions
of θ in Eq. (5) into functions of q through Eq. (7), we end up with

1

τ
∼
∫
q4 cotanh

( c q
2T

)
dq , (8)

where we used the (easily verifiable) relationship 2b(q)+1 = cotanh( c q/2T ). Changing the
integration variable to x ≡ c q/T generates a prefactor T 5. The upper limit of integration
in x may be taken to infinity for low temperature (T � ΘD), so that the remaining integral
becomes a constant. The final conclusion is that

1

τ
∼ T 5 (9)

in the low-temperature regime. Hence, the electric resistivity varies in proportion to T 5

(above a residual contribution from impurity scattering). This behavior is indeed confirmed
in experiments.

Interaction between electrons via exchange of virtual phonons

The electron-phonon contribution to electrical resistivity comes from real processes of
electron scattering by emission or absorption of phonons. Let us now examine in more
detail the role of virtual processes. At the end of Text 17, we already mentioned that
such processes contribute to the electron self-energy, which means that they renormalize
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the effective mass. This is the mechanism to polaron formation, previously mentioned in
our remarks about Fermi-liquid instabilities in Text 15.

The other instability mentioned there in connection to electron-phonon interaction was
superconductivity. It arises from an effective electron-electron interaction through phonon
exchange, and we will see that this interaction leads to formation of electron pairs near
the Fermi surface, with the paired state having lower energy than the Fermi-liquid.

Description of electron pairing in the many-body approach involves anomalous single-
particle Green’s functions (two creation or two annihilation operators), as electron and
hole states become mixed. To simplify the analysis, as well as to expand our collection
of theoretical methods, we will not use the Green’s function method. Instead, we will
introduce a unitary transformation that explicitly generates a pairing interaction in the
transformed Hamiltonian, and its consequences will be analyzed in a mean-field approxi-
mation.

Transformation of the Hamiltonian

We begin with the Hamiltonian of electrons and phonons that we obtained in Text 17,

H =
∑
kσ

εkc
†
kσckσ +

∑
q

h̄ω(q)

[
a†qaq +

1

2

]
+

1

2

∑
kk′q
σσ′

U(q) c†k+q,σ c
†
k′−q,σ′ ck′σ′ ckσ +

∑
kqσ

Γ(q) (aq + a†−q) c†k+q,σckσ . (10)

Now, let us define a transformed Hamiltonian

H̃ ≡ e−SH eS , (11)

where S must be an anti-Hermitian operator for the transformation to be unitary. We will
initially develop a general analysis of this type of transformation before applying it to our
specific problem.

Equation (11) may be expanded as follows:

H̃ = H + [H, S] +
1

2!
[[H, S], S] +

1

3!
[[[H, S], S], S] + · · · (12)

We assume that the Hamiltonian can be decomposed in two parts,

H = H0 + λH1 , (13)

where λ is an auxiliary parameter, which will be eliminated at the end by choosing λ = 1.
Thus,

H̃ =H0 + λH1 + [H0, S] + λ[H1, S]

+
1

2
[[H0, S], S] +

1

2
λ[H1, S], S] + · · · (14)
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Since the purpose of this transformation is to take into account the effect of H1, it is
obvious that S must be chosen to be null when λ = 0. This means that S is (at least)
linear in λ. So, the linear terms in Eq. (14) are

λH1 + [H0, S] . (15)

We want to choose S such that H1 is suppressed from the transformed Hamiltonian in first
order. This implies the condition

λH1 + [H0, S] = 0 . (16)

Assuming that we can solve the eigenvalue problem

H0|n〉 = En|n〉 , (17)

matrix elements of Eq. (16) in this basis result in

λ〈n|H1|m〉+ (En − Em)〈n|S|m〉 = 0 . (18)

Therefore, taking λ = 1, we obtain

〈n|S|m〉 =
〈n|H1|m〉
Em − En

. (19)

This relation determines S through its matrix elements in the basis composed by the
eigenvectors of H0.

