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Green’s functions and response to external fields

In our study of elementary excitations in the Fermi-liquid regime of an interacting electron
system we worked with two GF’s, Gkσ(ω) and Dq(ω). The first one allows to obtain the
quasi-particle energy spectrum, while the second gives the spectrum of particle-hole pairs
and plasmons, which are the relevant elementary excitations of the system in question.
The use of Green’s functions can be expanded, generalizing the basic ideas presented for
the ones already discussed. In principle, the energy spectrum of any kind of elementary
excitation of a physical system (lattice vibrations, spin waves, etc.) can be obtained from
the poles of an appropriately defined GF.

Green’s functions are also widely used to study the response of physical systems to external
fields, in the context of Linear Response Theory. This theory relates response coefficients
(magnetic susceptibility, electrical conductivity, etc.) with Green’s functions defined for two
conveniently chosen operators, one associated to the physical variable that measures the
response and the other to the variable that couples with the external field. In the following,
we complement our study of GF’s focusing on the evaluation of response functions.

Linear Response Theory

Consider a generic physical system, described by the Hamiltonian H, to which an external
field is applied, generating a perturbation HamiltonianHext (which can be time dependent).
So, the total Hamiltonian is

Htot = H +Hext . (1)

As we will deal with quantum statistics, we must employ a density-matrix formalism, in
which physical quantities are given by thermodynamic averages of the type

〈A〉tott = Tr ρtot(t)A . (2)

The density matrix ρtot has its time dependence in the Schrödinger picture given by

i
dρtot

dt
= [Htot, ρtot] . (3)

Separating the perturbation, we have

ρtot ≡ ρ + ρext , (4)

ρ being the density matrix in the absence of external field. For thermodynamic equilibrium
at temperature T we have (in the canonical ensemble)

ρ = Z−1e−βH; Z = Tr e−βH; β = 1/T . (5)
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As ρ does not depend on time,

i
dρtot

dt
= i

dρext
dt

= [Htot, ρtot] . (6)

The commutator may be split up as follows,

[Htot, ρtot] = [H +Hext, ρ + ρext]

= [H, ρ] + [H, ρext] + [Hext, ρ] + [Hext, ρext] . (7)

The first term of the second line in the above equation is zero, since ρ and H commute.
The last term, which is quadratic in the external field, is neglected in Linear Response
Theory. Therefore, we are left with

i
dρext

dt
= [H, ρext] + [Hext, ρ] . (8)

The above expression is written in the Schrödinger picture. Using the interaction picture
with respect to the external perturbation, H is seen as the unperturbed part, and we
have the relationship

A(t) = eiHtA(S)e−iHt , (9)

where the superscript (S) indicates an operator in the Schrödinger picture. Applying this
transformation to Eq. (8) we can write an equation of motion for ρext(t) (external part of
the density matrix in the interaction picture), which has the final form

i
dρext(t)

dt
= [Hext(t), ρ] . (10)

This is a first-order differential equation for ρext(t), subjected to the initial condition

ρext(−∞) = 0 , (11)

which reflects the implicit assumption that the perturbation is adiabatically turned on
starting at t = −∞. Equation (10) can be formally integrated, resulting in

ρext(t) = −i
∫ t

−∞
dt′ [Hext(t

′), ρ] . (12)

Let us assume that the system’s response is measured by the average value of a physical
quantity A (not explicitly time dependent), chosen such as to have zero average in the
absence of perturbation. Then,

〈A(t)〉tot = Tr ρ
(S)
tot (t)A = Tr ρext(t)A(t) , (13)

or

〈A(t)〉tot = −i
∫ t

−∞
dt′Tr [Hext(t

′), ρ]A(t) . (14)
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Using the cyclic property of the trace, we obtain

〈A(t)〉tot = −i
∫ t

−∞
dt′ 〈[A(t),Hext(t

′)]〉 . (15)

We now assume that the Hamiltonian describing the external perturbation has the form

H(S)
ext = −B(S)f(t) , (16)

where B is an observable of the system, and the external field is represented by the “force”
f(t), which is not an operator. This form is actually quite general. We can then write

〈A(t)〉tot = i
∫ t

−∞
dt′ 〈[A(t), B(t′)]〉f(t′) . (17)

Relationship with Green’s functions

It is easy to see that Eq. (17) can be written as

〈A(t)〉tot =
∫ ∞
−∞

dt′GAB(t− t′)f(t′) , (18)

if we define a Green’s function involving the operators A and B as given by

GAB(t− t′) = iθ(t− t′)〈[A(t), B(t′)]〉 . (19)

Note that this is a retarded GF, defined in terms of a commutator, not an anticommu-
tator. This is so because A and B, being observables, conserve the number of particles (in
a fermionic system they are composed by an even number of fermion operators).

