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FIP10601 – Text 15

Elementary excitations in the interacting-electron system

Single-particle excitations

Let us go back to the general form of the Matsubara Green’s function, Eq. (40) of Text
13, that we rewrite as

G̃kσ(ωn) =
1

iωn − [ε̄k + Σk(ωn)]
, (1)

where ε̄k = εk − µ. For simplicity, we eliminate the spin subscript from the self-energy, as
we will not consider the possibility of magnetic order.

We now take the analytically continued version (real frequencies), and separate real and
imaginary parts of the self-energy as

Σk(ω) ≡ ∆k(ω)− iΓk(ω) , (2)

where ∆k and Γk are real functions. We then have

Gkσ(ω) =
1

ω − ε̄k −∆k(ω) + iΓk(ω)
. (3)

The imaginary part of the denominator is, in principle, finite, eliminating the need to
include a term iη that was necessary in the non-interacting case. So, the GF is retarded
or advanced according to the sign of Γk (respectively, positive or negative).

For a given k, the real part of the denominator in Eq. (3) is zero for some real frequency
ω ≡ ξk such that

ξk − ε̄k −∆k(ξk) = 0 . (4)

Expanding the denominator of Eq. (3) around ω = ξk, we can rewrite that equation as

Gkσ(ω) =
zk

ω − ξk + iγk
+ (non-singular terms) , (5)

where

z−1k = 1− ∂

∂ω
∆k(ω)

∣∣∣∣∣
ω=ξk

, (6)

and we have assumed that the imaginary part of the self-energy is weakly dependent on
frequency, replacing it by Γk ≡ Γk(ξk) and defining γk ≡ zkΓk.

We see that the GF has poles at frequencies whose real parts are ξk, so that these are the
energies of single-particle excitations with the corresponding wavevectors (and spin σ). To
have some insight on the nature of these excitations we must look at their distribution in
energy (frequency).
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Spectral function

As we saw earlier, the retarded and advanced GF’s have spectral representations of the
form

G±kσ(ω) =
∫

dε
ρkσ(ε)

ω − ε± iη
⇒ ρkσ(ω) = ∓ 1

π
ImG±kσ(ω) . (7)

For Gkσ(ω) as given by Eq. (5), the non-singular terms being usually dropped, the spectral
function (or spectral density) ρkσ(ω) becomes

ρkσ(ω) = −sgn(γk)
1

π
ImGkσ(ω) , (8)

which yields

ρkσ(ω) = zk
1

π

|γk|
(ω − ξk)2 + γ2k

. (9)

This spectral density is a Lorentzian distribution with center at ω = ξk and width |γk|,
while zk plays the role of a spectral-weight renormalization factor.

For non-interacting electrons the self-energy goes to zero, and the spectral density becomes
a Dirac delta-function centered at the energy ε̄k, consistent with what was obtained directly
from the zeroth-order GF. Therefore, a delta-type spectral function is characteristic of a
(non-interacting) particle. In this case, as the spectral distribution has zero width in
frequency, there is no time dependence, meaning that the particle has infinite lifetime.

Turning on the interaction, the spectral-function peak broadens (and its center shifts to
the renormalized energy ξk). If the spectral function still shows a fairly well defined peak,
the excitation is viewed as a (fermionic) quasi-particle (of wavevector k, spin σ, and
energy ξk), which has a finite lifetime γ−1k .

Fermi liquid

A fermion system presenting a quasi-particle spectrum which evolves continuously from
the non-interacting-particle spectrum as the interaction is adiabatically turned on is said
to be a normal Fermi liquid (or simply Fermi liquid).

Fermi surface

The most striking feature of a Fermi gas (non-interacting particles) is the existence of
a Fermi surface (at T = 0). It is characterized by a discontinuity in the average
occupation number of electronic states between the inner and outer parts of this constant-
energy surface in k-space defined by εk = εF .

A question is then in order: Does the concept of a Fermi surface make sense for a
Fermi liquid, that is, for interacting electrons?
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We must bear in mind that ξk is an excitation energy which corresponds, in the non-
interacting limit, to a single-electron energy relative to the chemical potential, and the
latter becomes the Fermi energy at T = 0. Then ξk > 0 must correspond to electron-like
quasi-particles, while ξk < 0 must refer to hole-like quasi-particles. This is sufficient to
show that the concept of a Fermi surface remains applicable to the interacting
system: it is the surface in k-space for which ξk = 0. Note that, consistently with this
definition, the non-interacting Fermi surface may be written as ε̄k = 0.