Returning to our problem, we will slightly depart from the above scheme in the sense that
we will leave the el-el interaction untouched, as an additive term left out of the Hamiltonian
for the time being. So, the transformation will involve the non-interacting terms of Eq. (10)
as H0, while H1 will be the electron-phonon interaction, i.e.,

H1 =
∑
kqσ

Γq (aq + a†−q) c†k+q,σckσ . (20)

The states |n〉 and |m〉 for which H1 has nonzero matrix elements differ by one unity
(±1) in the number of phonons, and a changed wavevector for the “scattered” electron.
According to Eq. (19), S has nonzero matrix elements between the same states. Therefore,
S should have the form

S =
∑
kqσ

Γq (αkqaq + βkqa
†
−q) c†k+q,σckσ . (21)

To fully satisfy the relationship between matrix elements of S and H1, Eq. (19), the
coefficients αkq and βkq should be chosen to present a denominator with the corresponding
energy difference between the two states. Therefore, the appropriate choice is

αkq =
1

εk − (εk+q − h̄ωq)
(22)

βkq =
1

εk − (εk+q + h̄ωq)
, (23)
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where we simplified the notation of phonon frequencies (using the wavevector as a sub-
script), and made use of the relationship ω−q = ωq. By appropriate changes in the sum-
mation wavevectors, and using the explicit form of Γq, Eq. (25) of Text 17, we can check
that S† = −S, confirming that S is an anti-Hermitian operator.

As the relevant regime is of weak electron-phonon coupling (strong coupling yields heavy
polarons), we build the effective Hamiltonian keeping only terms up to second order in λ
in the generic expansion (14). The linear term is zero by construction. Furthermore, under
condition (16), the second-order term in Eq. (14), for λ = 1, becomes [H1, S]/2. After
evaluating this commutator, the final step is to project H̃ in the subspace of zero phonons
(low-temperature limit), obtaining a purely electronic effective Hamiltonian, which has the
form

Heff =
∑
kσ

εk c
†
kσckσ +

1

2

∑
kk′q
σ

Veff(k,q) c†k+q,σ c
†
k′−q,σ′ ck′σ′ ckσ , (24)

where

Veff(k,q) = U(q) +
2|Γq|2 h̄ωq

(εk+q − εk)2 − (h̄ωq)2
. (25)

It is important to make the following observations about the effective interaction potential:

� The first term is the Coulomb repulsion between electrons, that had been left out
from the above development. Upon a perturbative treatment of e-e interactions,
it becomes screened (see Text 15), and can therefore be greatly reduced, allowing
the second term to dominate. In other words, we are focusing in the occurence
of superconductivity in metals for which the independent-electron approximation is
good, allowing to absorb the effects of U(q) into the periodic potential to
which the electrons are subjected, hence into the energies εk. Alternatively, these
energies may be interpreted as associated to Fermi-liquid quasi-particles.

� The second term is an effective electron-electron interaction originated from the
electron-phonon interaction (phonon exchange). The virtual electron-phonon pro-
cesses involved here do not conserve energy. A negative (attractive) potential is
favored when the difference of electronic energies in the denominator of Eq. (25) is
smaller than the energy of the exchanged phonon. Thus, the most favorable condi-
tions for attractive interaction are:

– a high-frequency phonon (ωq ∼ ωD), whose q has a magnitude near the Debye
wavevector qD, which is comparable to the Fermi wavevector kF ;

– electronic energies within a range smaller than the phonon energy around the
Fermi surface.

A simple geometric construction, shown in Fig. 1 (assuming a spherical Fermi surface),
allows to verify that the wavevectors of the two electrons involved should be nearly an-
tiparallel. We then enforce this restriction (k ′ = −k) in the interaction term of Heff .
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Figure 1: Schematic representation of the wavevectors of two electrons near the
Fermi surface and of a large-momentum phonon that they exchange.

Moreover, considering that the total spin is zero, and viewing the system as consisting of
pairs of electrons with opposite wavevectors (Cooper pairs), we assume that each pair has
zero total spin (singlet pairing). This kind of pairing preserves time-reversal invariance, as
the paired electrons occupy individual states related by a time-reversal transformation.

