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Electron-phonon interaction

So far, our study of solids was restricted to electronic degrees of freedom, treating the
lattice (ensemble of periodically arranged ions) as absolutely rigid. Although this is a
reasonable approximation in many cases, it is known that degrees of freedom related to ion
movements play an important role in various phenomena. In addition to direct effects of
these movements (e.g., specific heat and thermal conductivity of insulating solids), we have
already mentioned lattice-vibration effects on electronic transport as well as their role in
Fermi-liquid instabilities, which will be addressed later on. In this Text we briefly review
the description of lattice vibrations, and introduce them into the many-body formalism
that we have been using to deal with electrons in solids.

Lattice vibrations (short review)

Based on the very narrow lines characteristically observed in X-ray diffraction spectra of
crystalline solids, the starting hypothesis is that ion motion consists of small-amplitude
oscillations around the equilibrium positions that define the crystal structure. These os-
cillations are commonly called lattice vibrations. Because interactions keep ions connected
to one another, such vibrations are collective motions, and should be analyzed in the
context of normal modes of the whole system.

The instantaneous position of a given ion can be written as

ri(t) ≡ Ri + ui(t) , (1)

in terms of its equilibrium position Ri (which is a lattice vector in monoatomic lattices)
and the displacement ui. Thus, the total kinetic energy of the atoms is

T =
1

2
M
∑
i

u̇2i . (2)

The assumption of small amplitude of oscillations leads to the harmonic approximation.
It consists in expanding the potential energy (here denoted by Φ) in powers of the ionic
displacements ui, keeping only the quadratic term, which is the first non null if we choose
the zero of energy at the equilibrium configuration.

A Fourier representation of the displacements defines normal coordinates Qk such that

uαi (t) =
1√
NM

∑
k

εαkQk(t) eik.Ri , (3)
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where N is the number of primitive cells, M is the mass of an ion, and εαk (α = x, y, z) are
the components of a polarization vector εk, of unit length. Note that Qk may be complex,
but Q∗k = Q−k because the displacements uαi are real.

The classical equations of motion in terms of normal coordinates are

Q̈kε
α
k = −Qk

∑
β

Dαβ(k)εβk , (4)

where

Dαβ(k) ≡ 1

M

∑
j

Φαβ
ij e−ik.(Ri−Rj) (5)

and

Φαβ
ij ≡

 ∂2Φ

∂uαi ∂u
β
j


0

(6)

These equations describe harmonic vibrations of a system of particles coupled by elas-
tic forces, with Φαβ

ij playing the role of spring constants. Introducing the time Fourier
transform,

Qk(t) =
∫ ∞
−∞

dωQk(ω) e−iωt , (7)

we can write a matrix version of Eq. (4) as

D(k) · εkµ = ω2
µ(k) εkµ . (8)

This is an eigenvalue equation for the matrix D(k). The frequencies ωµ(k) correspond
to normal modes of lattice vibration, with definite wavelengths. For each wavevector k
the subscript µ identifies eigenvalues in different branches of the frequency spectrum, since
the values of k are essentially continuous for a sufficiently large system. For monoatomic
lattices, D(k) is a 3 × 3 matrix, and the three branches are acoustic, i.e., ωµ(k) → 0
when k → 0. Lattices with more than one ion per primitive cell additionally have optical
branches, with finite frequency in the long-wavelength limit. A generic vibration state of
the lattice can be decomposed into independent normal modes.

Introducing the canonically conjugate momenta

Pkµ =
∂L

∂Q̇kµ

= Q̇∗kµ , (9)

where L = T − Φ is the Lagrangian, we obtain the classical Hamiltonian for lattice vibra-
tions,

H =
1

2

∑
k, µ

[
P ∗kµPkµ + ω2

µ(k)Q∗kµQkµ

]
. (10)
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Quantization

This is a typical case of canonical quantization. We just reinterpret the conjugate variables
as operators obeying canonical commutation relations (not omitting h̄),

[Qkµ, Pk′µ′ ] = i h̄ δkk′δµµ′ . (11)

Complex conjugates correspond to Hermitian conjugates (or adjoints), Q†kµ and P †kµ, obey-

ing the conditions Q†kµ = Q−k,µ and P †kµ = P−k,µ.

Phonons

It is now convenient to introduce the following operator and its Hermitian conjugate:

akµ ≡
1√

2h̄ωµ(k)

[
ωµ(k)Qkµ + iP †kµ

]
,

a†kµ =
1√

2h̄ωµ(k)

[
ωµ(k)Q†kµ − iPkµ

]
. (12)

Inverting these relations and replacing into the Hamiltonian, we obtain

H =
∑
k, µ

h̄ωµ(k)
[
a†kµakµ +

1

2

]
. (13)

It is easy to show that the operators a†kµ and akµ satisfy commutation relations of (respec-
tively) creation and annihilation boson operators,

[akµ, a
†
k′µ′ ] = δkk′δµµ′ . (14)

Thus, besides the additive zero-point energy, Eq. (13) can be viewed as the Fock-space
Hamiltonian of a gas of bosons, each boson carrying an energy quantum h̄ωµ(k), corre-
sponding to a lattice-vibration excitation of wavevector k on branch µ. These bosons are
called phonons.

The well known Bose-Einstein statistics can be applied to phonons, allowing to determine,
for example, the low-temperature specific-heat as cV = const.× T 3, which is confirmed in
experiments. The reference temperature here is the Debye temperature, ΘD = h̄ωD/kB,
defined within the Debye model (linear relationship between frequency and wavevector),
in terms of the Debye frequency ωD, which is comparable in magnitude to the maximum
frequency of acoustic branches. ΘD is typically two orders of magnitude smaller than the
Fermi temperature in metals.