Given that the negative-time GF for electrons can be interpreted as a positive-time GF
for holes, we associate γk > 0 (retarded GF) to electron-like quasi-particles, and γk < 0
(advanced GF) to hole-like quasi-particles. Therefore, the imaginary part of the self-
energy becomes zero at the FS. The most interesting implication of this property is
that low-energy quasi-particles (close to the FS) tend to have very large lifetimes (γk → 0).

We can view the connection between single-particle Green’s functions and the above-
mentioned discontinuity of the average occupation number at the FS by trying to explicitly
evaluate this average. It can be done starting from the exact relationship

〈nkσ〉 = g̃kσ(τ = 0−) , (10)

already used in our discussion of the HF approximation. From the Fourier-series relation,
Eq. (30) of Text 12, we have that

g̃kσ(0−) ≡ 1

β

∑
n

eiωn0+G̃kσ(ωn) . (11)

Now, employing the spectral representation (7) in its Matsubara version gives us

〈nkσ〉 =
∫

dε ρkσ(ε)
1

β

∑
n

eiωn0+

iωn − ε
· (12)

Conveniently choosing a contour C in the complex plane of a variable z (complex fre-
quency), it can be shown that

1

β

∑
n

eiωn0+

iωn − ε
= −

∮
C

dz

2πi

ez 0
+
f(z)

z − ε = f(ε), (13)

where f(ε) is the Fermi function, written as
(
eβε + 1

)−1
, i.e., without explicitly including

the chemical potential because the energies are relative to µ. The first equality in Eq. (13)
comes from the narrow contour “around” the imaginary axis in the left plot of Fig. 1, and
is based on the fact that f(z) has poles on the imaginary axis (with residue 1/β) wherever
z = iωn. The second equality corresponds to the split contour of the other plot, for which
a single pole exists at the real frequency ε. Note that the relevant part of the integration is
along the straight lines parallel to the imaginary axis, since the closing arcs in all contours
are at |z| → ∞, where the integrand goes to zero. This is guaranteed by the factor ez 0

+
,

where 0+ must be interpreted as a small positive “time” that is taken to zero in the end.
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Figure 1: Contour schemes in the complex z plane corresponding to the first and
second equalities of Eq. (13) (left and right graphics, respectively). Dots on axis
sections far from the origin indicate that these regions are scaled down from infinity.

From Eqs. (12) and (13) we conclude that

〈nkσ〉 =
∫

dε ρkσ(ε)f(ε) · (14)

For a non-interacting system ρkσ(ε) = δ(ε − ε̄k), and one recovers 〈nkσ〉 = f(ε̄k), which
jumps from 1 to 0 across the FS in the zero-temperature limit. In the presence of interac-
tion, the finite width of ρkσ(ε) transfers spectral weight across the FS. On the other hand,
the width γk goes to zero at the FS, so that ρkσ(εF ) → zkF δ(εF − ξk). Therefore, the FS

is still characterized by a finite jump of 〈nkσ〉, but the “step” has a height zkF < 1. The
typical behavior is depicted in Fig. 2.

Taking into account that there is a one-to-one correspondence between ξk in the Fermi
liquid and ε̄k in the Fermi gas, as shown by Eq.(4), the k-space volume enclosed by
the FS is the same as in the non-interacting case (Luttinger’s Theorem). This
does not mean that the FS shape is also preserved, although it should happen in the
homogeneous limit (spherical FS).

As a wrapping-up remark, we want to emphasize that what we have learned about the
Fermi-liquid state allows us to infer that, despite the presence of electron-electron interac-
tions, the low-energy elementary excitations in a metal behave very much like free electrons!
In a sense, this is an a posteriori justification for the relative success of the free-electron
approximation, provided we reinterpret it as describing quasi-particles of a Fermi liquid.