Based on these arguments, and changing the notation so that k + q → k ′, we rewrite
Eqs. (24) and (25) in the form

Heff =
∑
kσ

εk c
†
kσckσ +

∑
kk′

V(k,k′) c†k′↑ c
†
−k′↓ c−k↓ ck↑ , (26)

V(k,k′) =


−2|Γk′−k|2

h̄ωk′−k
, |ε̄k| ∼ |ε̄k′ | < h̄ωD , |k ′ − k| ∼ qD ,

0 , other energies.

(27)

Note that the effective interaction has been neglected in the wavevector range in which it
would be repulsive, since its effect would be equivalent to the Coulomb repulsion, being
also absorbed in the band energies. The effective Hamiltonian in Eq. (26) is known as the
BCS Hamiltonian, proposed by Bardeen, Cooper, and Schrieffer. It provides the basis to
study superconductivity, as discussed in the following section.

BCS Hamiltonian – Superconductivity

From now on, we will implicitly assume that single-particle energies εk are measured
relative to the chemical potential, dropping the bar above εk of our previous notation.

Once more we stress the fact that the interaction term in Eq. (26) may be seen as involving
annihilation of an electron pair with wavevectors k and −k, and creation of a pair with
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wavevectors k′ and −k′. Since pairing should lead to a qualitative change in the nature of
the ground state with respect to a Fermi liquid, it is not convenient to treat the interaction
perturbatively. The simplest alternative approach is a mean-field approximation, which
mathematically amounts to a “decoupling” of operator products.

Given two generic operators A1 and A2, their product can be approximately decoupled as

A1A2 ' 〈A1〉A2 + 〈A2〉A1 − 〈A1〉〈A2〉 . (28)

The neglected part is quadratic in the differences between each operator and its average
value. If the product A1A2 is part of a Hamiltonian, the problem becomes self-consistent,
since average values now appear in the Hamiltonian with which they are to be evaluated.

We use this to decouple the interaction term in the BCS Hamiltonian, Eq. (26), with A1

and A2 corresponding to a pair-creation and a pair-annihilation operator, respectively. We
then have

c†k′↑ c
†
−k′↓ c−k↓ ck↑ = 〈c†k′↑ c

†
−k′↓〉 c−k↓ ck↑

+ c†k′↑ c
†
−k′↓ 〈c−k↓ ck↑〉

− 〈c†k′↑ c
†
−k′↓〉 〈c−k↓ ck↑〉 . (29)

Note that the original product conserves the number of particles, while the decoupled terms
only do it on the average, provided the averages of pair-creation and pair-annihilation
operators are equal. Taking into account that these averages will appear in the mean-field
Hamiltonian in products with the interaction, we define

∆k ≡ −
∑
k′

V(k,k′) 〈c−k′↓ ck′↑〉 = −
∑
k′

V(k,k′) 〈c†k′↑ c
†
−k′↓〉 . (30)

The choice of ∆k as a real quantity is not general, but does lead to a self-consistent solution
in the case of a homogeneous system.

The effective potential V(k,k′), given by Eq. (27), can be greatly simplified. Taking into
account that the phonon wavevector is essentially of magnitude qD, ωk′−k may be replaced
by ωD in the region where the potential is nonzero. By the same reason, Eq. (4) implies
that Γ(q) is approximately constant. Then, V(k,k′) is constant (and negative) in the
region where it is not null, so that it may be written in the form

V(k,k′) =

{
−V/N, for |εk|, |εk′ | < h̄ωD

0, otherwise,
(31)

where V is a pairing coupling constant. The factor 1/N comes from |Γk′−k|2 in Eq. (27),
taking into account Eqs. (20) and (26) of Text 17 in the case of a nearly local electron-ion
interaction. The relevant physical quantities depend on the value of V , which enters the
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Hamiltonian through ∆k, as seen in Eqs. (30) and (31). Thus, the Hamiltonian (which we
now denote simply by H) becomes

H =
∑
kσ

εk c
†
kσckσ −

∑
k

∆k (c−k↓ ck↑ + c†k↑ c
†
−k↓) +

∑
k

∆k 〈c−k↓ck↑〉

=
∑
k

εk (c†k↑ ck↑ + c†−k↓ c−k↓)−
∑
k

∆k (c−k↓ ck↑ + c†k↑ c
†
−k↓) +

∑
k

∆k 〈c−k↓ck↑〉 . (32)

In the last line we explicitly summed over spin states, and changed the sign of one of the
summation wavevectors so that we always have the combinations (k ↑) and (−k ↓). Note
that ∆k is nonzero only for k in the region where V(k,k′) 6= 0. Out of this region, the
Hamiltonian is reduced to that of an electron gas.