Generalized Susceptibility

Typically, the system’s response is related to the external field through what is called a
response function or generalized susceptibility, so that

〈A(t)〉tot =
∫ ∞
−∞

dt′ χAB(t− t′)f(t′) . (20)

The above integral is a convolution in time. So, it is convenient to take the Fourier
transform, which allows to write

〈A(ω)〉tot = χAB(ω)f(ω) . (21)

From Eqs. (18) and (20) we see that the frequency-dependent response function is nothing
but a Green’s function of the observables that measure the response and couple with the
field, that is,

χAB(ω) = GAB(ω) . (22)
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Generalization to non-uniform (i.e., position dependent) external field is straightforward:

〈A(r, t)〉tot =
∫ ∞
−∞

dt′
∫

dr′ χAB(r− r′, t− t′)f(r′, t′) . (23)

The double convolution makes it convenient to take Fourier transforms both in space and
time, which results in

〈A(k, ω)〉tot = χAB(k, ω)f(k, ω) . (24)

It preserves the relationship between susceptibility and GF, i.e.,

χAB(k, ω) = GAB(k, ω) , (25)

where GAB(k, ω) is the Fourier transform of

GAB(r− r′, t− t′) = iθ(t− t′)〈[A(r, t), B(r′, t′)]〉 . (26)

A common example is the magnetic susceptibility, which relates magnetization (mag-
netic response) with applied magnetic field. For most systems whose magnetic moments
are localized, these moments can be associated to local (atomic) spins. Then, the local
magnetization (apart from multiplicative constants) is given by the average value of a
spin operator, Mi = 〈Si〉. The observable that couples with the external field is also the
spin, as the Zeeman term in the Hamiltonian is HZ = −∑

i H(Ri, t).Si. Therefore, the
magnetic-susceptibility tensor has components

χαβ(Ri −Rj, t− t′) = Gαβ(Ri −Rj, t− t′) = iθ(t− t′)〈[Sαi (t), Sβj (t′)]〉 , (27)

where α and β can be x, y or z in three dimensions. The Fourier-transformed version is
χαβ(k, ω) = Gαβ(k, ω).

This is also applicable to the paramagnetic response of conduction electrons, i.e, leaving
aside the diamagnetic contribution from orbital degrees of freedom (Landau diamagnetism).
Local electron-spin operators are written in fermion representation as

Szi =
1

2
(ni↑ − ni↓) , S+

i = c†i↑ci↓ , S−i = c†i↓ci↑ , (28)

with the corresponding Fourier transforms

Szq =
1√
N

∑
k

(c†k+q ↑ck↑ − c
†
k+q ↓ck↓) , S+

q =
1√
N

∑
k

c†k+q ↑ck↓ , S−q =
1√
N

∑
k

c†k+q ↓ck↑ .

(29)
We thus see that Gαβ(k, ω) will have essentially the same diagrammatic structure as the
density-fluctuation GF, Dq(ω), studied in Text 15. The only difference is that the single-
particle lines converging on the external vertices may refer to different spins.

A detailed analysis of the magnetic susceptibility is beyond the scope of this course, being
a natural subject of a course on Magnetism.
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Kubo Formula

In certain cases it is convenient to express the response in terms of Ḃ ≡ dB/dt, instead of
B. Using

GAB(t− t′) = iθ(t− t′)〈[A(t), B(t′)]〉 = iθ(t− t′)〈[A(0), B(t′ − t)]〉 , (30)

we obtain the time derivative

dGAB(t− t′)
dt

= iδ(t− t′)〈[A,B]〉 −GAḂ(t− t′) . (31)

Fourier transforming this last equation, and dividing it by (−iω) results in

GAB(ω) = −〈[A,B]〉
ω

+
1

iω
GAḂ(ω) . (32)

Therefore, the susceptibility can be written in terms of a GF that involves Ḃ,

χAB(ω) = −〈[A,B]〉
ω

+
1

iω
GAḂ(ω) . (33)

This relationship, known as Kubo formula, may appear in different explicit forms depending
on the specific problem.