It is also noteworthy that our study of transport problems through the Boltzmann equation
can be applied to Fermi-liquid quasi-particles. In this context, γk (∼ γkF ) can be seen as
the inverse of a relaxation time τe−e due to the electron-electron interaction. As we have
seen for the electron gas, all quantities related to the Fermi surface tend to depart from
their ground-state values quadratically on temperature. This qualitative argument can be
corroborated by an explicit calculation of γk taking into account second-order self-energy
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Figure 2: Schematic representation of the average occupation number in a Fermi-
liquid. The discontinuity at the Fermi surface has a height zkF

< 1.

diagrams (that is, beyond Hartree-Fock). Such a calculation (not shown here) clearly
reveals the T 2 behavior for T � TF . The resulting variation of τe−e with temperature
generates a term proportional to T 2 in the electrical resistivity, which is dominant at low
temperatures, when the phonon contribution becomes very small (as we will see latter).
This T 2 behavior is observed in resistivity measurements, serving as “signature” of a Fermi-
liquid state.

In the above discussion we took for granted the existence of quasi-particle excitations in
thermodynamic equilibrium in a Fermi liquid at finite temperature. If we think of heating
up the system starting from the ground-sate, conservation of the total number of particles
implies that we must have the same number of electron-like and hole-like excitations, in the
same way as we have equal numbers of electrons and holes in a Fermi gas. The low-energy
excitations of the system are still referred to as electron-hole excitations, even though we
actually have quasi-electrons and quasi-holes. Next we will see that there are excitations
of a different nature at higher energies.

Collective excitations

In addition to particle-hole excitations, which involve independent quasi-particles, a system
of interacting electrons also has collective excitations. These two kinds of excitations have
a common characteristic: both conserve the number of particles. To describe them, we
define a new GF involving the spatial density of electrons.
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As we saw in Text 10, the operator associated to the electron density is written in terms
of field operators (creation and annihilation in coordinate space) as

ρ̂(r) =
∑
σ

ρ̂σ(r) , ρ̂σ(r) = ψ̂†σ(r)ψ̂σ(r) . (15)

To make contact with our formulation in reciprocal space, we can express ρ̂(r) in terms of
its Fourier components,

ρ̂(r) =
1

V

∑
q

eiq.rρ̂q , (16)

where
ρ̂q =

∫
dr e−iq.rρ̂(r) . (17)

In the homogeneous limit, when Bloch functions become plane waves, so that ckσ and ψσ(r)
are related by a simple Fourier transform, it follows that

ρ̂q =
∑
kσ

c†kσck+q,σ , (18)

and its conjugate is
ρ̂†q =

∑
kσ

c†k+q,σckσ . (19)

Note that
〈ρ̂q〉 = 〈ρ̂†q〉 =

∑
kσ

〈n̂kσ〉δq0 ≡ 〈N̂〉δq0 , (20)

where 〈N̂〉 represents the average total number of electrons, which must be equal to N .
From these relationships, we can define a (Matsubara) GF of the form

D̃q(τ) = −
[
〈T̂ ρ̂q(τ)ρ̂†q(0)〉 − 〈N̂〉2δq0

]
, (21)

describing fluctuations of the electron density. D̃q is a bosonic GF since the operator
ρ̂q involves products of two fermion operators.

We can develop a perturbative treatment of D̃q(τ) following the general lines presented
in Text 13 for the single-particle GF. The basic difference is that the external vertices
are now points where a G̃0 line begins and another one ends, as they represent creation-
annihilation pairs. The zeroth-order diagram is thus exactly what we named (zeroth-order)
polarization part in the first sections of this Text. There is also a disconnected diagram
in which each external vertex has a single-particle line closing on itself. But this (after
full renormalization of these closed lines) is canceled by the term 〈N̂〉2 that appears in the
definition of D̃q. All possible insertions into the zeroth-order diagram lead to a complete
polarization part, Π(q, νn). In addition, polarization parts may be connected by interaction
lines, generating the series

D̃q(νn) = Π(q, νn)−Π(q, νn)U(q)Π(q, νn)+Π(q, νn)U(q)Π(q, νn)U(q)Π(q, νn)+ . . . (22)
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The diagrammatic representation of the r.h.s. of the above equation is very similar to that
of Eq. (8) of Text 14, except that it begins and ends with Π(q, νn) instead of U(q). Like
in that case, it can be turned into a Dyson’s equation, and the result is

D̃q(νn) =
Π(q, νn)

1 + U(q)Π(q, νn)
. (23)

Converting to real frequency (retarded function), we have

Dq(ω) =
Π(q, ω)

1 + U(q)Π(q, ω)
=

Π(q, ω)

ε(q, ω)
, (24)

which involves the dielectric constant as defined when we discussed the screening of inter-
actions. From the above relation we see that excitation energies of the interacting-electron
system (with conservation of particle number) are given by zeros of its dielectric constant,
which generate poles of Dq(ω).