4 M. A. Gusmão – IF-UFRGS

Electron-phonon interaction

Effects of lattice vibrations on electrons (and vice-versa) have their origin on the interaction
between electrons and ions, included in the generic Hamiltonian of Text 1 as

Hel−ion =
∑
i,l

V (rl − ri) , (15)

where the subscripts i and l refer to ions and electrons, respectively. V (rl−ri) is essentially
a Coulomb potential with screening corrections.

We now expand V (rl − ri) in powers of the displacements ui, defined in Eq. (1),

V (rl −Ri − ui) = V (rl −Ri)− ui ·
(
∂V (r)

∂r

)
r=rl−Ri

+ . . . (16)

The first term on the r.h.s., when summed over the ionic equilibrium positions, gives the
periodic potential to which electrons are subjected. This term is therefore taken into
account in the independent-electron energies ε(k). The remaining terms involve ionic
displacements, and can be interpreted as electron-phonon interaction. We will keep only
the lowest-order one, which in this case is linear in ui.

Going back to the above-mentioned generic Hamiltonian of electrons and ions (Text 1),

H = Hel +Hion +Hel−ion , (17)

we have that:

(i) summing Hel (electron’s kinetic energy and e-e interaction) with the equilibrium
part ofHel−ion reproduces the electronic Hamiltonian that we have studied via many-
body methods;

(ii) Hion in the harmonic approximation yields the free-phonon Hamiltonian of Eq. (13);

(iii) the part ofHel−ion involving ionic displacements (in first order) generates the electron-
phonon interaction Hamiltonian

Hel−ph = −
∑
i,l

ui · [∇V (r)]r=rl−Ri
. (18)

So, we have now a complete Hamiltonian of a system of electrons and phonons to
model a crystalline metal.
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Second quantization

As we did for the other parts of the Hamiltonian, we should write Hel−ph in second quan-
tization, that is, in terms of creation and annihilation operators of both electrons and
phonons. First, using Eq. (3), we express the displacements ui in terms of the generalized
coordinates Qkµ. We then write the latter as

Qkµ =

√√√√ h̄

2ωµ(k)
(akµ + a†−k,µ) , (19)

which can be readily checked from Eqs. (12), and the fact that Q†−kµ = Qkµ.

On the other hand, we can use the Fourier representation of the electron-ion potential,

V (r) =
1√
N

∑
q

V (q) eiq.r , (20)

to obtain

∇V (r) =
i√
N

∑
q

qV (q) eiq.r . (21)

With this, we have

Hel−ph = − i√
M

1

N

∑
i,l

∑
k,q,µ

V (q)

√√√√ h̄

2ωµ(k)
(akµ + a†−k,µ) εkµ · q eiq.rl ei(k−q).Ri . (22)

The sum over i is simply
1

N

∑
i

ei(k−q).Ri = δkq , (23)

while the scalar product εqµ · q selects only the longitudinal polarization, thus eliminating
the sum over phonon branches (which allows to drop the subscript µ).

With respect to electronic degrees of freedom, we have a single-particle potential, for
which the second quantization rule is to take the matrix element between two k-states
multiplied by a creation operator into the final state and an annihilation operator from
the initial one. The only part that depends on electron coordinates in Eq. (22) is the
exponential exp(iq.rl). Using plane waves instead of Bloch states (as we have been doing),
yields the matrix element

〈k′|eiq.r|k〉 =
1

V

∫
d3r ei(k+q−k′).r = δk′,k+q . (24)

Equation (22) can then be written in the simple form

Hel−ph =
∑
kqσ

Γ(q) (aq + a†−q) c†k+q,σckσ , (25)
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where

Γ(q) ≡ − i√
M
εq · qV (q)

√
h̄

2ω(q)
. (26)

In spite of the i factor in the above equation, Hel−ph is Hermitian. This can be easily
verified taking into account that ω(−q) = ω(q), and that, due to the fact that ui and V (r)
are real, ε−q = εq and V (−q) = V ∗(q) , which imply that Γ∗(q) = Γ(−q). The structure
of Eq. (25) allows to interpret the electron-phonon (el-ph) interaction as a scattering of an
electron by absorption or emission of a phonon.

Putting it all together, the complete second-quantization Hamiltonian of electrons and
phonons reads

H =
∑
kσ

εkc
†
kσckσ +

∑
q

h̄ω(q)
[
a†qaq +

1

2

]

+
1

2

∑
kk′q
σσ′

U(q) c†k+q,σ c
†
k′−q,σ′ ck′σ′ ckσ +

∑
kqσ

Γ(q) (aq + a†−q) c†k+q,σckσ . (27)

At this point, it is worth noticing that the Green’s function formalism can be extended to
include the el-ph interaction. The first line in Eq. (27) is the non-interacting Hamiltonian,
while the second line, containing all interactions, can be viewed as the perturbation part.
We can then define a (Matsubara) phonon Green’s function,

D̃q(τ) = −〈T̂ aq(τ) a†q(0)〉 . (28)

Its zeroth-order version is usually represented by a dashed line in a diagrammatic for-
malism, with the el-ph interaction vertex corresponding to the diagram below.

It is easy to see that phonon lines will connect internal vertices in electron Green’s function
diagrams in much the same way as Coulomb-interaction lines. This means that contribu-
tions of el-ph interaction may be worked out along the general scheme of evaluating the
electron self-energy. Conversely, electronic polarization parts will renormalize the phonon
Green’s function, resulting, for instance, in modified phonon frequencies. We will not de-
velop this approach in further detail. Instead, in Text 18 we will use the explicit form of
electron-phonon interaction derived here to investigate phonon effects on electronic prop-
erties in two distinct regimes.