Diagonalization

The mean-field BCS Hamiltonian, Eq. (32), is a single-particle Hamiltonian, but non-
diagonal. To obtain single-particle excitation energies we must diagonalize it. This easily
accomplished if we rewrite the Hamiltonian using an explicit matrix form,

H =
∑
k

(c†k↑ c−k↓)

(
εk −∆k

−∆k −εk

)(
ck↑
c†−k↓

)
+
∑
k

εk +
∑
k

∆k 〈c−k↓ck↑〉 . (33)

Note that we used c†−k↓ c−k↓ = 1− c−k↓ c†−k↓, which generated the sum of free-electron en-
ergies, and a minus sign in the last diagonal element of the square matrix. Diagonalization
of this matrix involves calculating the roots of a determinant,∣∣∣∣ λ− εk ∆k

∆k λ+ εk

∣∣∣∣ = 0 . (34)

The solution is

λ = ±Ek , Ek ≡
√
ε2
k + ∆2

k . (35)

Leaving the details as an EXERCISE, we observe that the corresponding eigenvectors
allow us to obtain new fermion operators as combinations of the original ones,

αk = uk ck↑ − vk c†−k↓ ,
βk = uk c−k↓ + vk c

†
k↑ , (36)

with

u2
k =

1

2

[
1 +

εk
Ek

]
, v2

k =
1

2

[
1− εk

Ek

]
. (37)

A simple form results for the Hamiltonian in terms of these new operators,

H =
∑
k

Ek(α†kαk + β†kβk) + E0 , (38)
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where
E0 =

∑
k

[
εk − Ek + ∆k〈c−k↓ck↑〉

]
. (39)

Eq. (38) describes single-particle excitations out of a condensate of Cooper pairs, which
is the new ground-state. From Eqs. (30) and (31) we see that ∆k is nearly independent
of k (i.e., ' ∆) in the region where it is nonzero. The important point here is to notice
that there is a minimum energy ∆ for single-particle excitations in the superconducting
state. Even though these excitations are fermionic, the system is no longer a Fermi liquid.
It has an interaction-induced gap in the energy spectrum around the k-space surface
that would be the FS in the absence of pairing. We have not evaluated ∆, which must
be done self-consistently since it appears in the Hamiltonian. With further development,
it can be verified that the self-consistent solution for an attractive pairing potential (as
assumed here) implies that ∆ > 0 in the BCS ground-state, and that this is the actual
ground-state, having lower energy than the Fermi liquid. In addition, a statistical analysis
shows that the gap survives at finite temperature, going to zero at a critical temperature
Tc, above which the system becomes a normal Fermi liquid.

Superconductivity

The new state obtained with the BCS Hamiltonian is identified as a superconducting state.
The meaning of “state” here is not that of a quantum state but of a phase of matter. We will
not develop in this course a detailed study of superconductivity, whose phenomenology is
quite rich. We will just add a comment that may justify why this gapped state is identified
as superconductivity. One of the most remarkable characteristics of a superconductor is
the absence of electrical resistivity, which can be observed as no relaxation of an electric
current established in the system (with a convenient geometry, e.g., a ring). This can
be understood if we look back at what happens in a normal metal. As we have seen
before, the current relaxation in a quantum model of a metal is interpreted as the effect
of nearly elastic collisions that reduce the total momentum of the conduction electrons,
counteracting the action of an external electric field. This works as a consequence of
the existence of a Fermi surface. However, if there is a gap around this surface, such
collisions cannot occur because the available states to scattered electrons are separated by
a finite energy.