In the non-interacting limit, Eq. (24) shows that D0
q(ω) = Π0(q, ω), whose poles occur at

ω = εk+q−εk. What happens to these poles in the interacting system? They are not poles
of Dq(ω), since they cancel out between numerator and denominator in Eq. (24). The
actual poles, as we noted before, are given by the zeros of the dielectric function. In the
Random Phase Approximation (RPA), introduced in Text 14, one uses the zeroth-order
polarization part to evaluate the dieletric function. Then, using the expression previously
obtained for Π0, Eq. (14) of Text 14, we end up with the condition

2U(q)
∑
k

f(εk)− f(εk+q)

ω − (εk+q − εk)
= 1 . (25)

Figure 3 shows a schematic plot of the left-hand side of this last equation as a function of
frequency, with artificially discretized band energies (dashed lines) for the sake of clarity.
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Figure 3: Schematic plot of the left-hand side of Eq. (25) for a small value of q, indicating
the points where Eq. (25) is verified. The high-frequency solution, outside the particle-hole
region, corresponds to a plasmon excitation.
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Note that there is a solution of Eq. (25) between any consecutive poles of D0
q(ω) (vertical

dashed lines). Therefore, in the macroscopic limit, when these poles have a continuous
distribution, the spectrum of particle-hole excitations coincides with the non-interacting
one.

However, it is clear from Fig. 3 that there is another solution, for an energy well above the
particle-hole continuum. This is a collective mode, whose frequency can be easily evaluated
in the long-wavelength limit (q → 0). After some manipulation of the wavevector sum in
Eq. (25), we end up with a single Fermi function in the numerator and a difference of
squares in the denominator. Then, for small q values, we can neglect the square of the
energy difference against ω2, obtaining (EXERCISE), for a parabolic band with effective
mass m∗,

Π0(q, ω) ' − Nq2

m∗ω2
, (26)

where N is the total number of electrons. Using the Fourier transform of the Coulomb
potential (Text 11), U(q) = 4πκe2/V q2, the q → 0 limit of Eq. (25) becomes

4πnκe2

m∗ω2
= 1 , (27)

where n = N/V , the electron density. Therefore, collective excitations of long wavelength
occur with a characteristic frequency ω = ωp, defined as

ωp ≡
(

4πnκe2

m∗

)1/2

. (28)

It is called plasma frequency, and the corresponding oscillation mode is called a plasmon.

∆ε/εF

q/kF
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ωp/εF

Figure 4: Schematic representation of the Fermi-liquid excitation spectrum, with
the continuum of electron-hole excitations (shaded area) and the plasmon line.
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Numerical estimation for densities of 1022−1023 el/cm3 andm∗ near the electron mass yields
ωp with an order of magnitude in the range 1015−1016 s−1, corresponding to energies of the
order of 1 to 10 eV. This is the same order of magnitude of the Fermi energy! Plasmons
are therefore high-energy excitations.

A more detailed calculation shows that the plasmon energies grow with q2 from the ini-
tial value ωp. In addition, the imaginary part of the plasmon pole becomes finite when
ω(q) enters the region in which high-energy electron-hole excitations exist, indicating that
plasmon modes decay into electron-hole pairs. A schematic representation of both kinds
of elementary excitations is shown in Fig. 4. The plasmon line is drawn with dots in the
region where plasmons becomes unstable.

Fermi-liquid instabilities

In certain situations, the Fermi-liquid characteristics, i.e., existence of a Fermi surface and
low-energy single-particle excitations, are not observed. In such cases, the Fermi-liquid
state is unstable, and the true ground state (as well as excited states in thermodynamic
equilibrium) are of a different nature. The basic point is that the ground-state cannot be
viewed as evolving continuously from the non-interacting one.