We can also separate the susceptibility in its real and imaginary parts. Given that A and
B are observables, i.e., Hermitian, their commutator is anti-Hermitian. We can write it in
terms of a Hermitian operator C as

[A,B] ≡ iC . (34)

Therefore, 〈C〉 is real and 〈[A,B]〉 = i〈C〉 is purely imaginary. From Eq. (33) it then
follows that

ReχAB(ω) =
ImGAḂ(ω)

ω
, (35)

ImχAB(ω) = − 1

ω
[ReGAḂ(ω) + 〈C〉] . (36)

If the applied field does not vary with time, the response is restricted to the zero-frequency
susceptibility χAB(ω = 0), also called static susceptibility, and simply denoted as χAB.
Considering that χAB(t) is real, χAB(ω = 0) is also real. Thus, Eq. (36) results in the
condition

ReGAḂ(ω = 0) = −〈C〉 , (37)

and Eq. (35) yields the static susceptibility as

χAB = lim
ω→0

ImGAḂ(ω)

ω
. (38)
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A typical example in this case is the electric conductivity of metals. The interaction of
an electron with a uniform electric field E is described by the Hamiltonian

Hext = e
∑
i

ri .E , (39)

where i labels each conduction electron. The response is measured by the electric-current
density

j = − e
V

∑
i

ṙi = − e

mV

∑
i

pi , (40)

where V is the system volume. We then have the following correspondence between generic
operators A and B and the relevant operators for this specific problem (without any special
notation for r, p or j when representing operators):

A→ j , B → −e
∑
i

ri , Ḃ → −e
∑
i

ṙi = V j . (41)

Therefore, we also have the correspondence

[A,B]→ e2

mV

∑
ij

[pi, rj] = −i
ne2

m
I , χAB → σ , (42)

where I is the identity matrix, n = N/V is the electron density, and σ is the electric-
conductivity tensor.

Defining the current-current Green’s function

Gjj(t− t′) = iθ(t− t′)〈[j(t), j(t′)]〉 , (43)

Eqs. (35-36) and (41-42) imply that

Reσ(ω) =
V

ω
Im Gjj(ω) , (44)

Imσ(ω) = − 1

ω

[
V Re Gjj(ω)− ne2

m

]
. (45)

These relations determine the real and imaginary parts of the frequency-dependent (also
called optical) conductivity. From Eq. (38) the static conductivity σ ≡ σ(ω = 0) is given
by

σ = V lim
ω→0

Im Gjj(ω)

ω
. (46)

A Fock-space version of the current-density operator may be obtained from second quan-
tization of the quantum mechanical “current” (multiplied by the electron charge):

j(r) =
i h̄e

2m

∑
s

{
ψ̂†s(r)∇ψ̂s(r)−

[
∇ψ̂†s(r)

]
ψ̂s(r)

}
. (47)
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Here we use the spin label as s instead of σ to avoid confusion with the conductivity.
Besides, we again include h̄ explicitly. The Fourier components of j(r), written in terms
of wavevector-dependent fermion operators, are (in the homogeneous case, i.e., plane-wave
basis)

jq = −eh̄
m

∑
k s

k c†k+q,sck s . (48)

This form makes it possible to deal with an electric field varying both with time and
position, with the replacement Gjj(ω) → Gjj(q, ω). In the uniform limit (q = 0), we
recover a familiar form,

j = −eh̄
m

∑
k s

k c†k sck s = −e
∑
k s

vkn̂k s , (49)

but we should keep in mind that we now have a current operator, depending on the
occupation-number operator.

Similarly to what was observed for the spin susceptibility, we can infer that the diagram-
matic structure of Gjj(ω) is directly related to that of the density-fluctuation GF, since
once more the external vertices involve creation-annihilation pairs.

It is worth remarking that the relationship between electric conductivity and current-
current GF is exact (within the limits of Linear Response Theory), in contrast to the
calculation based on Boltzmann’s equation, which involve independent electrons and the
semiclassical approximation. Besides the Coulomb interaction between electrons, it is pos-
sible to include electron-phonon and/or electron-impurity interactions into the Feynmann
diagrams. However, actual evaluation of the current-current GF may become quite complex
if one takes all interactions into account.