This can happen, for example, in the presence of additional interactions that significantly
change the ground state. In particular, strong electron-phonon interaction may cause
self-trapping of an electron in lattice deformations induced by the electron itself (local-
ized polaron), while weak electron-phonon interaction may generate an effective attractive
interaction between electrons leading to the establishment of a superconducting state at
sufficiently low temperatures. We will address the electron-phonon interaction and super-
contuctivity in Texts 16 and 18.

Other cases of Fermi-liquid instability involve narrow-band systems, in which electrons
have low mobility. Screening is then not efficient, leaving strong local interactions. The
instabilities can be against the establishment of magnetic order and/or the occurrence of
a metal-insulator transition. Here one enters the field of the so-called strongly correlated
electron systems, where substantially different approaches need to be employed, as will be
briefly discussed in the following.

Brief introduction to strongly correlated electron systems

Our perturbative approach to the electron-electron interaction led to the concept of Fermi
liquid, which is not substantially different from the Fermi gas. In good part, this was due
to the assumed mobility of the electrons. In contrast, if an electron can only hop to a single
orbital of a neighboring site, which has a high probability of being occupied by another
electron, interaction and spin states become very important.



10 M. A. Gusmão – IF-UFRGS

At the end of Text 10 we have already introduced the Hubbard model, which may be
viewed as a prototype model for strongly correlated electrons in solids. Its Hamiltonian is
reproduced below.

H = ε0
∑
iσ

c†iσciσ −
∑
ijσ

tijc
†
iσcjσ + U

∑
i

ni↑ni↓ . (29)

Usually, the hopping tij is only non-zero between neighboring sites, with a single value
t, supposing that all neighbors are equivalent. The Coulomb repulsion is positive (U >
0) and the relevant regime corresponds to U � t. Clearly, the electrons do not move
independently. There is correlation due to Pauli’s exclusion principle, as hopping can only
occur to an empty site or to a site occupied by an electron with opposite spin, and also
because in the latter case there is an energy cost U .

From the above comments, it is not difficult to infer that at half filling, i.e., with one
electron per lattice site, the system in the ground state will be an insulator and present
antiferromagnetic order. Insulator because any motion will generate a double occupation,
which involves an excitation energy U . The antiferromagnetism may be understood as
resulting from a second-order perturbative correction in the hopping, i.e., virtual hoppings
to a neighboring site and back, which can only happen if the electron that hops and the
one occupying the other site have opposite spins.

Another important class of correlated-electron systems are compounds that present two
relevant bands: a wide one, usually originated from s and/or p atomic levels, and a narrow
one originated from d or f atomic levels. In the usual models, the first one is treated as
uncorrelated (i.e., an independent-electron band), while the second is viewed as localized
levels, with a strong intra-site Coulomb repulsion. The lack of spherical symmetry in the
crystal structure allows for hybridization between the local s an f levels, which is a new
important ingredient. With these choices we have the Periodic Anderson Model (PAM),
whose Hamiltonian may be written as

H =
∑
kσ

εknkσ + εf
∑
iσ

nfiσ + U
∑
i

nfi↑n
f
i↓ +

∑
k,i

(
Vkeik·Ric†kσfiσ + H.c.

)
, (30)

where H.c. stands for Hermitian conjugate. The localized f-level, of energy εf , is supposed
to be placed below the Fermi energy (εf < εF ), while the doubly occupied state has energy
εf +U > εF . So, the f levels are singly occupied, and may be viewed as localized spins. We
then see that the hybridization will cause the band spins to be locally antiparalell to the f -
spin, screening this local moment. This is one of the manifestations of the so-called Kondo
effect, initially addressed in diluted-impurity systems, in which the localized f-electrons
belong to diluted impurity atoms inserted into a non-correlated metal. In lattice systems,
as modeled by the PAM, we have a competition between the Kondo effect, which tends
to screen the local moments, and correlations as those already appearing in the Hubbard
model, that may induce magnetic order.

The brief comments presented here just touch a few aspects of the rich field of strongly
correlated electron systems, which is a subject of intensive research work.


